
A Token-Based Distributed Algorithm for Total
Order Atomic Broadcast

Sandip Dey1 and Arindam Pal2

1 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore 560 012, India

sandip@csa.iisc.ernet.in
2 Microsoft Corporation, Hyderabad, India

arindamp@microsoft.com

Abstract. In this paper, we propose a new token-based distributed algo-
rithm for total order atomic broadcast. We have shown that the proposed
algorithm requires lesser number of messages compared to the algorithm
where broadcast servers use unicasting to send messages to other broad-
cast servers. The traditional method of broadcasting requires 3(N − 1)
messages to broadcast an application message, where N is the number of
broadcast servers present in the system. In this algorithm, the maximum
number of token messages required to broadcast an application message
is 2N . For a heavily loaded system, the average number of token mes-
sages required to broadcast an application message reduces to 2, which
is a substantial improvement over the traditional broadcasting approach.

1 Introduction

Various distributed applications require that a group of processes receive mes-
sages from different sources and take actions based on these messages. These
actions can be updating a replicated database or executing a method on a repli-
cated object etc. Broadcasting is a technique, in which an arbitrary one among
N processes sends a message to the other N − 1 processes. Although broadcast-
ing can always be achieved by sending N − 1 unicast messages and waiting for
the N − 1 acknowledgments, this algorithm is slow, inefficient and wasteful of
network bandwidth.

By atomicity we mean that, if a message is delivered to one among a group
of processes, then it will be delivered to all other processes in the group. By total
ordering we mean that, if a process receives a message p before a message q, then
all other processes in the group will also receive message p before message q. A
message delivery rule is considered safe, if before a broadcast server delivers a
message, it ensures that every other broadcast server has received that message.
A message is considered stable, if every broadcast server in the system knows
that every other broadcast server has received the message.

Various issues of broadcasting are addressed in [1,2,3]. In [4], a centralized
broadcast protocol has been described. Here, application processes send messages
to a central entity called sequencer. If the sequencer fails, a new sequencer has

S.K. Das and S. Bhattacharya (Eds.): IWDC 2002, LNCS 2571, pp. 343–347, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

344 S. Dey and A. Pal

to be chosen before messages can be broadcasted. So, this algorithm has a single
point of failure.

In this paper, we propose a total order, atomic broadcast protocol that allows
broadcasting of messages using a unidirectional ring. A set of broadcast servers
deliver messages on behalf of application processes. The broadcast servers are
organized in a unidirectional logical ring and a token carrying broadcast messages
circulates around the ring. The algorithm does not use any broadcast primitive.
Instead it uses unicasting between broadcast servers to broadcast messages. The
algorithm is fully distributed and there is no single point of failure.

The rest of the paper is organized as follows. In section 2, the system model
is described. Section 3 presents the algorithm. In section 4, we have stated and
proved the properties of the algorithm. Finally, section 5 concludes the paper.

BS1
Broadcast server BS1

<Queue of application
messages>

token circulates in
this direction

unidirectional ring

BS4 BS2

BS3

with Broadcast Server BS1
Application processes 1 ... i associated

Ap1 ... Api

Fig. 1. System Model

2 System Model

The system consists of a set of broadcast servers and a set of application pro-
cesses, where each application process is associated with a unique broadcast
server. We consider an asynchronous distributed environment where processes
communicate with each other by explicit message passing only. Send primitive is
non-blocking and receive primitive is blocking in nature. The broadcast servers
are failure-free and no messages are lost in transit. The communication channels

A Token-Based Distributed Algorithm for Total Order Atomic Broadcast 345

between a broadcast server and its associated application processes are assumed
to be first-in first-out (FIFO). The system model is depicted in Fig. 1.

3 The Algorithm

Our algorithm implements a broadcast protocol, which in essence uses unicasting
to communicate between processes. Broadcast servers take the responsibility
of broadcasting messages received from a group of application processes. Each
broadcast server knows its identity, the identity of the neighboring broadcast
server and the total number of broadcast servers present in the system. These
informations are required to connect the broadcast servers in a unidirectional
logical ring. Once the ring is established, each broadcast server starts a new
thread called ring handler which takes care of broadcasting issues. The main
broadcast server thread waits for a connection from some application process.
When a connection is received, it invokes an application client handler thread
which handles the communication with that particular application process. The
main server thread continues waiting for other connections. So the broadcast
servers are concurrent in nature, i.e., they can handle several client requests
simultaneously.

An application client may dynamically join a new broadcast server. When a
new application client starts execution, it first establishes a connection with a
broadcast server. The main application client thread then invokes a new thread
called broadcast message receiver which waits for application messages from the
associated broadcast server. These application messages are generated by other
application processes in the system and are now being broadcasted. The main
application client thread runs simultaneously with the broadcast message receiver
thread and generates application messages to be broadcasted. Each application
client keeps an application message counter. A value of i for this counter indicates
that this is the ith application message generated by this application client.
Application messages are generated randomly i.e., after generating a message the
application client sleeps for a random time and then generates another message.
All these application messages are sent to the associated broadcast server.

A broadcast server stores messages from its application clients in a queue.
There is no limit on the length of the queue. Whenever a broadcast server receives
a message from an application client, it puts the message in the queue. A token
circulates around the logical ring and it carries with it N number of application
messages, where N is the number of broadcast servers present in the ring. The
ring handler thread running at each broadcast server checks whether the message
queue is empty or not. If the queue is empty, the broadcast server is currently
not interested to broadcast. If the broadcast server is interested, has the token
and the token has no previous message (still undelivered) from this broadcast
server, it picks a message from the queue and puts the message in the token.
This message gets a sequence number equal to the value of the sequence number
in the token and the sequence number in the token is incremented. In other
words, the token is carrying a unique sequence number generator with it. The

346 S. Dey and A. Pal

circulation count for this message is initialized to 0, indicating that it has been
just put into the token. The broadcast server then forwards the token to its
neighbor. Whenever a broadcast server receives an application message for the
first time, i.e., with a circulation count equal to 0, it copies the application
message in a local buffer. This is important to satisfy the safe delivery rule. If
the broadcast server is interested but the token has a previous message from this
broadcast server which is not delivered to all the application processes yet, the
broadcast sever just increments the circulation count of its message in the token
and forwards the token to its neighbor. After forwarding the token it simply
waits for the token to arrive again. When an application message circulates
twice around the ring, it becomes stable. Once an application message becomes
stable, it can be removed from the token. Each broadcast server delivers all the
application messages with circulation count equal to 1, to associated application
processes. The token has N slots for N application messages for each of the
N broadcast servers. When a message needs to be delivered to the application
clients, the ring handler thread starts a broadcast message sender thread which
delivers the message to all the application clients associated with the broadcast
server.

4 Properties of the Algorithm

Theorem 1. The algorithm ensures atomicity and total ordering of messages.

Proof. A broadcast server delivers an application message to all its associated
application clients. Also, safe delivery rule ensures that every other broadcast
server has received that application message. So, if an application process re-
ceives an application message, others will also receive it. This ensures atomicity.

Now, if a broadcast server delivers a message p before a message q, then
every other broadcast server does the same because messages are delivered by a
broadcast server only when the token completes one full circulation with respect
to that broadcast server. Hence, every application process associated with a
broadcast server will receive message p before q. This way the total ordering of
messages is ensured.

Theorem 2. The maximum number of token messages required to broadcast
an application message is 2N , where N is the number of broadcast servers in
the system. For a heavily loaded system, the average number of token messages
required to broadcast an application message reduces to 2.

Proof. A message is stable when the token completes two full circulations. When
a message is stable it has been delivered by all the broadcast servers. Hence the
maximum number of token messages required to broadcast a message is 2N .

For a heavily loaded system, each broadcast server will put one message in its
slot. Hence, in two full circulations of the token N messages will be delivered. In
other words, 2N token messages will be required to deliver N messages. Hence,
the average number of token messages required to broadcast a message is 2.

A Token-Based Distributed Algorithm for Total Order Atomic Broadcast 347

Compare this with the number of messages required for a complete network
of N broadcast servers. Here, a broadcast server which wants to broadcast a
message will send it to N − 1 other broadcast servers. They will send acknowl-
edgement messages back to the original broadcast server. The original broadcast
server will send replies to all of them and every broadcast server will know that
every other broadcast server in the system has received the message. Thus to
satisfy the safe delivery rule 3(N − 1) messages are required. Hence, even for a
lightly loaded system, our algorithm requires 3(N −1)−2N = (N −1) messages
less for broadcasting.

5 Conclusion

In this paper, we have designed a fully distributed algorithm for total order
atomic broadcast and have shown that our algorithm requires lesser number of
messages compared to the algorithm where broadcast servers use unicasting to
send messages to all other broadcast servers.

Here, we have not considered any fault-tolerance issue. However, our algo-
rithm can be modified to handle token loss. This can be achieved by using extra
sequence numbers in the token and keeping a timer at each broadcast server.
Two consecutive application messages having non-consecutive sequence numbers
will indicate a message loss.

References

1. H. Garcia-Molina, N. Lynch, B. Blaustein, C. Kaufman, and O. Schmueli. Notes on
a Reliable Broadcast Protocol. Technical report, Computer Corporation of America,
July 1985.

2. J. M. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM Transac-
tions on Computer Systems, 2(1):39–59, February 1984.

3. P .M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast Protocols for Dis-
tributed Systems. IEEE Transactions on Parallel and Disributed Systems, 1(1):17–
25, January 1990.

4. M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An Efficient
Reliable Broadcast Protocol. Operating Systems Review, 23(4):5–19, October 1989.

	Introduction
	System Model
	The Algorithm
	Properties of the Algorithm
	Conclusion

