
JUST-IN-TIME SCALE-OUT OF SHELL PROGRAMS, CORRECTLY
Konstantinos Kallas
A DISSERTATION

in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2024

Supervisor of Dissertation
Rajeev Alur, Zisman Family Professor of Computer and Information Science

Graduate Group Chairperson
Mayur Naik, Professor of Computer and Information Science

Dissertation Committee
Sebastian Angel, Raj and Neera Singh Assistant Professor of Computer and Information Science
Vincent Liu, Assistant Professor of Computer and Information Science
Benjamin C. Pierce, Henry Salvatori Professor of Computer and Information Science
Keith Winstein, Associate Professor of Computer Science, Stanford University

JUST-IN-TIME SCALE-OUT OF SHELL PROGRAMS, CORRECTLY
COPYRIGHT
2024
Konstantinos Kallas

Dedicated to Giannis, Katerina, and Nikos.

iii

ACKNOWLEDGEMENT

All the achievements and successes in my life, with no exception, have been achieved through collaborations
and discussions with others. This dissertation would not be complete without acknowledging all the people
that have contributed to it in direct or indirect ways.

First and foremost, I would like to thank my PhD advisor, Rajeev Alur. From the start of my PhD, Rajeev has
managed to grant me independence while at the same time being there to support me in any way I needed—
two advisor traits that I previously thought were mutually exclusive and not possible together. My growth as
a researcher, academic, and individual has been shaped by Rajeev, and I aspire to be even a fraction as good
an advisor as he has been. My gratitude to Rajeev is immense and whatever I write in this paragraph will
not be enough to capture how much I appreciate him.

Another person who has been very important for my PhD is Nikos Vasilakis, a very close collaborator, my
informal second advisor, and an extremely good friend. It was one of the happiest accidents that I met Nikos
and started collaborating with him; as is often the case in our relationship what I consider an accident and
take for granted might have been a carefully planned event from his side, but let’s run with this for now. All
of the work in this dissertation and my development as a researcher could not have been done without him.

A lot of my research has been done in close collaboration and with the support of several great professors
at Penn and elsewhere. Michael Greenberg has brought his ingenuity and PL expertise in all our collabora-
tions; in addition to that, his presence makes every research meeting and encounter significantly more fun.
Sebastian Angel and Vincent Liu have been incredibly constructive and supportive, helping me develop as
a researcher and significantly improving the quality of my work. Benjamin Lee taught one of the most im-
portant courses for my development as a systems researcher. Benjamin Pierce has provided a lot of crucial
feedback on talks and this dissertation. Stephanie Weirich and Steve Zdancewic have given me very useful
feedback and have made me feel embraced in PLClub through their presence and board game nights. Keith
Winstein provided crucial feedback on my job talk and supported me a lot as a member of this dissertation’s
committee. I also want to thank Konstantinos Mamouras and Martin Rinard for providing useful feedback
for various aspects of my work. Jonathan Smith has received an obscene number of emails from me request-

iv

ing reference letters, and I thank him greatly for that. Finally, I want to thank Leonidas Lampropoulos, who
almost single-handedly convinced me to come to Penn for my PhD.

In addition to the professors, I owe a big thanks to the administrators and other staff at Penn, most importantly
Britton, Cheryl, and Maggie, whose daily hard work ensures that everything runs smoothly without us even
noticing.

A significant part of my development is owed to my internships at Microsoft Research and AWS. My mentors
in these internships, Sebastian Burckhardt and Daniel Schwartz-Narbonne, guided me to do exciting work
in areas that I had no experience previously. Big part of the output and enjoyment of my internships is also
owed to other collaborators and interns, including Badrish, David, Mark, Kareem, Malte, Debashmita, and
Adrian. Last but not least, through my internship at AWS I met Felipe, through whom I met Elena, two of
my closest friends. My life would be seriously lacking without them and their love.

I have collaborated with several people throughout my PhD, spending so much time with them that it is hard
to distinguish between friends and collaborators at this point. Caleb Stanford was my first mentor in the
program, taking me under his wing and guiding me through the maze that is a PhD. Filip Niksic was also
a mentor and the person that I most often called for an impromptu night out while he lived in Philadelphia.
Both Caleb and Filip quickly became very dear friends, and working and hanging out with them kept me
going throughout the first few years of my PhD. Doing research with them was extremely stimulating, and
spending time with them was a lot of fun! Haoran Zhang has been a very close colleague and friend in the last
few years of my PhD. Haoran is one of the smartest and most productive people I know and working with him
has been very enjoyable. Tammam Mustafa was one of my first mentees, and spoiled me with how quickly he
grew and became independent. Tammam’s spark and excitement are incomparable and working with him and
listening to his ideas is always a great pleasure. Jiali Xing has been a great colleague and friend that I met in
a course and immediately stuck with due to his immense kindness and warmth. Akis Giannoukos and Spyros
Pavlatos have been so much fun to work with in the last few years of my PhD. Finally, Clara Schneidewind
accompanied me in a year-long fight against the Coq theorem prover during my first PhD year. In addition
to the above, I have collaborated and spent a lot of time with the following fantastic set of people: Lazar
Cvetković, Shivam Handa, Felix Stutz, Grigoris Ntousakis, Georgios Liargkovas, Nikos Pagonas, Yizheng

v

Xie, Ezri Zhu, Evangelos Lamprou, Mayank Keoliya, Dimitris Karnikis, Dimitra Leventi, Thurston Dang,
Stephen Mell, Anirudh Narsipur, Siddhartha Prasad, Eric Wang, Seong-Heon Jung, Oğuzhan Çölkesen, Seth
Sabar, Zhicheng Huang, Ramiz Dundar, and Max Henri Demoulin.

Surviving and being happy during my PhD has depended a lot on all the friends that I made in Philadelphia.
It turns out that it is very hard to precisely remember all parts of one’s life going back six years so don’t
take it personally if your name is missing from this list. Thanks Juan, Giorgo, Paul, Anton, Kishor, Anne
Marie, Dimitri, Nicolo, Joey, Max, Santi, Luiz, Miguel, Taso, Melissa, Nacho, Juan, Yannick, Elena, Ingrid,
Estella, Mariona, Ariana, Giorgo, Charilae, Marilena, Vasiliki, Aggele, Mariliza, Niko, Paulo, Artemis,
Charis, Nektarie, Vageli, Stefane, Lef, Maria, Lefteri, Alex, Rado, Irene, Yao, Li-yao, Robbie, Stelio, Alex,
Louka, and Marko. Two of the friends that I made in Philadelphia, Giorgos and Eliza, deserve a special
mention because they consistently made my days more colorful and bright. I have spent so much time with
them that one wonders how they are still not bored of me.

The daily life during my PhD was significantly more pleasant because of all my officemates (broadly de-
fined). Some of them include: Neeraj, Omar, Gautam, Chris, Nick, Phillip, Gerald, Liangcheng, Yiyun,
Jessica, Aalok, Suguman, Bhavana, Edo, Haoxian, Elizabeth, Pardis, Alaia, Cassia, Jonathan, Lucas, Halley,
Lawrence, Mukund, Aaditya, Pritam, Alex, Antal, Hengchu, Antuan, and Solomon.

In addition to all the connections in the US, I need to thank my friends from Greece (and Martin from
Bulgaria), that have kept me afloat in difficult times, and have made my winters and summers beautiful. A
special thanks goes to Kostis, who was not only part of my life in Greece, but ended up in New York City
and made me appreciate Astoria.

I want to acknowledge that my decision to pursue a PhD and come to Penn was largely influenced by my
experience at NTUA in Greece, both with professors and with other students. My undergraduate advisor,
Kostis Sagonas, has been an amazing mentor and inspired my love for compilers and PL. Petros Maragkos
was the first to truly inspire me to be precise, concise, and scientific with language; I owe a lot to his lectures.
Achilles, Manos, and Thymios were also instrumental. We influenced each other greatly during our last years
at NTUA, and our relationships have remained strong since then.

vi

Before closing, I want to acknowledge that big part of my intellectual and emotional growth is owed to my
closest companions: Z, D, L, and S. Each one contributed a piece of me, making me who I am.

Finally, I want to thank my family, and most importantly my father Giannis, my mother Katerina, and my
brother Nikos. I owe a different part of myself to each of them and without their continuous support I would
not be where I am today. Last but not least, part of why I have chosen academia as my life path is due to my
grandmother Pepi, who somehow always knew I would follow this path and planted this seed in me at a very
young age.

vii

ABSTRACT

JUST-IN-TIME SCALE-OUT OF SHELL PROGRAMS, CORRECTLY

Konstantinos Kallas

Rajeev Alur

Shell programs are critical infrastructure for developers, administrators, and scientists. They are used for
all kinds of complex tasks, often as “glue” for succinctly composing existing computational components.
Unfortunately, they do not enjoy access to automated performance optimizations typically found in other
language environments—including parallelization for scaling out on multicore CPUs and distribution to sup-
port processing of data that does not fit on a single machine. This unfortunate state of affairs is due to three
fundamental challenges inherent to the shell: (1) shell programs compose arbitrary black-box software com-
ponents (commands) that are developed in multiple programming languages and cannot be analyzed in a
unified way; (2) the language of the shell offers primitives that are highly dynamic, making static analysis
intractable; and (3) the shell specification is complex and different implementations vary significantly, mak-
ing it extremely hard for optimizations to achieve compliance with existing shells, jeopardizing backwards
compatibility.

In this dissertation, I propose a novel compilation architecture that addresses the three aforementioned chal-
lenges using: (1) a command specification framework to capture command behavior; (2) a just-in-time
architecture that applies optimizations at runtime after dynamic information has been resolved; and (3) a
shell-to-shell compiler shim whose generated optimized shell programs can be executed by the original shell
interpreter. I develop a concrete instantiation of this architecture in a high-performance open-source sys-
tem called PaSh. I demonstrate the benefits of this compilation architecture on real-world programs using
three concrete optimizations: automatically parallelizing, distributing, and reordering the execution of shell
programs—achieving significant speedups without jeopardizing compliance with the underlying shell.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . viii

LIST OF TABLES . xii

LIST OF ILLUSTRATIONS . xiii

CHAPTER 1 : Introduction . 1
1.1 Motivation . 1
1.2 Approach . 3
1.3 Contributions . 5
1.4 Outline . 6
1.5 Software and Community . 7
1.6 Attribution . 7

CHAPTER 2 : Background . 9
2.1 History . 9
2.2 Shell characteristics . 10
2.3 Shell limitations . 11
2.4 Challenges . 12
2.5 Applications . 14
2.6 Program development . 14

CHAPTER 3 : Related work . 16
3.1 Ecosystem support and tooling for the shell . 16
3.2 Dataflow graph models . 20
3.3 Language parallelization support . 22
3.4 Distributed systems . 23

ix

3.5 Just-in-time and staged compilation . 24

CHAPTER 4 : A formal model of a data processing fragment of the shell 25
4.1 Introduction . 25
4.2 Background . 27
4.3 Example and overview . 28
4.4 An order-aware dataflow model . 34
4.5 Parallelization transformations . 41
4.6 Related work . 48
4.7 Discussion . 50

CHAPTER 5 : Specification framework . 52
5.1 Introduction . 52
5.2 Parallelizability of Standard Libraries . 54
5.3 Extensibility Framework . 56

CHAPTER 6 : PaSh: Automatic parallelization of shell dataflow regions 62
6.1 Introduction . 62
6.2 Background and overview . 64
6.3 Dataflow graph model . 66
6.4 Runtime . 72
6.5 Evaluation . 75

CHAPTER 7 : PaSh-JIT: Just-in-time automatic parallelization of complete shell programs 83
7.1 Introduction . 83
7.2 Example and overview . 85
7.3 Interfacing with the shell . 89
7.4 The JIT engine . 92
7.5 Parallelizing compilation server . 94
7.6 Commutativity awareness . 99

x

7.7 Evaluation . 102
7.8 Related work . 108
7.9 Discussion . 110

CHAPTER 8 : DiSh: Scaling out shell programs on a distributed cluster 112
8.1 Introduction . 112
8.2 Background, Example, and Overview . 115
8.3 Dynamic Shell Orchestrator . 120
8.4 Compiler . 122
8.5 Distributed Scheduling . 126
8.6 Runtime Support . 128
8.7 Evaluation . 130
8.8 Related Work . 136
8.9 Discussion . 138

CHAPTER 9 : Out-of-order speculative execution for the shell 140
9.1 Introduction . 140
9.2 System overview . 144
9.3 Discussion . 148
9.4 Related Work . 150

CHAPTER 10 : Conclusion . 151
10.1 Future Work . 151
10.2 Outlook . 151

BIBLIOGRAPHY . 153

xi

LIST OF TABLES

TABLE 5.1 Parallelizability Classes. Broadly, UNIX commands can be grouped into four classes
according to their parallelizability properties. 55

TABLE 6.1 Summary of UNIX one-liners. Structure summarizes the different classes of commands
used in the script. Input and seq. time report on the input size fed to the script and the
timing of its sequential execution. Nodes and compile time report on PASH’s resulting
DFG size (which is equal to the number of resulting processes and includes aggregators,
eager, and split nodes) and compilation time for a --width value of 16. 75

TABLE 7.1 Benchmark summary. Summary of all the benchmarks used to evaluate PASH-JIT and
their characteristics. 101

TABLE 7.2 Correctness results. Running the POSIX test suite on Bash and PASH-JIT. Tests are
grouped in rows by theme. Columns contain the group name, total tests, non-applicable
tests, and passing tests for PASH-JIT and Bash. 103

TABLE 8.1 Available options for scaling out shell programs. Compatibility: support unmodified
shell scripts. Granularity: support fine-grained distribution. Expressiveness: support
arbitrary dynamic behaviors. Agnosticism: support components in any programming
language. Equivalence: behavior equivalence with existing shells. 113

TABLE 8.2 Benchmark summary. Summary of all the benchmarks used to evaluate DISH, and their
characteristics. 131

TABLE 8.3 DISH performance in 20-node cloud deployment. DISH speedup over Hadoop Stream-
ing for scripts that AHS supports. 133

xii

LIST OF ILLUSTRATIONS

FIGURE 1.1 A shell program that downloads a compressed archive of text files (books from Project
Gutenberg), extracts them in a directory, and then performs an analysis to find the
frequencies of all words of a specific form. 2

FIGURE 1.2 Overview of contributions in this dissertation. Each block corresponds to a contribu-
tion. 5

FIGURE 2.1 Shell programs are developed iteratively, with a debug cycle (nodes (1), (2), and (3);
in gray) and development cycle (nodes (1), (2), (3), and (4)). Improving program
performance speeds up the bolded transition from node (2) to node (3). 15

FIGURE 4.1 Dataflow Description Language (DDL). A language used to describe dataflow pro-
grams that consume a set of inputs and produce a set of outputs using a graph of
computation nodes. 35

FIGURE 4.2 Small Step Execution Semantics for DDL. A single step represents the computation
of a dataflow node after it has consumed a new input message. 37

FIGURE 4.3 Auxiliary transformations applied by the compiler on dataflow programs to enable the
parallelization transformation. 43

FIGURE 4.4 Visualization of auxiliary transformations applied by the compiler on dataflow pro-
grams. 44

FIGURE 4.5 Parallelization transformation applied by the compiler on the dataflow program to
expose available data parallelism. 46

FIGURE 4.6 Visualization of parallelization transformation applied by the compiler on dataflow
programs. 46

FIGURE 5.1 Calculating maximum temperatures per year. The script downloads daily tempera-
tures recorded across the U.S. for the years 2015–2019 and extracts the maximum for
every year. 53

FIGURE 6.1 Output of pash �width=2 for Fig. 5.1 (fragment). PASH orchestrates the parallel
execution through named pipes, parallel operators, and custom runtime primitives—
e.g., eager, split, and get-pids. 65

FIGURE 6.2 From a script AST to DFGs. The AST on the left has two dataflow regions, each not
extending beyond && (Cf.§6.3.1). Identifiers f1, f2, and f3 sit at the boundary of the
DFG. 67

FIGURE 6.3 Stateless parallelization transformation. The cat node is commuted with the stateless
node to exploit available data parallelism. 69

FIGURE 6.4 Auxiliary transformations. These augment the DFG with cat, split, and relay

nodes. 71
FIGURE 6.5 Eager primitive. Addressing intermediary laziness is challenging: (a) FIFOs are

blocking; (b) files alone introduce race conditions between producer/consumer; (c)
files + wait inhibit task parallelism. Eager relay nodes (d) address the challenge
while remaining within the PASH model. 73

xiii

FIGURE 6.6 Runtime setup lattice. Parallel No Eager and Blocking Eager improve over sequential,
but are not directly comparable. PASH w/o Split adds PASH’s optimized eager relay,
and PASH uses all primitives in §6.4 (Fig. 6.7). 74

FIGURE 6.7 PASH’s speedup for width=2–64. Different configurations per benchmark: (i) PaSh:
the complete implementation with eager and split enabled, (ii) PaSh w/o split:
eager enabled (no split), (iii) Blocking Eager: only blocking eager enabled (no
split), (iv) No Eager: both eager and split disabled. For some pairs of configu-
rations, PASH produces identical parallel scripts and thus only one is shown. 76

FIGURE 6.8 Unix50 scripts. Speedup (left axis) over sequential execution (right axis) for Unix50
scripts. Parallelism is 16× on 10GB of input data (Cf.§6.5.2). Pipelines are sorted in
descending speedup order. 79

FIGURE 7.1 PASH-JIT overview. PASH-JIT instruments scripts with calls to the JIT engine, which
passes program fragments to the compilation server at run-time. 85

FIGURE 7.2 JIT engine overview. The different stages of the engine’s execution. 92
FIGURE 7.3 Compilation server algorithm (pseudocode) extended for dependency untangling. . . 97
FIGURE 7.4 JIT engine algorithm (pseudocode) extended for dependency untangling. 98
FIGURE 7.5 Overview of commutativity-aware transformations. 100
FIGURE 7.6 PASH-JIT Performance. PASH-JIT speedup (vs. PASH whenever possible) over Bash

for Tab. 7.1 rows 2–5 (left, box) and 6–13 (right, bar) (Cf.§7.7.2). 104
FIGURE 7.7 PASH-JIT Dynamic Optimizations. PASH-JIT speedup over Bash when toggling

profile-driven compiler configuration and dependency untangling for Tab. 7.1 row
5 (left, box) and 6, 8–13 (right, bar) (Cf.§7.7.3). 107

FIGURE 7.8 PASH-JIT Commutativity Awareness. PASH-JIT speedup over Bash when toggling
commutativity awareness for Tab. 7.1 rows 2–4 (left, box) and 6, 7 (right, bar) (Cf.§7.7.3).
. 108

FIGURE 8.1 Example script: Downloading a temperature dataset, storing on a distributed file sys-
tem, and running analysis to extract statistics. 117

FIGURE 8.2 DISH architecture overview. Steps: (a) compile script region; (b) schedule compiled
dataflow; (c) send dataflow subgraphs to workers; (d) compilation failed, fall back to
original region; and (e) execute script region (compiled or original). 118

FIGURE 8.3 DISH dataflow graph stages. (a) HDFS files are expanded to sequences of blocks. (b)
the graph is parallelized based on the command specifications. (c) the scheduler splits
the graph and assigns subgraphs to workers. 119

FIGURE 8.4 Dynamic orchestration overview. DISH instruments scripts with calls to the orches-
tration engine, which passes program fragments to the worker manager at run-time.
. 122

FIGURE 8.5 Example of independent regions. This shell script compresses all files in a directory—
but each iteration results in an independent body region that can be executed in par-
allel. 125

FIGURE 8.6 Overview of commutativity-aware transformations. (Top) Remote writes and reads
added during distributed scheduling. (Mid) Worker-first aggregation. (Bot) Named
FIFO teleportation. 126

xiv

FIGURE 8.7 DISH performance on a 4-node cluster. DISH speedup (vs. PASH and Hadoop Stream-
ing whenever possible) over Bash for Tab. 8.2 rows 1–4 (left, box) and 5–8 (right,
bar) (Cf.§8.7.1). (Log y-axis; higher is better.) . 131

FIGURE 8.8 Dynamic dependency untangling. DISH speedup over Bash when toggling DDU
(higher is better). 135

FIGURE 9.1 A bioinformatics script slightly adapted from Köster and Rahmann [101] that maps
sequence reads to a reference genome. 141

FIGURE 9.2 A high-level overview of hs, a speculative out-of-order shell-script executor. The
preprocessor and runtime hooks extend PASH-JIT (Chapter 7) and tracing extends
Riker [45]. 142

FIGURE 9.3 Step-by-step scheduling and orchestration of Köster and Rahmann’s [101] script, sim-
plified (Fig. 9.1). 143

FIGURE 9.4 Transition system for command state in the scheduling algorithm. 146

xv

CHAPTER 1

Introduction

Unix and Linux shell programs are a ubiquitous part of software infrastructure. According to a recent longi-
tudinal study [64] the shell was the 8th most popular language on Github in 2022. Shell programs are widely
used by all types of developers, administrators, and scientists, for all kinds of tasks, from data processing
to system orchestration. Crucially, shell programs are often used as system “glue”, composing different
computational components (commands) to perform complex tasks very succinctly. The shell is particularly
well-suited for this task compared to any other programming language due to a unique combination of fea-
tures: (1) it offers language-agnostic primitives that enable seamless command composition; and (2) it offers
dynamic primitives, such as command substitution, that enable interactivity based on the current shell and
file system state. Due to these features, shell programs are used for a variety of performance critical tasks,
including continuous integration and deployment, bioinformatics workloads, and data processing pipelines.
In this dissertation I propose novel techniques and build systems to optimize the performance of such crit-
ical shell programs, allowing them to harness multicore and distributed computational resources without
affecting their behavior or requiring additional effort from developers.

1.1. Motivation
Despite the shell’s prevalence and long history (the first shell was developed by Ken Thompson in 1971), it
lags behind other programming environments with respect to automated compiler optimizations, significantly
impacting applications. Missing optimizations include (1) parallelization for scaling out on multicore CPUs,
(2) distribution for processing data that does not fit on a single machine, (3) incremental execution to reduce
redundant work when reexecuting a program, and (4) out-of-order speculative execution for better utilizing
underlying computational resources. The lack of support for such optimizations forces developers to either
reimplement their complete shell programs and their commands in different languages to optimize their
performance, requiring significant effort and often jeopardizing the programs’ behavior; or else accept that
their performance cannot be improved, hindering downstream tasks. As an example, continuous integration
and deployment tasks, e.g., software builds, for big applications and organizations can take on the order of

1

1 IN=${IN:-$TOP/pg}

2 mkdir "$IN"

3 cd "$IN"

4 echo "Download will take some time, be patient..."

5 wget "$SOURCE/data/pg.tar.xz"

6 if [$? -ne 0]; then

7 echo "Download failed!"

8 exit 1

9 fi

10 cat pg.tar.xz | tar -xJ

11
12 cd "$TOP"

13 OUT=${OUT:-$TOP/output}

14 mkdir -p "$OUT"

15 for input in $(ls "$IN"); do

16 cat "$IN/$input" | tr -sc '[A-Z][a-z]' '[\012*]' |

17 grep '^....$' | sort | uniq -c > "$OUT/$input.out"

18 done

Fig. 1.1: A shell program that downloads a compressed archive of text files (books from Project Gutenberg), extracts
them in a directory, and then performs an analysis to find the frequencies of all words of a specific form.

many hours to days, making it necessary that they run at nights or during weekends instead of on-demand,
when a software component is updated.

The main reason why the shell lacks compiler support for optimizations is because there is no principled way
to analyze and transform shell programs in a sound and precise manner. This is due to three fundamental
challenges related to the shell: (1) shell programs compose arbitrary black-box software components (com-
mands) that are developed in multiple programming languages and cannot be analyzed in a unified way; (2)
the language of the shell offers primitives that are highly dynamic, making static analysis intractable; and
(3) the shell specification is complex and different implementations vary significantly, making it extremely
hard for optimizations to preserve behavior.

Figure 1.1 contains a program that showcases these challenges. This program computes the frequencies of
specific word patterns in a collection of books. Before explaining what it does in detail, it is useful to observe
that shell programs are very similar to programs in other imperative languages—they have variables, control
flow, etc.—with one key difference; they delegate complex parts of the computation to external binaries, also
called commands or utilities. The commands in this program include mkdir, wget, gunzip, and ls. Each

2

command can be configured using its arguments, for example, mkdir -p "$OUT", which is a command that
creates a directory, is invoked with arguments -p and "$OUT", configuring it (1) to not exit with an error if
the directory already exists, and (2) to set the name of the created directory according to the value of the
variable OUT.

The script can be split into two independent parts: data downloading and preparation (lines 1-10) and pro-
cessing (12-18). It first sets the value of variable IN if it was not already set (line 1), and then creates a
directory with that name and sets it to be the current working directory (lines 2 and 3). After printing a
message (line 4) it downloads a compressed archive of a book collection (line 5). It then ensures that the
download completed successfully (line 6) by checking the value of variable ?, a special shell variable that
contains the exit code of the last executed command. If the download failed it prints an informative message
and exits (lines 7 and 8). If the download succeeded, it extracts the data in the archive using the command
tar (line 10). The pipe operator | is used to compose commands in the shell, connecting the standard output
of the first to the standard input of the second.

Before processing, the script changes to a new directory, sets the value of OUT, and creates a directory for the
script outputs (lines 12-14). Then it loops over the books that were extracted from the downloaded archive:
$(ls "$IN") captures the standard output of the ls invocation and uses it to determine the loop iterations
(line 15). The main processing pipeline then splits its book into words (using tr) and then filters words with
4 characters (using grep) and computes their frequencies (using sort and tr).

This shell script showcases the first two of the aforementioned challenges. First, it composes arbitrary black
box commands to achieve its task, e.g., mkdir, tar, tr, sort. Second, the exact iterations that the loop will
execute depend on the state of the file system, a component of the state that cannot be determined ahead-of-
time. The combination of these two challenges together with the complexity of the shell semantics makes it
very hard to develop a solution that automatically optimizes the performance of this and other scripts.

1.2. Approach
In this dissertation, I propose a novel compilation architecture that addresses the three aforementioned chal-
lenges. It has three main components.

3

Specification framework: A lightweight command specification framework decouples the task of specify-
ing external command behavior from the task of developing analyses and optimizations for shell scripts. The
first task can be delegated to experts or achieved through crowdsourcing, and these specifications can then
be harnessed by tools that analyze and optimize shell scripts composing such commands. As an example,
the specification for tr and grep captures the fact that their invocations in Figure 1.1 only read from their
standard input, only write to their standard output, and process each of their input lines independently. This
allows a parallelization system to shard them into parallel invocations, each of which processes a different
partition of their input.
Just-in-time architecture: A just-in-time architecture addresses the challenge of the shell’s dynamism by
applying optimizations at runtime, after dynamic information has been resolved. The architecture exploits
the fact that the shell’s execution is bimodal: most of the computation is done by external commands, and
gluing (control flow and command preparation) is done in the language of the shell. The just-in-time archi-
tecture executes all the gluing in the shell and performs optimizations right before the invocation of external
commands. In the example above, the optimization of the loop body would happen after the execution of
$(ls "$IN"), having access to the values of all loop iterations and the file system state at this point in time.
Shell-to-shell compiler: A shell-to-shell compiler shim generates optimized shell programs that can be
executed by the original shell interpreter to maintain compliance. This is in contrast to having a new shell
implementation, which would have to exhaustively implement all edge cases of an existing shell’s behavior to
match its behavior. Using this shim architecture, I can focus on a fragment of the shell, optimizing it carefully
and leaving all the rest of the complex edge cases and behavior to be covered by an existing interpreter.

To support this architecture, I develop a formal model of a data processing fragment of the shell that is used
to prove the correctness of several optimizing transformations. At the same time, I develop a concrete in-
stantiation of the architecture in a open-source library of high-performance components, called the PASH

project. I use this library as infrastructure to build two systems, PASH and DISH, that target two concrete
optimizations: automatic parallelization and distribution. I demonstrate the benefits of these optimizations
on a wide variety of real-world programs. The evaluation shows that PASH and DISH achieve significant
speedups over the state of the art without jeopardizing compliance with the underlying system shell. Finally,

4

PaSh

A system that automatically
parallelizes shell programs.

Order-aware Dataflow
Model

ICFP 2021

Command Specification
Framework

Part of EuroSys 2021

Just-in-time Architecture

Part of OSDI 2022

Building Blocks

PaSh-Dataflow

Part of EuroSys 2021

PaSh-JIT

Part of OSDI 2022

Systems

DiSh

A system that
automatically scales out
shell programs that
operate on files on a
distributed cluster.

NSDI 2023

hs

A system that speeds up
shell programs using
out-of-order speculative
execution.

HotOS 23

(C1) (C2) (C3)

(C4)

(C5) (C6)

Fig. 1.2: Overview of contributions in this dissertation. Each block corresponds to a contribution.

I develop an extension of the architecture, named hs, that can lift the requirement for command specifications
while also enabling a new optimization: out-of-order command execution through speculation. This exten-
sion builds on two primitives: tracing (to know how a command tries to effect the system) and containment
(to isolate its effects and selectively apply them to its environment). Tracing and containment completely lift
the requirement for command specifications since a command can simply be executed and its effects discov-
ered at runtime. These two components enable the development of a command scheduler that speculatively
executes a sequence of commands out-of-order, improving utilization of the underlying system; similarly to
the aformentioned compiler architecture, this optimization can be applied to arbitrary shell programs.

1.3. Contributions
The contributions of this dissertation proposal can be split into two categories, building blocks (C1-3) that
enable a compilation infrastructure for shell programs, and systems (C4-6) that compose the building blocks
and automatically optimize shell programs for real-world use cases. They are displayed visually in Figure 1.2
and summarized below:

5

C1 A formal model of the dataflow fragment of the shell. This model is order-aware, properly capturing
the order in which commands read from their inputs. It is used to develop a shell-to-shell optimizing
compiler that is accompanied by proofs that the transformations it performs are correct with respect
to this model.

C2 A command specification framework that allows describing aspects of a command’s behavior and
can be used by others systems to analyze and transform shell programs. The command specification
framework is guided by a study on all POSIX and GNU Coreutils commands and is implemented in
an open-source library.

C3 A just-in-time compiler architecture that invokes a shell optimizing compiler at runtime after having
resolved dynamic information about the state of the system. This enables optimizing highly dynamic
shell programs in a sound and effective fashion.

C4 PASH, a concrete instantiation of the compilation architecture in a system that automatically paral-
lelizes arbitrary shell programs. This system combines the building blocks and introduces additional
optimizations to achieve speedups for a wide variety of shell programs.

C5 DISH, a system that automatically scales out shell programs that operate on files that reside over a
distributed cluster. DISH achieves speedups on a wide range of programs through colocation and
parallelization.

C6 A system prototype called hs that enables out-of-order command execution through speculation.

1.4. Outline
Chapter 2 provides necessary background on the UNIX shell, its history, benefits, limitations, and target appli-
cations. Chapter 3 describes related work and puts my work in the context of the existing literature. Chapter 4
describes contribution C1 and is based on my ICFP 2021 paper [76]. Chapter 5 describes contribution C2

and is based on material from my EuroSys 2021 paper [173]. Chapter 6 describes the PASH-Dataflow com-
ponent of contribution C4 and is based on material from my EuroSys 2021 paper [173]. Chapter 7 describes
contribution C3 and PASH-JIT, the second part of contribution C4 and is based on material from my OSDI

6

2022 paper [95]. Chapter 8 describes contribution C5 and is based on my NSDI 2023 paper [131]. Chapter 9
describes contribution C6 and is based on material from my HotOS 2023 paper [110]. Finally, Chapter 10
concludes by describing some future directions and the bigger conclusions and impact of the work described
in this dissertation.

1.5. Software and Community
The work described in this dissertation has led to the creation of an open-source library of components
called the PASH project [15], which has now grown to an independent project with a much larger scope,
i.e., improving the shell ecosystem in a variety of ways, focusing on performance, correctness, and usability
among others. It currently contains more than 10 repositories, including tools, libraries, and systems. The
development of the components in the PASH project is done by more than 30 contributors in different insti-
tutions in academia and industry, and has gathered significant attention from the community, totalling more
than 5000 Github stars across all repositories. In 2021, the PASH project started being hosted by the Linux
Foundation1, an organization which hosts a wide variety of open-source projects, including Kubernetes [7]
and eBPF [14]. The technical steering committee of the PASH project includes Michael Greenberg, Tam-
mam Mustafa, Nikos Vasilakis, and myself. The two core systems described in this dissertation, PASH2 and
DISH3, are also available under the PASH project.

1.6. Attribution
Most of the research presented in this dissertation came out of the PASH project, a collaborative project that
started by me and Nikos Vasilakis in 2019. In addition to me and Nikos, several others have contributed to
the project and the work presented here: particularly Michael Greenberg (for Chapters 7 and 9); Tammam
Mustafa (for Chapters 7 and 8); Georgios Liargkovas (for Chapter 9); Konstantinos Mamouras, Achilles
Benetopoulos, and Lazar Cvetković (for Chapters 5 and 6); Shivam Handa and Martin Rinard (for Chapter 4);
Jan Bielak, Dimitris Karnikis, and Thurston H.Y. Dang (for Chapter 7); and Pratyush Das (for Chapter 8). I
wrote all the included material in Chapters 1 and 10 and most of Chapters 2 and 3. Chapters 2 to 9 integrate
text from several papers [72, 76, 173, 95, 131, 110] with all the collaborators mentioned above. It is not

1https://www.linuxfoundation.org/press/press-release/linux-foundation-to-host-the-pash-project-accelerating-shell-scripting-
with-automated-parallelization-for-industrial-use-cases

2https://github.com/binpash/pash
3https://github.com/binpash/dish

7

https://www.linuxfoundation.org/press/press-release/linux-foundation-to-host-the-pash-project-accelerating-shell-scripting-with-automated-parallelization-for-industrial-use-cases
https://www.linuxfoundation.org/press/press-release/linux-foundation-to-host-the-pash-project-accelerating-shell-scripting-with-automated-parallelization-for-industrial-use-cases
https://github.com/binpash/pash
https://github.com/binpash/dish

possible to precisely delineate each collaborator’s contribution in each of these papers since many ideas and
developments became possible through discussions, brainstorming, and pair-programming sessions, but I try
to attribute the main contributions of each paper below. For the ICFP 2021 paper [76], Shivam Handa, Nikos
Vasilakis, and I developed the formalization of the order-aware dataflow model, and I was the lead developer
of the project’s implementation. For the EuroSys 2021 paper [173], Nikos Vasilakis and I were the primary
authors and we contributed equally to all parts of the work; the rest of the coauthors contributed with the
development of some command specifications and runtime components, as well as with the system evalua-
tion. For the OSDI 2022 paper [95], I was the lead developer of the system and its just-in-time architecture;
the rest of the coauthors helped with the development of the commutativity-aware optimizations and the
parsing library, as well as with the system evaluation. For the NSDI 2023 paper [131], Tammam Mustafa, a
master’s student at the time, was the first author and the lead developer of the DISH system; Nikos Vasilakis
(Tammam’s supervisor) and I worked extensively with Tammam to develop the ideas and the system behind
this paper. Finally, for the HotOS 2023 paper [110], Georgios Liargkovas, an undergraduate student at the
time, was the first author and the lead developer of the hs system prototype; all of the authors contributed
to coming up with the idea of speculative execution for shell scripts, and I worked closely with Georgios on
the technical development of the system prototype and its evaluation.

8

CHAPTER 2

Background

In this section I provide some background on the UNIX shell, a brief history, as well as a description of
its benefits and drawbacks. First of all, we need to make clear what we mean by the UNIX shell, since no
single such thing exists; in fact, what is most commonly refered to as the shell is a combination of (1) a
programming language with a set of “shell-like” characteristics, (2) an interactive interpreter that is usually
accessed through a terminal, and (3) a “standard library” of commands that can be used to perform more
complex data-processing and other tasks. So what is the UNIX shell?

2.1. History
There are two perspectives when defining the shell: the formal, which puts the specification first, and the
pragmatic, which focuses on the different shell implementations. In this dissertation I focus on the core of the
shell, namely the common characteristics that are both described by the specification and implemented by
most shells. First, there exists a POSIX shell specification [73] that attempts to precisely define the shell lan-
guage and its semantics using natural language. At the same time, there exist multiple shell implementations,
most of which diverge from POSIX significantly (on purpose or accidentally). The first UNIX shell imple-
mentation was the Thompson shell, introduced in the first version of UNIX in 1971, which was simple but
introduced several important features that we now consider synonymous with the shell such as input/output
redirection and pipes. These features enable the composition of third-party commands to perform complex
tasks, making the external commands a prominent part of the experience of writing shell programs, and go
hand in hand with the Unix philosophy (first documented by Doug McIlroy [118]) that advocates modular
and compositional commands (with simple interfaces and handling text streams as inputs and outputs). The
name “shell” was chosen to separate it from the operating system kernel. The kernel is the core of the system
and the shell is a user facing program that can access and manage the system by communicating with the
kernel. Since then, there have been many shell implementations: bash [145], dash [3], zsh [13], OSH [9],
ksh [6], mksh [8], and yash [12] to name a few. Different implementations vary significantly with respect to
their popularity, and also with respect to their semantics and language features. Most UNIX systems provide

9

access to a shell (usually bash or zsh) as the default way to interact with them and configure them.

Due to its ubiquity and power, the shell has been used for a variety of tasks: system configuration, application
building and deployment, as well as complex data processing tasks. In the contemporary world, while in
principle automated systems replace many shell tasks by taking on various configuration and management
jobs, in practice, shell programs still show up everywhere: Docker [123], Vagrant [77], Kubernetes [7],
and other cloud deployments are all managed by shell programs. Furthermore attempting to develop a new
shell-like language for specific domains leads to different such systems behaving slightly differently from
the underlying shell, creating significant confusion to developers, e.g., systemd [10] uses its own variable
expansion which is slightly different from the shell’s. In their core, all these systems try to provide restricted
APIs on top of the shell to improve programmability, but users often end up needing the whole range of the
capabilities of the shell.

2.2. Shell characteristics
So what are the characteristics that make the shell the shell?

C1 External commands are first class citizens: The shell supports easy management of external com-
mand execution through job control, e.g., sending a command to the background, and input/output
redirection.

C2 File system is a first class citizen: The shell supports straightforward access, introspection, and mod-
ification of files in the file system.

C3 Universal composition: The shell supports easy composition of external commands using interme-
diate files or write-once, read-once pipes.

C4 Streaming support: The shell supports stream processing, i.e., incrementally reading input and pro-
ducing output (both by its available commands and primitives).

The above characteristics make the shell powerful and widely popular for many tasks. Looking back at the
program in Figure 1.1, it manages to perform a complex task in a succinct way by leveraging characteristics
C1-C3: it uses external commands, such as wget and sort, to delegate complex functionality, it accesses

10

and modifies the file system with commands such as ls and tar, and it composes commands in pipelines to
implement the frequency computation using simpler components. Streaming support (C4) also allows the
program to be efficient: commands like grep in line 16 don’t need to block until all of their input is available
but can start processing as soon as chunk of the input is produced by tr.

For the rest of this dissertation, whenever I refer to the shell, I focus on the set of programming environments
(language and libraries) that have the aforementioned characteristics. My research should be applicable to
any programming environment that satisfies these characteristics, e.g., scripts in Python that are used to
compose external command invocations.

2.3. Shell limitations
While the shell is popular and powerful, it also has significant limitations with respect to performance and
correctness: shell programs cannot easily utilize underlying multiprocessor or multinode resources, and they
are very hard to debug and test. These limitations (i) prevent it from being used for a wider variety of tasks,
(ii) make the life of shell developers very difficult (leading to frustrated revulsion [61]), but (iii) are not
essential to its existence.
Error-proneness While all dynamic programming languages suffer from bugs that manifest as runtime
errors, the shell is known for its many potential sources of error and their dire consequences. The shell’s
syntax and its direct access to the user’s entire system, both aimed at terse interactive use, lead to a fast-
paced high-stakes programming experience where a single typo could erase entire hard drives. Protective
mechanisms such as assertions and error handling that are commonly used in critical code written in other
languages are not well supported in the shell.
Performance doesn’t scale While shell programs have acceptable performance in a single-core setting,
they’re not tuned for multicore machines and clusters of nodes. Unlike other programming languages, the
performance of shell programs is dominated by the performance of the commands that they compose, and
unfortunately, most shell commands do not scale. To address this, users turn to restricted parallelism or-
chestration tools [164, 84, 63, 184] or even worse, replace parts of their programs with programs in parallel
frameworks, an error-prone process that requires significant effort.

11

Redundant recomputation Small changes to the input of a program require a complete re-execution, lead-
ing to many hours of wasted redundant computation. This is common in data processing (and preprocessing)
workloads, as well as in build, configuration, and setup programs. Domain-specific solutions (such as build
systems, e.g., make) address this issue for their use cases, but do not generalize or compose.
No support for contemporary deployments The shell’s core abstractions were designed to facilitate
orchestration, management, and processing on a single machine. However, the overabundance of non-
solutions—e.g., pssh, GNU parallel, web interfaces—for these classes of computation on today’s dis-
tributed environments indicates an impedance mismatch between what the shell provides and the needs of
these environments. This mismatch is caused by shell programs being pervasively side-effectful, and exacer-
bated by classic single-system image issues, where configuration programs, program and library paths, and
environment variables are configured ad hoc. The composition primitives do not compose at scale.

In this dissertation, I focus on addressing the scalability limitation, as well as taking some steps towards the
support for contemporary deployments.

2.4. Challenges
The aforementioned limitations have been plaguing the shell for many years; why have they not been ad-
dressed by subsequent research or newer shell implementations that try to improve on existing ones? I
conjecture that this is because of three challenges inherent to the shell that make it very hard to address
its limitations in a principled and general manner; some of the challenges depend on its fundamental char-
acteristics, and some are unfortunate results of its history. In particular there are three distinct challenges
with addressing the shell’s shortcomings that stem from its fundamental characteristics: (1) shell programs
compose arbitrary black-box commands that are developed in multiple programming languages and can-
not be analyzed in a unified way; (2) the language of the shell offers primitives that are highly dynamic,
making static analysis intractable; and (3) the shell specification is complex and different implementations
vary significantly, making it extremely hard for optimizations to achieve compliance with existing shells,
jeopardizing backwards compatibility.
Composition of arbitrary black-box commands The shell’s virtue of limitless composition and having
external black-box commands as first class citizens is also its vice: how does one analyze and transform

12

a shell program if there is no precise model of all the commands that it uses? Any command invoked by
a shell program may translate to an execve of an arbitrary executable with unknown behavior. Calls to
execve make unified analysis very challenging, as different source languages won’t share semantics; binary
analysis—the lowest common denominator—cannot discover high-level invariants. This acts as a very high
barrier of entry for research and development of tools and analyses for the shell since researchers have to
either make a huge effort to hardcode the semantics of each command for their tools to work, or risk the tool
not being used widely.
Dynamic language primitives Shell programs are very succinct partly because of the existence of global
state, file system and environment variables, that can be accessed and modified at runtime. Accessing the
file system state at runtime can be considered as external nondeterministic input for the purposes of analysis,
and while this exists in other languages too, e.g., using eval in Javascript, shell scripts use these features
pervasively to change control flow and program execution. This means that the behavior of a shell pro-
gram cannot be known statically: an invocation to grep $X $DIR/*.c depends primarily on dynamically
computed values, including the state of the file system, the current directory, environment variables, and un-
expanded strings. This disallows any form of static analysis or transformation for improving the performance
of shell programs; a static analysis would either have to be unsound, assuming that the state before execution
will be the same as the state at runtime, or ineffective, conservatively assuming the worst for every part of
the state that can be modified at runtime.
Backwards compatibility The shell has very complex semantics and multiple diverging implementations,
making it very hard to achieve backwards compatibility for new shells and tools that address some of its
limitations. The semantics of the shell and common commands are documented in 300pp of standardese [22].
To be able to reason about a program’s behavior, one needs to understand the exact behavior of its composition
operators, the role of the environment, and the intricate state of the shell interpreter. Furthermore, there is no
single shell environment. Multiple shells (with subtle behavior differences) coexist in the same machine: a
pared down shell [34, 3] is used for startup programs, while bash [145] is a common interactive choice. Every
shell extends POSIX in its own way [78, 71]. The lack of an easy-to-use correctness baseline and the inability
to formally reason about the shell’s semantics inhibits research on the shell. On the other hand, developing
new shells with cleaner semantics is likely to fail without any consideration for backward compatibility. This

13

challenge does not stem from inherent shell characteristics like the other two, but rather from the current
state of the world and past design decisions. Nevertheless, it is not possible to design solutions that address
the shell’s limitations without providing backwards compatibility to enable adoption.

2.5. Applications
Due to the shell’s general nature and the fact that it composes arbitrary external commands, it is used for a
wide variety of tasks including software builds, program and text analysis, system log analysis, filesystem
analysis, git history analysis, media conversion, natural language processing, web crawling, bioinformatics,
scientific computation, software distribution packaging, file encryption and compression, ML workflows,
container image build, distributed deployment orchestration, boot sequences, system administration, software
testing, and continuous integration workflows. Some of these tasks have been relevant for as long as the shell
exists, in fact the shell was created to perform them, while others correspond to contemporary demands. The
tasks also vary with respect to how interactive they are; the shell’s primitives work with both interactive and
non-interactive workloads, from brief ‘one-liners’ to get a quick job done to system and build programs that
consist of thousands lines of code.

2.6. Program development
The shell’s interactive nature leads to a program development process that is highly iterative, gradually tran-
sitioning to less interactive while the program converges and stabilizes: the programmer gradually explores
the data, refining the program in the process, slowly generalizing it to support the complete dataset and sat-
isfy its specification. The shell features facilitate such an exploratory and incremental approach—external
commands can be patched together succinctly to implement complex functionality and their effects can be
observed by inspecting the file system and performing quick analyses with other commands.

Fig. 2.1 illustrates the development process and contains two iterative cycles here: the smaller cycle (nodes
(1), (2), and (3)), is the debugging cycle, while the bigger cycle (nodes (1), (2), (3), and (4)) is the development

cycle. Initial iterations of the development cycle work with a manageable subset of the dataset, as the program
grows in capability so will the dataset it’s applied to. So iterating starts out fast—doing simple analyses on
small amounts of data—and gradually expands to a bigger dataset and more complex programs. Especially
on large data sets, the slowest part of the process is rerunning the program (node (2) to node (3)); the bigger

14

1

Implement the script,
rearrange the data

2

3
4

Refine the specification

Broaden the subset
of applicable data

Script is correct

Find
errors

(Re)run the script on
a subset of the data

Debug Cycle

Fig. 2.1: Shell programs are developed iteratively, with a debug cycle (nodes (1), (2), and (3); in gray) and development
cycle (nodes (1), (2), (3), and (4)). Improving program performance speeds up the bolded transition from node (2) to
node (3).
the program, the longer it runs—and the slower it is to discover errors.

It is particularly frustrating—and all too common—to run a program for minutes, hours, or even days, to
discover that the output is garbage. The wasted work is frustrating and becomes a bottleneck as the data and
program complexity grows. This is where addressing the shell’s performance limitations can have the biggest
impact; optimizing a program to better utilize underlying parallel and distributed computational resources
can significantly reduce execution time, improving the development workflow.

15

CHAPTER 3

Related work

My dissertation has several axes of related work, from tooling specifically designed for the shell to just-in-
time compilation.

3.1. Ecosystem support and tooling for the shell
As described in Chapter 2, the shell has significant limitations and shortcomings, a fact that is widely accepted
in the community. To address these there has been a big body of prior work that has developed new shell
implementations and new abstractions, such as new programming languages for the shell, either replacing
or building on top of existing ones. In contrast to most prior work, my research does not attempt to replace
existing abstractions, instead aiming to be completely backwards compatible, requiring no modifications to
user programs or existing systems. The main reason that I have followed this approach is to enable adoption.
It is very hard for someone to replace all their legacy shell code in a new language to get performance or
other types of benefits, because the cost (development effort) and risk (bugs) is hard to justify by the potential
benefits. Therefore, all of the work described in this dissertation aims for complete backwards compatibility.

This section provides an overview of prior work on the shell, from work trying to achieve performance
benefits through parallelism and distribution, to build systems that focus on improving the performance of a
specific class of workloads, to work that tries to provide stronger correctness guarantees for shell scripts.
Parallel and distributed shells and tools Several packages expose commands for specifying parallelism
and distribution on modern UNIXes—e.g., qsub [63], SLURM [184], and GNU parallel [164]. These
packages allow multiplexing and parallelizing completely independent sets of workloads on a multiprocessor
machine or a distributed cluster. The effectiveness of these tools is predicated upon explicit and careful
invocation and is limited to embarrassingly parallel (and short) programs. Often, these packages provide
options to support an array of special sub-cases—a stark contradiction to the celebrated UNIX philosophy.
For example, parallel contains flags such as --skip-first-line, -trim, and --xargs, that a UNIX

user can achieve using head, sed, and xargs; it also includes other programs with complex semantics,
such as the ability to transfer files between computers, separate text files, and parse CSV. Finding the right

16

combination of flags to achieve performance benefits without affecting the sequential behavior of the program
is challenging and puts significant burden on developers. Several shells, such as rc [50], gsh [117], and
dgsh [159] introduce primitives for non-linear pipe topologies—some of which target distribution. These
shells improve the expressiveness of traditional shells by allowing the creation of shell programs that go
beyond linear pipelines, describing streaming directed acyclic graphs that can be more naturally parallelized,
i.e., two nodes in the graph that do not depend on each other can be executed completely independently.
Here too, however, developers are expected to manually rewrite programs to exploit these new primitives.
My work aims to automatically optimize existing shell programs by exploiting available parallelization and
distribution potential without any requirements on the program developer.

POSH [144] is a recent shell for programs operating on NFS-stored data. POSH focuses on shell pipelines
that process input data that is partitioned on a cluster of nodes. By splitting up the pipeline and running
parts of it as close to the data as possible, it reduces network communication and overhead and achieves
significant performance benefits. POSH was developed concurrently with the work described in this dis-
sertation and also came up with a notion of command specifications to optimize scripts (similarly to the
specification framework described in Chapter 5). However, POSH can only optimize shell pipelines that are
fully expanded—i.e., ones that do not use dynamic features like variables and command substitution (see
Section 2.4). In contrast to POSH, my work operates on shell programs that use (1) any POSIX composition
primitive, and (2) the full set of dynamic features present in the UNIX shell.

Mosh [183] is a remote shell that is designed for intermittent and high-latency connectivity environments.
It is meant to be used as the backbone shell for managing a set of distributed computer nodes. It develops
a novel state synchronization protocol that improves latency and compared to SSH by speculatively echoing
user keystrokes before they have reached the server. This dramatically improves user-experience in low net-
work quality environments because the network latency is hidden from the user’s interactive terminal. The
goals of my work are orthogonal to Mosh: Mosh optimizes the network and terminal layers of the stack, im-
proving interactive remote shell user experience, while my work optimizes the execution of computationally
demanding and long running programs by leveraging parallel and distributed computational resources.

17

Build systems Build systems target a specific class of workloads, where computation can be expressed
as a dependency graph of black-box tasks, allowing independent tasks to be processed independently and
in parallel. A quintessential such workload, which is also how these systems took their name, is building
software, including (1) configuration, determining relevant characteristics of the underlying system that affect
the build; (2) compilation, producing binary code from the program source code; (3) linking, creating a final
executable by collecting relevant libraries; (4) testing, running the executable on a representative set of inputs
to check that it behaves as expected; and (5) deployment, running the executable on the target system. Even
though software builds were the original use case for build systems, they are now used for a variety of
workloads that can be expressed using a dependency graph, often called workflows. Build systems and their
dependency graph representation also enables incremental execution, i.e., avoiding reexecution of parts of
the workflow when input has not changed. To achieve that, build systems need to discover the dependencies,
i.e., inputs and outputs, of all steps of the target workflow, which they achieve with a combination of user
input and dynamic tracing.

On one end of the spectrum, backward build systems like Make [160], OMake [80], Shake [126], Ninja [11],
Vesta [79], Buck [55], and Bazel [4], require user input to achieve performance benefits. Developers are
expected to explicitly describe the dependencies of each workflow step using some forms of annotations.
Using that information, they construct a dependency graph for each workflow and are able to parallelize and
execute it incrementally. The correctness and performance of these systems depends on the precision of
these annotations: missing a dependency might not trigger the right tasks when changes happen, and adding
too many dependencies might lead to redundant recomputation. My work borrows ideas from build systems,
i.e., modelling program fragments as graphs, albeit of a different type, but does not require users to describe
the dependencies for each program to achieve benefits; in contrast, it leverages specifications that need to be
written once per command and can be reused across different programs. The main difference of the graphs
used in this dissertation (see Chapter 4) and the graphs in build systems, is that graphs in my work describe
continuous dataflow computation, namely tasks that exchange data throughout their execution, instead of
dependencies where a task reads the complete output of another task when it is done executing.

On the other end of the spectrum, forward build systems like memoize [116], fabricate [83], Rattle [158]

18

and more recently Riker [45], achieve incremental execution of shell programs by tracing program execution
and constructing the dependency graph at runtime. These systems do not make any assumptions about a
program’s execution or its commands and therefore do not require any kind of input from users to achieve their
benefits. However, being fully dynamic, these systems cannot perform optimizations such as parallelization
or distribution: it is too late to parallelize a command after it has started executing and performing side-
effects. My work combines command specifications and dynamic tracing to be able to handle all programs,
but also to achieve better performance for programs where more structure about each command is known.
Furthermore, my work introduces a formal model for an optimizable target fragment of the shell, enabling
optimizations that can be proved correct.
Serverless execution of workflows A recent system that has a similar architecture with the work described
in this dissertation is gg [59]. It enables distributing traditionally local applications, such as software builds,
unit testing, and other data processing tasks, over serverless functions. The key insight behind gg is that
it introduces an intermediate representation that describes dependency graphs of computation tasks. Each
node of this dependency graph abstraction is a computation thunk that has explicit inputs and outputs; given
the inputs and outputs of each thunk, it is possible to infer dependencies among them. Since each thunk is
independent, with explicit input requirements, it can easily be deployed in a lightweight container by col-
lecting all of its dependencies. This dependency graph is similar to the ones used in build systems, meaning
that in contrast to our dataflow model (Chapter 4) it does not describe continuous dataflow computation: a
task can start executing after all of its dependencies have been resolved. Furthermore, gg focuses on task
parallelism, i.e., each independent task in the dependency graph can be run in parallel, and does not apply
transformations on the graph that can introduce and exploit data-parallelism.

A benefit of gg’s intermediate representation is that it decouples programs (frontend) from their deployment
(backend). It supports several frontends, which can be broadly separated into two categories: (1) SDKs that
allow describing a computation as an explicit dependency graph in a language of choice (such as C++); and
(2) a model-based frontend that can automatically generate a dependency graph given a program that uses a
restricted set of components. The model-based frontend contains models of several third party commands,
mostly focusing on tools that are used in software builds, such as the compiler, assembler, and linker. These

19

models are akin to the specifications that are described in this dissertation (Chapter 5), the main difference
being that they are more expressive, since they can be written in arbitrary code, even sharing code with
the command implementation itself. For example, gg’s model for the compiler preprocessor can correctly
determine that its input dependencies contain the header files that were included in the source file. In con-
trast, the specifications described in this dissertation are more restricted, i.e., can only describe inputs and
outputs that are explicitly referenced in command arguments, but might lead to simpler specifications for
simple commands. A comprehensive solution could combine both approaches, providing (1) a specification
language for simple commands (to have a low barrier of entry for users) and (2) a fully expressive model sub-
system that could describe arbitrary command behavior. Furthermore, gg’s model-based approach can only
capture dependencies that are fully described by the command models. This means that gg cannot capture
the dependencies between commands that are composed using arbitrary shell code. In contrast to gg, PASH

addresses this challenge by introducing a just-in-time execution model (see Chapter 7) that avoids reasoning
about arbitrary shell code by letting it execute in the shell prior to reasoning and optimizations.
Shell semantics There has been a recent resurgence of research studying the semantics of shell programs.
CoLiS [88] is a formally defined and well-behaved alternative shell language that was used as a compilation
target to study the behaviors of a large number of Debian package installation programs [26]. This study
detected a number of bugs and policy violations in these programs by leveraging a library of specifications
for many POSIX utilities [87]. Smoosh [71] develops a formalized, executable reference semantics for the
POSIX shell, aiming to address subtleties in the standard [22]. It identifies several divergent behaviors
between existing popular shell implementations and develops a new shell implementation that completely
follows the POSIX specification. My research builds on insights from both of these lines of work: Smoosh’s
semantics guides the JIT compiler architecture, its parsing library was the foundation of PASH’s parsing
library implementation (see Section 7.3), and the design of the command annotation language (see Chapter 5)
was guided by the specification of POSIX utilities, while focusing on a different set of properties.

3.2. Dataflow graph models
Directed graph models for parallel and distributed computation have been studied extensively, from the con-
text of synchronous languages (e.g., [104, 147, 29, 115]) to distributed batch and stream processing (e.g.,
[46, 129, 186, 67, 168, 113]). These models are often called dataflow graph (DFG) models, or simply

20

dataflow, because edges capture the flow of data between different computation nodes. The main benefit
of such models is that they expose both (i) parallelism opportunities, i.e., each different node is a different
computational unit that can be executed in parallel, and (ii) parallelism restrictions, i.e., an edge implies that
there is some communication/synchronization requirement between the nodes it connects. This makes them
an ideal intermediate abstraction between high-level programs and parallel implementations since a com-
piler can transform a given program to a dataflow graph, which can then be optimized given the available
computational resources and requirements.

Since dataflow graphs have been studied in so many different contexts, there are many similar but subtly dif-
ferent models in the literature, each of which has suitable properties for a specific context. In this disseration
I am not interested in presenting a complete and thorough exploration of all such models; for that, the reader
can turn to one of many extensive surveys on the topic, e.g., the work by Lee [106] or the work by Johnson,
Hanna, and Millar [90]. I provide enough context on DFG models to situate the order-aware-dataflow model
(ODFM) that is proposed in Chapter 4.

One of the first works that proposed dataflow models as a semantics for parallel computation was the work
on Kahn process networks [93, 94]. In Kahn process networks a set of sequential processes communicate
through some unbounded first-in, first-out (FIFO) channels Some important properties of Kahn process net-
works are that they are deterministic, i.e., timing does not affect the results of their execution, and monotonic,
which means that the more input is consumed, the more output is produced; put differently, output cannot
be retracted once it is produced. Due to these properties, Kahn process networks are suitable for modeling
stream processing systems and they are also the model of communication of UNIX pipes. ODFM is a similar
model to Kahn process networks but focuses on the particularities of the shell and on enabling paralleliza-
tion transformations, and therefore differs from KPNs in two key ways: (1) it does not support cycles, and
(2) it exposes information about the input consumption order of each node. This order provides enough
information at compile time to perform parallelizing transformations while also enabling translation of the
dataflow back to a UNIX shell program. This makes ODFM strike a unique balance compared to most other
dataflow models. On the one hand we have more abstract DFGs used for data processing (batch or stream-
ing), where nodes do not expose information about the order in which they consume input from their edges;

21

a choice that enables parallelization transformations but is not restrictive enough to capture the semantics of
shell programs. On the other, we have explicit dataflow models like the ones used in synchronous languages
(e.g., Lustre [147], Esterel [29], Signal [104]) that focus on efficient low-level implementations and therefore
require that each node takes very specific types of inputs.

3.3. Language parallelization support
Prior research on providing parallelization support for other languages and environments usually follows one
of two approaches: (1) developing a new higher-level language that is more amenable to parallelization, or (2)
developing analyses and tooling to extract parallelism from programs writen in existing mostly sequential
languages. The first approach (e.g., [60, 68, 102, 46, 186, 129, 40, 163, 25]) can usually achieve much
higher benefits, exploiting finer granularities of parallelization, but comes with all the drawbacks of switching
language environments: developers have to learn a new language that might not be as mature as existing
ones and have to rewrite their existing programs to achieve any benefit. My work differs in that it operates
on completely unmodified shell programs that exercise the whole gamut of POSIX shell behaviors.

The second approach develops tools that provide automatic parallelization for standard sequential code, re-
quiring no program modifications but often posing limitations with respect to the granularity of the paral-
lelism that they can extract. Developments started with explicit DOALL and DOACROSS annotations [38, 111],
continuing with analysis-based compilers [137, 75, 149], profiling-guided speculation [121, 169, 100, 89, 18],
and more recently using program synthesis to parallelize fragments of imperative code [152, 56, 57, 157].
These developments have achieved significant performance benefits through parallelization by exploiting
available multicore hardware for existing applications. My work draws inspiration from this line of work in
that it does not require manual modification to user code and it leverages run-time information to optimize
and parallelize user programs. However, these approaches operate at a lower level of abstraction than the
work described in this dissertation: they focus on extracting parallelism from single instructions and loops in
a single language environment. Instead, my work focuses on a broader, multi-language and whole-program
setting: given information about how each single command can be parallelized in a divide-and-conquer fash-
ion, it lifts parallelization across a whole program composing multiple such commands that are written in
different languages. This makes such techniques complementary to my work, since they can be used to derive

22

aggregators and the parallelizability properties of yet unknown shell commands, enabling the parallelization
of programs that use them.

3.4. Distributed systems
The work described in this dissertation draws inspiration from several lines of work in the vast literature
of distributed systems; from the long line of work on operating systems for the management of distributed
clusters of computer nodes, to work on scalable data processing in the context of distributed compute re-
sources, to work on automated optimizations of black-box programs to exploit distribution through the use
of user-defined annotations.
Distributed operating systems There is a long history of networked and distributed operating systems [146,
179, 136, 128, 140, 151, 48, 24, 153]. These systems offer abstractions that (1) are similar, but not identical,
to the ones offered by UNIX, (2) operate at a lower level of abstraction (e.g., that of system calls, rather than
shell primitives), and (3) often aim at simply hiding the network rather than offering scalability benefits.
Many of these systems support alternative shells better suited to their purposes, e.g., rc for Plan9, that differ
in subtle or non-subtle ways from existing shells. My research takes a different approach: instead of re-
placing existing abstractions, it develops optimizations that provide performance benefits on top of existing
abstractions without requiring any rewriting of user programs.
Annotation-based transformations Recent systems [174, 138, 185] lower the developer effort of scaling
out program components by performing program transformations based on user-provided annotations. These
systems operate in single-language environments, offering declarative DSLs for tuning the semantics of the
resulting distributed program. These systems inspired my work and its use of command annotations to enable
the analysis and transformation of programs that use black box components. A difference of the annotations
in the context of PASH compared to these other systems is that annotations are more likely to be reused, since
many users have access to a same core set of commands, such as the POSIX and GNU Coreutils ones.
Distributed data processing Several systems assist in the development of distributed data processing ap-
plications [46, 130, 186, 129, 161, 40] that fall under certain computational classes such as batch and stream
processing. The systems deal with many of the challenges of distribution, such as crashes and network faults,
but require developers to (re)write their computations manually to reap their benefits. Some of these systems,

23

e.g., Hadoop Streaming [74] and Dryad Nebula [85], also support third-party language-agnostic components
similar to the UNIX shell, atop cluster-computing engines (Hadoop and Dryad, respectively). Both require
their users to understand and rewrite their shell programs using the abstractions provided by each framework.
The main difference of PASH is that it operates on arbitrary shell programs, without requiring any rewriting
of the program from the user.

3.5. Just-in-time and staged compilation
A key component of this dissertation is the just-in-time optimization architecture described in Chapter 7.
This component is novel but draws inspiration from the long line of work on just-in-time compilation (for
an extended survey see Aycock [23]). Prior work on just-in-time compilation can be split in two categories;
it has been studied as (1) a compilation technique for interpreted languages such as JavaScript [65], where
critical type information is unavailable prior to execution; and (2) a performance optimization over ahead-
of-time compilation, allowing for specialization [167, 86], loop unrolling and function inlining [32, 141],
and other profile-guided optimizations [135, 97]. In addition to these two categories, there is also prior work
on staged compilation [42] and partial evaluation [91]—techniques that perform some compilation ahead-
of-time, waiting for the runtime to specialize and further optimize when there is more information about
the environment of the target program and how it is used. The key idea behind all of this prior work is
that compilation done at run-time can exploit an abundance of additional information compared to one done
statically, ahead-of-time. This information enables significant performance benefits and that is why today
many languages have a just-in-time or profile driven compiler.

The work described in this dissertation draws inspiration from work in both contexts—resolving unavailable
dynamic information at run-time and performing additional optimizations. It also leverages the optimistic
compilation technique employed commonly by just-in-time compilers: when it fails to compile (parallelize),
it simply runs the original fragment using the shell interpreter as a fallback. However, compared to most JIT
compilers, the just-in-time architecture described in Chapter 7 also deals with a different set of challenges:
it operates at a higher level of abstraction (no binary or bytecode, but rather a shell program), with no single
unified runtime (multiple runtimes and languages coexist during the execution of a shell program).

24

CHAPTER 4

A formal model of a data processing fragment of the shell

Material from this chapter was previously published as “Shivam Handa, Konstantinos Kallas, Nikos Vasi-
lakis, and Martin C. Rinard. An Order-Aware Dataflow Model for Parallel Unix Pipelines. Proc. ACM Pro-
gram. Lang., 5(ICFP), August 2021.” [76]. Shivam, Nikos, and I contributed equally to this work, developing
the formalization and order-aware dataflow model. I was the lead developer of the project’s implementation.

4.1. Introduction
UNIX pipelines are an attractive choice for specifying succinct and simple programs for data processing,
system orchestration, and other automation tasks [150]. Consider, for example, the following program based
on the original spell written by Johnson [27], lightly modified for modern environments:4

cat f1.md f2.md | tr A-Z a-z | tr -cs A-Za-z '\n' | sort | uniq | # (Spell)

grep -vx -f dict.txt - > out

cat out | wc -l | sed 's/$/ mispelled words!/'

The first command streams two markdown files into a pipeline that converts characters in the stream into
lower case, removes punctuation, sorts the stream in alphabetical order, removes duplicate words, and filters
out words from a dictionary file (lines 1 and 2). A second pipeline (line 3) counts the resulting lines to report
the number of misspelled words to the user.

As this example illustrates, the UNIX shell offers a programming model that facilitates the composition of
commands using unidirectional communication channels that feed the output of one command as an input to
another. These channels are either ephemeral, unnamed pipes expressed using the | character and lasting for
the duration of the producer and consumer, or persistent, named pipes (UNIX FIFOs) created with mkfifo

and lasting until explicitly deleted. Each command executes sequentially, with pipelined parallelism avail-
able between commands executing in the same pipeline. Unfortunately, this model leaves substantial data
parallelism unexploited.

4Johnson’s program additionally used troff, prepare, and col -bx to clean up now-legacy formatting metadata that does not
exist in markdown. Moreover, comm -13 was replaced with grep -xvf to highlight crucial features of the model.

25

To support the ability to reason about and correctly transform and parallelize UNIX shell pipelines, we present
a new dataflow model. In contrast to standard dataflow models [93, 94, 105, 107, 98], our dataflow model
is order-aware—i.e., the order in which a node in the dataflow graph consumes inputs from different edges
plays a central role in the semantics of the computation and therefore in the resulting parallelization. This
model is different from models that allow multiplexing different chunks of data in a single channel, such as
sharding or tagging, or ones that are oblivious to ordering, such as shuffling—and is a direct byproduct of
the ordered semantics of the shell and the opacity of UNIX commands. In the Spell script shown earlier,
for example, while all commands consume elements from an input stream in order—a property of UNIX

streams e.g., pipes and FIFOs—they differ in how they consume across streams: cat reads input streams in
the order of its arguments, sort -m reads input streams in interleaved fashion, and grep -vx -f first reads
dict.txt before reading from its standard input.

We use this order-aware dataflow model (ODFM) to express the semantics of transformations that exploit
data parallelism available in UNIX shell computations. These transformations form the basis of the paral-
lelization systems described in later chapters of this dissertation. We also use our model to prove that these
transformations are correct, i.e., that they do not affect the program behavior with respect to sequential output.

In summary, this dissertation chapter makes the following contributions:

• Order-Aware Dataflow Model: It introduces the order-aware dataflow model (ODFM), a dataflow
model tailored to the UNIX shell that captures information about the order in which nodes consume
inputs from different input edges (§4.4).

• Transformations and Proofs of Correctness: It presents a series of ODFM transformations for ex-
tracting data parallelism. It also presents proofs of correctness for these transformations (§4.5).

The chapter starts with an informal development building the necessary background (§4.2) and expounding
on Spell (§4.3). It then presents the main contributions outlined above (§4.4–4.5), compares with prior
work (§4.6), and offers a discussion (§4.7).

26

4.2. Background
This section reviews background on commands and abstractions in the UNIX shell.
4.2.1. UNIX Streams
A key UNIX abstraction is the data stream, operated upon by executing commands or processes. Streams are
sequences of bytes, but most commands process them as higher-level sequences of line elements, with the
newline character delimiting each element and the EOF condition representing the end of a stream. Streams
are often referenced using a filename, that is an identifier in a global name-space made available by the UNIX

file-system such as /home/user/x. Some streams can persist as files beyond the execution of the process,
whereas other streams are ephemeral in that they only exist to connect the output of one process to the input
of another process during their execution.
4.2.2. Commands
Each command is an independent computation unit that reads one or more input streams, performs a com-
putation, and produces one or more output streams. Contrary to programming environments with a closed
set of primitives, like Spark [186] and MapReduce [46], there is an unlimited number of UNIX commands,
each one of which may have arbitrary behaviors—with the command’s side-effects potentially affecting the
entire environment on which it is executing. These commands may be written in any language or exist only
in binary form, and thus UNIX is not easily amenable to a single parallelizability analysis. UNIX commands
are also often configurable, customizing their behavior based on the task at hand. This is usually achieved via
environment variables and command options and flags. Prior parallelization tools such as GNU parallel

leave such analysis to developers that have to ensure that the script behavior will not be affected by paral-
lelization. The work that is presented in later chapters of this dissertation instead introduces specification
libraries that identify and describe key properties that hold for entire classes of commands. For example, a
property that is useful for parallelization is whether a command is stateless, i.e., whether it maintains state
when processing different input items, or whether it processes each input line independently. Commands that
satisfy this property can be parallelized by splitting their inputs in lines and then combining their outputs.

27

4.2.3. Order of input consumption
In UNIX, all streams are ordered and all commands consume elements from their streams in the order they
were produced. Additionally, most commands have the ability to operate on multiple files or streams.
The order in which commands access these streams is important. In some cases, they read streams in
the order of the stream identifiers provided. In other cases, the order is different—for example, an in-
put stream may configure a command, and thus must be read before all the others. Consider for example
grep -f words.txt input.txt, which first reads words.txt to determine the keywords for which it
needs to search, and then reads input.txt line by line, emitting all lines that contain one of the words in
words.txt. In other cases, reads from multiple streams are interleaved according to some command-specific
semantics.
4.2.4. Composition: UNIX Operators
UNIX provides several primitives for program composition, each of which imposes different scheduling con-
straints on the program execution. Central among them is the pipe (|), a primitive that passes the output of
one process as input to the next. The two processes form a pipeline, producing output and consuming input
concurrently and possibly at different rates. The UNIX kernel facilitates program scheduling, communication,
and synchronization behind the scenes. For example, Spell’s first tr transforms each character in the input
stream to lower case, passing the stream to the second tr: the two trs form a parallel producer-consumer
pair of processes.

Apart from pipes, the language of the UNIX shell provides several other forms of composition—e.g., the
sequential composition operator (;) for executing one process after another has completed, and control struc-
tures such as if and while. All of these constructs enforce execution ordering between their components.

4.3. Example and overview
This section provides intuition of the order-aware dataflow model proposed by following the different phases
of a shell-to-shell parallelizing compiler, formalized in the later sections. Given a script such as Spell (§4.1),
the compiler identifies its regions between synchronization barriers, translates them to DFGs (Shell→ODFM),
applies graph transformations that expose data parallelism on these DFGs, and replaces the original dataflow

28

regions with the now-parallel regions (ODFM→Shell).
4.3.1. Shell→ODFM

DFG1uniq

|

>

out
cat 1.md 2.md

|

grep

DFG2
wc out

|

sed

;Provided a shell script, the compiler starts by identifying subexpressions
that are potentially parallelizable. The first step is to parse the script,
creating an abstract syntax tree like the one presented on the right. Here
we omit any non-stream flags and refer to all the stages between (and
including) tr and sort as a dotted edge ending with cat.

The compiler then identifies parallelism barriers within the shell script: these are operators that enforce
synchronization constraints, such as the sequential composition operator (“;”). We call any set of commands
that does not include a dataflow barrier a dataflow region. Dataflow regions are then transformed to dataflow
graphs (DFGs), i.e., instances of our order-aware dataflow model. In our example, there are two dataflow
regions corresponding to the following dataflow graphs:

DFG1
grep

DFG2
uniq wc sedcat cat

f1

f2
tr

dict

out out

As mentioned earlier (§4.2), the compiler exposes parallelism in each DFG separately to preserve the ordering
requirements imposed to ensure correctness. For the rest of this section we focus on the parallelization of
DFG1.
4.3.2. Parallelizable Commands

29

Command Aggreg. Function

cat cat $*

tr A-Z a-z cat $*

tr -d a cat $*

sort sort -m $*

uniq uniq $*

grep -f a - cat $*

wc -l paste -d+ $*|bc

sed 's/a/b/' cat $*

Individual nodes of the dataflow graphs are shell commands. We
assume that we have access to relevant information for individ-
ual commands, e.g., whether they are amenable to divide-and-
conquer data parallelism. Such data parallelism is achieved by
splitting the input into pieces (at stream element boundaries), pro-
cessing partial inputs in parallel, and finally applying an aggrega-
tion function to partial outputs to produce the final output. This
decomposition breaks a command into two components—a data-
parallel function, which is often the command itself, and an aggregation function. The table on the right
presents aggregation functions for the shell commands in our example (all of which are parallelizable).

tr
catsplit

tr

For example, consider the decomposition of the tr command. Applying tr over the
entire input produces the same result as splitting the input into two, applying tr to

the two partial inputs, and then merging the partial results with a cat aggregation function. Note that both
split and cat are order-aware, i.e., split sends the first half of its input to the first tr and the rest to the
second, while cat concatenates its inputs in order. This guarantees that the output of the DFG is the same
as the one before the transformation.
4.3.3. Parallelization Transformations
Given the decomposition of individual commands, the compiler’s next step is to apply graph transforma-
tions to exploit parallelism present in the computation represented by the DFG. As each parallelizable UNIX

command comes with a corresponding aggregation function, the compiler’s transformations first convert the
DFG into one that exploits parallelism at each stage. After applying the transformation to the two tr stages,
the DFG looks as follows:

split
tr
tr

cat
DFG1

split
tr
tr

catcat sort
f1

f2
out

As long as tr takes more time to execute than scanning the input with split and concatenating the output
with cat, this transformation can improve performance compared to the original, given adequate parallelism.

30

However we can do better! After these transformations are applied to all DFG nodes the next transformation
pass is applied to pairs of cat and split nodes: whenever a cat is followed by a split of the same width,
the transformation removes the pair and connects the parallel streams directly to each other. The goal is to
push data parallelism transformations as far down the pipeline as possible to expose the maximal amount of
parallelism. Here is the resulting DFG for the transformation applied to the two tr stages:

tr
tr

cat
DFG1

split
tr
tr

cat
f1

f2
outgrepuniqsort

Applying this transformation to the first three stages—i.e., cat, tr, and tr—of DFG1 produces the following
transformed DFG.

DFG1
grepuniqsort

trtr

trtr
cat

cat

catf1

f2
out

The next node to parallelize is sort. To merge the partial output of parallel sorts, we need to apply a sorted
merge. (In GNU systems, this is available as sort -m so we use this as the label of the merging node.) The
transformation then removes cat, replicates sort, and merges their outputs with sort -m:

DFG1
grepuniqsort -m

trtr

trtr

sort

sort

f1

f2

cat

cat
out

It then continues pushing parallelism down the pipeline, after applying a split function to split sort -m’s
outputs.

DFG1
splitsort -m

trtr

trtr

sort

sort

uniq

uniq

cat

cat

f1

f2
cat

As mentioned earlier, a similar pass of iterative transformations is applied to DFG2, but the two DFGs are
not merged to preserve the synchronization constraint of the dataflow barrier “;”.
4.3.4. Order Awareness
Data-parallel systems [46, 186] often achieve parallelism using sharding, i.e., partitioning input based on
some key, or using shuffling, i.e., arbitrary partitioning of inputs to parallel instances of an operator.

31

However, these techniques cannot be directly applied to the context of the shell, since (1) UNIX commands
and pipelines assume strict ordering of their input elements; (2) most commands do not support sharding,
because their inputs cannot be processed independently if grouped by some key; and (3) many commands are
not commutative (e.g., uniq, cat -n). Since our goal is to define a model that applies directly to existing
shell scripts, we cannot simply introduce new primitives that support sharding or shuffling, as is done in
the case of systems that design an abstraction that fits their needs (e.g., MapReduce, Spark). Thus, data
parallelism in the shell requires a careful treatment of input and output ordering.

1

2

split

cat

uniq

uniq

f1

f2
To further explain the need for order-awareness in a model for data parallel UNIX pipelines,
let’s look at the following examples. Consider Spell’s cat f1.md f2.md command that starts
reading from f2.md only after it has completed reading f1.md; note that any or both input streams may
be pipes waiting for results from other processes. This order can be visualized as a label over each input
edge. Correctly parallelizing this command requires ensuring that parallel cat (and possibly followup stages)
maintains this order. split

grep
cat

uniq

uniq

uniq
uniq

1

2
1

2

dictAs a more interesting example, consider Spell’s grep, whose DFG is shown on the
right. Parallelizing grep without taking order into account is not trivial, because
grep -vx -f’s inputs are not all equal: the dict list of patterns should not be split into two partial inputs fed
into two copies of grep. Taking input ordering into account, however, highlights an important dependency
between grep’s inputs. The dict stream can be viewed as configuring grep, and thus grep can be modeled
as consuming the entire dict stream before consuming partial inputs.

grep
dict cat

uniq

uniq
grep

tee 1

2

2

1

2
1

Armed with this insight, the compiler parallelizes grep by passing the same
dict.txt stream to both grep copies. This requires an intermediary tee for
duplicating the dict.txt stream to both copies of grep, each of which consumes the stream in its entirety
before consuming the results of the preceeding uniq.

Order-awareness is also important to translate the DFG back to a shell script. In the specific example we
need to know how to instantiate the arguments and options of each grep—e.g., grep -vx -f p1 p2. Ag-
gregators are also UNIX commands with their own ordering characteristics that need to be accounted for.

32

The order of input consumption in the examples of this section is statically known and can be represented for
each node as a set of configuration inputs, plus a sequence of the rest of its inputs. To accurately capture the
behavior of shell programs, however, ODFM is more expressive, allowing any order of input consumption.
The correctness of our parallelization transformations is predicated upon static but configurable orderings:
a command reads a set of configuration streams to set up the consumption order of its input streams which
are then consumed in-order, one after the other.
4.3.5. ODFM→Shell
The transformed graph is finally compiled back to a script that uses POSIX shell primitives to drive paral-
lelism explicitly. A benefit of the dataflow model is that it can be directly implemented on top of the shell,
simply translating each node to a command, and each edge to a stream. The generated parallel script for Spell

can be seen below.

mkfifo t{0..14} # DFG1: start

tr A-Z a-z < f1.md > t0 &

tr A-Z a-z < f2.md > t1 &

tr -d[:punct:] < t0 > t2 &

tr -d[:punct:] < t1 > t3 &

sort < t2 > t4 &

sort < t3 > t5 &

sort -m t4 t5 > t6 &

split t7 t8 < t6 &

...

tee t9 > t10 < dict.txt &

grep -vx -f t9 - < t11 > t13 &

grep -vx -f t10 - < t12 > t14 &

cat t13 t14 > out &

wait

rm t{0..14} # DFG1: end

mkfifo t{0..8} # DFG2: start

split t0 t1 < out &

wc -l < t0 > t2 &

33

wc -l < t1 > t3 &

paste -d+ t2 t3 | bc > t4 &

split t5 t6 < t4 &

sed 's/$/ mispelled words!/' < t5 > t7 &

sed 's/$/ mispelled words!/' < t6 > t8 &

cat t7 t8 &

wait

rm t{0..8} # DFG2: end

The two DFGs are compiled into the two fragments that start with mkfifo and end with rm. Each frag-
ment uses a series of named pipes (FIFOs) to explicitely manipulate the input and output streams of each
data-parallel instance, effectively laying out the structure of the DFG using explicit channel naming, UNIX

FIFOs are named in the filesystem similar to normal files. Aggregation functions are used to merge partial
outputs from previous commands coming in through multiple FIFOs—for example, sort -m t4 t6 and
cat t11 t12 for the first fragment, and paste -d+ t2 t3 | bc and cat t7 t8 for the second. A wait

blocks until all commands executing in parallel complete.

The parallel script is simplified for clarity of exposition: it does not show the details of input splitting,
handling of SIGPIPE deadlocks, and other technical details that are handled by the current implementation.

Readers might be wondering about the correctness of having two sed commands in the parallel script: won’t
the string “mispelled words” appear twice in the output? Note, however, that the behavior of this script is
the same as the original: it appends the string “mispelled words” on all output lines. Since the output of the
wc stage (fifo t4) only contains a single line, the second sed will not be given any input and thus will not
produce any output.

4.4. An order-aware dataflow model
In this section we describe the order-aware dataflow model (ODFM) and its semantics.
4.4.1. Preliminaries
As discussed earlier (§4.2), the two main shell abstractions are (i) data streams, and (ii) commands commu-
nicating via streams. We represent streams as named variables and commands as functions that read from

34

𝑃 ∶= ;;
 ∶= 𝗂𝗇𝗉𝗎𝗍 𝑥
 ∶= 𝗈𝗎𝗍𝗉𝗎𝗍 𝑥
 ∶= 𝖭𝗈𝖽𝖾(𝑓 ; 𝑥𝑖; 𝑥𝑜)

Fig. 4.1: Dataflow Description Language (DDL). A language used to describe dataflow programs that consume a set
of inputs and produce a set of outputs using a graph of computation nodes.

and write to streams.

We first introduce some basic notation formalizing data streams on which our dataflow description language
works. For a set 𝐷, we write 𝐷∗ to denote the set of all finite words over 𝐷. For words 𝑥, 𝑦 ∈ 𝐷∗, we write
𝑥 ⋅ 𝑦 or 𝑥𝑦 to denote their concatenation. We write 𝜖 for the empty word and ⊥ for the End-of-File condition.
We say that 𝑥 is a prefix of 𝑦, and we write 𝑥 ≤ 𝑦 if there is a word 𝑧 such that 𝑦 = 𝑥𝑧. The ≤ order is
reflexive, antisymmetric, and transitive (i.e., it is a partial order), and is often called the prefix order. We use
the notation 𝐷∗ ⋅⊥ to denote a closed stream, abstractly representing a file/pipe stream that has been closed,
i.e., one which no process will open for writing. The notation 𝐷∗ is used to denote an open stream, abstractly
representing an open pipe. In the rest of out formalization we focus on terminating streams, and therefore
terminating programs, since all of the data processing scripts that we have encountered are terminating.
4.4.2. Dataflow Description Language
Figure 4.1 presents the Dataflow Description Language (DDL) for defining dataflow graphs (DFG). A pro-
gram 𝑃 in DDL is of the form ;; . and represent sets of inputs and outputs, which are vectors of the
form 𝑥 = ⟨𝑥1, 𝑥2,… , 𝑥𝑛⟩. Variables 𝑥1, 𝑥2,… represent DFG edges, i.e., streams used as a communication
channel between DFG nodes and as the input and output of the entire DFG.

 is of the form 𝗂𝗇𝗉𝗎𝗍 𝑥, where 𝑥 is the set of the input variables. Each variable 𝑥 ∈ represents a file
file(𝑥) that is read from the UNIX filesystem. Note that multiple input variables can refer to the same file.

 is of the form 𝗈𝗎𝗍𝗉𝗎𝗍 𝑥, where 𝑥 is the set of output variables. Each variable 𝑥 ∈ represents a file
file(𝑥) that is written to the UNIX filesystem.

 represents the nodes of the DFG. A node 𝖭𝗈𝖽𝖾(𝑓 ; 𝑥𝑖; 𝑥𝑜) represents a function from list of input variables

35

(edges) 𝑥𝑖 to output variables (edges) 𝑥𝑜.

A variable in DDL is assigned only once and consumed by only one node. Variables in are never assigned in
 and can only be consumed, and variables in can not be read by any node in . Also the sets and must
be disjoint. All variables which are not included in and abstractly represent temporary files/pipes which
are created during the execution of a shell script. We assume that within a dataflow program, all variables are
reachable from some input variables. Finally, DDL does not allow the dataflow graph to contain any cycles.
DDL Nodes: Each DDL node corresponds to a command, and therefore needs to satisfy the following
properties.

First of all, we assume that commands do not produce output if they have not consumed any input, i.e., the
following is true:

⟨𝜖,… , 𝜖⟩ = 𝑓 (𝜖,… , 𝜖).

This is not restrictive because we can model most commands as producing their first output either when they
receive their first line of input, or when their input is closed.

We also require that 𝑓 be monotone with respect to a lifting of the prefix order for a sequence of inputs; that
is, ∀, 𝑣, 𝑣′, 𝑣𝑖, if 𝑣 ≤ 𝑣′, ⟨𝑣1,… , 𝑣𝑛⟩ = 𝑓 (𝑣, 𝑣𝑖) and ⟨𝑣′1,… , 𝑣′𝑛⟩ = 𝑓 (𝑣′, 𝑣𝑖), then ∀ 𝑘 ∈ [1, 𝑛]. 𝑣𝑘 ≤ 𝑣′𝑘. This
captures the idea that a node cannot retract output that it has already produced.

We assume that all functions 𝑓 produce well-formed output, namely that they never produce more values
after they close an output stream with ⊥. Additionally, we assume that a function 𝑓 closes all of its outputs
if all of its inputs are closed, namely:

𝑓 (𝑣1 ⋅ ⊥, 𝑣2 ⋅ ⊥,… , 𝑣𝑛 ⋅ ⊥) = ⟨𝑣′1 ⋅ ⊥, 𝑣
′
2 ⋅ ⊥,… , 𝑣′𝑘 ⋅ ⊥⟩.

At any point in time, a command 𝑓 is waiting on a new message from a subset of its inputs, meaning that if
a message arrives in any of these inputs, 𝑓 can take a processing step. We introduce a function 𝖼𝗁𝗈𝗂𝖼𝖾𝑓 that
returns a set of input indexes to represent this input consumption order. For example, the 𝖼𝗁𝗈𝗂𝖼𝖾𝑐𝑎𝑡 function

36

𝖭𝗈𝖽𝖾(𝑓 ; 𝑥1,… , 𝑥𝑘… , 𝑥𝑛; 𝑥′1,… , 𝑥′𝑝) ∈ 𝑣𝑘 ⋅ 𝑣𝑥 ≤ Γ(𝑥𝑘)
|𝑣𝑥| = 1 ∨ 𝑣𝑥 = ⊥ 𝑘 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾𝑓 (𝑣1,… , 𝑣𝑛)
⟨𝑣𝑚1 ,… , 𝑣𝑚𝑝 ⟩ = J𝑓 (𝑣1,… , 𝑣𝑘◦𝑣𝑥… , 𝑣𝑛)K𝑠

;; ⊢ Γ[𝑥′1 → 𝑣′1,… , 𝑥′𝑝 → 𝑣′𝑝], 𝜎[𝑥1 → 𝑣1,… , 𝑥𝑘 → 𝑣𝑘,… , 𝑥𝑛 → 𝑣𝑛] ⇝
Γ[𝑥′1 → 𝑣′1 ⋅ 𝑣

𝑚
1 ,… , 𝑥′𝑝 → 𝑣′𝑝 ⋅ 𝑣

𝑚
𝑝], 𝜎[𝑥1 → 𝑣1,… , 𝑥𝑘 → 𝑣𝑘 ⋅ 𝑣𝑥,… , 𝑥𝑛 → 𝑣𝑛]

STEP

Fig. 4.2: Small Step Execution Semantics for DDL. A single step represents the computation of a dataflow node after
it has consumed a new input message.

for the command cat always returns the next non-closed index—as cat reads its inputs in sequence, each
one until depletion.

{𝑘 + 1} = 𝖼𝗁𝗈𝗂𝖼𝖾𝑐𝑎𝑡(𝑣1⋅ ⟂,… , 𝑣𝑘⋅ ⟂, 𝑣𝑘+1,… , 𝑣𝑛).

For a 𝖼𝗁𝗈𝗂𝖼𝖾𝑓 function to be valid, it has to return an input index that has not been closed yet. Formally,

 = 𝖼𝗁𝗈𝗂𝖼𝖾𝑓 (𝑣1,… , 𝑣𝑘⋅ ⟂,… , 𝑣𝑛) ⟹ 𝑘 ∉ .

We assume that the set returned by 𝖼𝗁𝗈𝗂𝖼𝖾𝑓 cannot be empty unless all input indexes are closed, meaning that
all nodes consume all of their inputs until depletion even if they do not need the rest of it for processing.

Finally, we introduce an execution wrapper J⋅K𝑠 that describes the latest output of a command given its newly
consumed input. We write 𝑣𝑘◦𝑣𝑥 only in the context of JK𝑠 to identify the current input message that was
consumed for this step. This is in contrast to 𝑣𝑘 ⋅𝑣𝑥, which simply represents the concatenation of two values.
For any 𝑓 , the output of J⋅K𝑠 is defined as follows:

⟨𝑣𝑚1 ,… , 𝑣𝑚𝑝 ⟩ = J𝑓 (𝑣1,… , 𝑣𝑘◦𝑣𝑥,… , 𝑣𝑛)K𝑠

if and only if

⟨𝑣′1, 𝑣
′
2,… , 𝑣′𝑝⟩ = 𝑓 (𝑣1,… , 𝑣𝑘,… , 𝑣𝑛) ∧ ⟨𝑣′1 ⋅ 𝑣

𝑚
1 ,… , 𝑣′𝑝 ⋅ 𝑣

𝑚
𝑝 ⟩ = 𝑓 (𝑣1… , 𝑣𝑘 ⋅ 𝑣𝑥,… 𝑣𝑛).

Processing inputs 𝑣1,… , 𝑣𝑘,… , 𝑣𝑛 and then message 𝑣𝑥 is equivalent to processing all input 𝑣1,… , 𝑣𝑘 ⋅

𝑣𝑥,… , 𝑣𝑛 at once.

37

4.4.3. Semantics
Figure 4.2 presents the small step execution semantics for DDL. A map Γ associates variable names to the
data contained in the stream it represents. A second map 𝜎 associates the same variable names to the data in
the stream that has already been consumed—capturing the read-once semantics of UNIX pipes. Both Γ and 𝜎

have the same domain, containing mappings for all the variables in the program. We write 𝑃 ⊢ Γ, 𝜎 ⇝ Γ′, 𝜎′

when a DDL program 𝑃 = ;; steps from state Γ, 𝜎 to state Γ′, 𝜎′. We use ⇝∗ to denote 0 or more such
program steps.

The small step semantics nondeterministically picks a variable 𝑥𝑘, such that 𝑘 ∈ 𝖼𝗁𝗈𝗂𝖼𝖾𝑓 (𝑣1,… , 𝑣𝑛), i.e., 𝑓 is
waiting to read some input from 𝑥𝑘, and 𝜎(𝑥𝑘) < Γ(𝑥𝑘), i.e., there is data on the stream represented by variable
𝑥𝑘 that has to be processed. The execution then retrieves the next message 𝑣𝑥 to process, and computes new
messages 𝑣𝑚1 ,… , 𝑣𝑚𝑝 to pass on to the output streams 𝑥′1,… , 𝑥′𝑝. Note that any of these messages (input or
output) might be ⊥.

The messages 𝑣𝑚1 ,… , 𝑣𝑚𝑝 are passed on to their respective output streams (by updating Γ). Note that the size
of the output messages could vary, and they could even be empty. Finally, 𝜎 is updated to denote that 𝑣𝑥 has
been processed.
4.4.4. Execution Properties
Let 𝑃 = ;; be a dataflow program, where = 𝗂𝗇𝗉𝗎𝗍 𝑥𝑖 are the input variables, and 𝗈𝗎𝗍𝗉𝗎𝗍 𝑥𝑜 are the
output variables. We denote the initial mapping 𝜎 for any such program as 𝜎𝑖, where all variables are mapped
to the empty string 𝜖, i.e., no data has been consumed by any node yet. Let Γ𝑖 be the initial mapping Γ for
any dataflow program. We assume that all non-input variables 𝑥 ∉ 𝑥𝑖, map to the empty string Γ𝑖(𝑥) = 𝜖. In
contrast, all input variables 𝑥 ∈ 𝑥𝑖, i.e., files already present in the file system, are mapped to the contents of
the respective input file Γ𝑖(𝑥) = 𝑣⋅ ⟂. We say that a mapping Γ or 𝜎 is closed if and only if all of its variables
are closed, i.e., ∀𝑥,Γ(𝑥) = 𝑣 ⋅ ⊥. When no more small step transitions can take place (i.e., all commands
have finished processing), the dataflow execution terminates and the contents of output variables in can be
written to their respective output files.

Theorem 1. Given a program 𝑃 = ;; and starting maps Γ𝑖 and 𝜎𝑖, the following statement is true for

38

any 𝖭𝗈𝖽𝖾(𝑓 ; 𝑥1,… , 𝑥𝑛; 𝑥′1, 𝑥
′
2,… , 𝑥′𝑝) ∈ and for any Γ, 𝜎 such that 𝑃 ⊢ Γ𝑖, 𝜎𝑖 ⇝∗ Γ, 𝜎:

⟨Γ(𝑥′1),… ,Γ(𝑥′𝑝)⟩ = 𝑓 (𝜎(𝑥1),… , 𝜎(𝑥𝑛)).

Proof. Proof by induction on the number of execution steps.
Base Case: Let Γ𝑖 and 𝜎𝑖 be the initial mappings. For any 𝑥𝑗 in ⟨𝑥1,… , 𝑥𝑛⟩ we know that 𝜎𝑖(𝑥) = 𝜖, which
means no input has been consumed. Similarly for all 𝑥′𝑗 in ⟨𝑥′1,… , 𝑥′𝑝⟩ we know that Γ𝑖(𝑥) = 𝜖, since
𝑥′1,… , 𝑥′𝑝 are not input variables to the DFG so they will be initialized to 𝜖. Given that all functions do not
produce output if they have not consumed input, i.e., ⟨𝜖,… , 𝜖⟩ = 𝑓 (𝜖,… , 𝜖), the following holds:

⟨Γ𝑖(𝑥′1),… ,Γ𝑖(𝑥′𝑝)⟩ = 𝑓 (𝜎𝑖(𝑥1),… , 𝜎𝑖(𝑥𝑛)).

Induction Case: Let Γ and 𝜎 be the mappings after 𝑛 execution steps such that the following statement is
true:

⟨Γ(𝑥′1),… ,Γ(𝑥′𝑝)⟩ = 𝑓 (𝜎(𝑥1),… , 𝜎(𝑥𝑛)).

We need to show that after a single execution step 𝑃 ⊢ Γ, 𝜎 ⇝ Γ′, 𝜎′, the following holds:

⟨Γ′(𝑥′1),… ,Γ′(𝑥′𝑝)⟩ = 𝑓 (𝜎′(𝑥1),… , 𝜎′(𝑥𝑛)).

Case 1 (a different node of the DFG took a step): If the 𝜎 mappings 𝜎(𝑥𝑖) = 𝜎′(𝑥𝑖) are the same for all inputs
𝑖 ∈ [1, 𝑛], then no message was consumed by node 𝑓 and therefore the Γ mappings for 𝑥′1,… , 𝑥′𝑝 were not
updated (since only a single node, in this case 𝑓 , writes to each variable). More precisely for all 𝑘 ∈ [1, 𝑝]

we know that Γ(𝑥′𝑘) = Γ′(𝑥′𝑘). Then, assuming the induction hypothesis, the following statement is true:

⟨Γ′(𝑥′1),… ,Γ′(𝑥′𝑝)⟩ = 𝑓 (𝜎′(𝑥1),… , 𝜎′(𝑥𝑛)).

Case 2 (node 𝑓 took a step): If there exists an 𝑖 ∈ [1, 𝑛] such that 𝜎′(𝑥𝑖) = 𝜎(𝑥𝑖) ⋅ 𝑣𝑥, where 𝑣𝑥 ≠ 𝜖, then a
message 𝑣𝑥 was processed. Note that the above statement can only be true for a single 𝑖, so for all 𝑗 ≠ 𝑖 we

39

know that 𝜎(𝑥𝑗) = 𝜎′(𝑥𝑗).

The following statement is true from our induction hypothesis:

⟨Γ(𝑥′1),… ,Γ(𝑥′𝑝)⟩ = 𝑓 (𝜎(𝑥1),… , 𝜎(𝑥𝑖),… , 𝜎(𝑥𝑛)).

and from small step semantics, for all 𝑘 ∈ [1, 𝑝] we know that Γ′(𝑥′𝑘) = Γ(𝑥′𝑘) ⋅ 𝑣
𝑚
𝑘 , where:

⟨𝑣𝑚1 ,… , 𝑣𝑚𝑝 ⟩ = J𝑓 (𝜎(𝑥𝑖),… , 𝜎(𝑥𝑖)◦𝑣𝑥,… , 𝜎(𝑥𝑛))K𝑠.

Using the definition of J⋅K𝑠, the following statement is true:

⟨Γ(𝑥′1) ⋅ 𝑣
𝑚
1 ,… ,Γ(𝑥′𝑝) ⋅ 𝑣

𝑚
𝑝 ⟩ = 𝑓 (𝜎(𝑥1),… , 𝜎(𝑥𝑖) ⋅ 𝑣𝑥,… , 𝜎(𝑥𝑛)).

Therefore, the following is true:

⟨Γ′(𝑥′1),… ,Γ′(𝑥′𝑝)⟩ = 𝑓 (𝜎′(𝑥1),… , 𝜎′(𝑥𝑖),… , 𝜎′(𝑥𝑛)).

This concludes the inductive case and the proof.

We now define a lemma that relates the data that is contained in a stream with the data that is read by its
consumer.

Lemma 1. Given 𝑃 = ;; and Γ𝑖, 𝜎𝑖,Γ, 𝜎 such that 𝑃 ⊢ Γ𝑖, 𝜎𝑖 ⇝∗ Γ, 𝜎, then for all variables 𝑥 in a

program 𝑃 , the consumed data 𝜎(𝑥) is a prefix of the data contained in Γ(𝑥), more precisely 𝜎(𝑥) ≤ Γ(𝑥).

Proof. By induction on the steps ⇝∗.

We are now ready to state the main property of the execution of a DDL program, namely, when a DDL
program terminates, the data in its streams can be precisely determined by the outputs of its nodes 𝑓 when
given all their closed input, without needing the small step execution J⋅K𝑠.

40

Theorem 2. Given 𝑃 = ;; and Γ𝑖, 𝜎𝑖,Γ, 𝜎 such that 𝑃 ⊢ Γ𝑖, 𝜎𝑖 ⇝∗ Γ, 𝜎 and both Γ and 𝜎 are closed,

then for all 𝖭𝗈𝖽𝖾(𝑓 ; 𝑥1,… , 𝑥𝑛; 𝑥′1,… , 𝑥′𝑝) ∈ , the following holds:

𝑓 (Γ(𝑥1),… ,Γ(𝑥𝑛)) = ⟨Γ(𝑥′1),… ,Γ(𝑥′𝑝)⟩.

Proof. Given Theorem 1, we know that

𝑓 (𝜎(𝑥1),… , 𝜎(𝑥𝑛)) = ⟨Γ(𝑥′1),… ,Γ(𝑥′𝑝)⟩.

Using Lemma 1 and the fact that 𝜎 is closed, we know that 𝜎(𝑥) ≤ Γ(𝑥) for any 𝑥, and so

𝑓 (Γ(𝑥1),… ,Γ(𝑥𝑛)) = ⟨Γ(𝑥′1),… ,Γ(𝑥′𝑝)⟩,

which concludes the proof.

4.5. Parallelization transformations
In this section we define a set of transformations that expose data parallelism on a dataflow graph. We start
by defining a set of helper DFG nodes and a set of auxiliary transformations to simplify the graph and enable
the parallelization transformations. Then we identify a property on dataflow nodes that indicates whether the
node can be executed in a data parallel fashion. We then define the parallelization transformations and we
conclude with a proof that applying all of the transformations preserves the semantics of the original DFG.
4.5.1. Helper Nodes and Auxiliary Transformations
Before we define the parallelization transformations, we introduce several helper functions that can be used
as dataflow nodes. We assume that all nodes satisfy the assumptions described in Section 4.4.2. Note that
we do not describe the streaming behavior of helper functions, i.e., their outputs on open inputs, allowing
for multiple streaming implementations as long as they are monotone (Section 4.4.2) and they agree with the
helper function characterizations below.

The first function is 𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥𝑖; 𝑥), which behaves the same as the UNIX command cat. Given a list of

41

input variables 𝖼𝖺𝗍 combines their values into a single output variable:

𝖼𝖺𝗍(𝑣1 ⋅ ⊥, 𝑣2 ⋅ ⊥,… , 𝑣𝑚 ⋅ ⊥) = 𝑣1 ⋅ 𝑣2… ⋅ ⊥.

The second function is 𝖭𝗈𝖽𝖾(𝗍𝖾𝖾; 𝑥𝑖; 𝑥), the behavior of which corresponds to the UNIX command tee, i.e.
copying its input variable to several output variables.

𝗍𝖾𝖾(𝑣 ⋅ ⊥) = ⟨𝑣 ⋅ ⊥,… , 𝑣 ⋅ ⊥⟩.

The third function is 𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥; 𝑥′), which works works as an identity function.

𝗋𝖾𝗅𝖺𝗒(𝑣 ⋅ ⊥) = 𝑣 ⋅ ⊥.

Finally, we have 𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥𝑖; 𝑥), which takes a single input variable (file or pipe) and sequentially splits it
into multiple output variables. Its behavior is characterized as follows:

𝗌𝗉𝗅𝗂𝗍(𝑣1 ⋅ 𝑣2… ⋅ 𝑣𝑘 ⋅ ⊥) = ⟨𝑣1 ⋅ ⊥, 𝑣2 ⋅ ⊥,… , 𝑣𝑘 ⋅ ⊥,⊥, ⊥,…⟩.

In contrast to the aforementioned nodes, this characterization does not uniquely define a single 𝗌𝗉𝗅𝗂𝗍 function
since there are many different ways to split its input. This allows the implementation to choose one of many
different instantiations of 𝗌𝗉𝗅𝗂𝗍 to achieve different performance characteristics without affecting correctness;
the only requirement is that the instantiation satisfies the 𝗌𝗉𝗅𝗂𝗍 property.

Using these helper nodes, our compiler performs a set of auxiliary transformations that are described in
Figure 4.3 and depicted in Figure 4.4. Since 𝗋𝖾𝗅𝖺𝗒 acts as an identity function any edge can be split in two
edges composed through a relay. Spliting in multiple stages to get 𝑛 edges is the same as splitting in one step
into 𝑛 edges. Similarly, combining 𝑛 edges in multiple stages is the same as combining 𝑛 edges in a single
stage. If we split an edge into 𝑛 edges and then combine the 𝑛 edges back, this behaves as an identity. A 𝖼𝖺𝗍

can be pushed following a 𝗍𝖾𝖾 by creating 𝑛 copies of the 𝗍𝖾𝖾 function. If a 𝖼𝖺𝗍 has single incoming edge, we
can convert it into a relay. If a 𝗌𝗉𝗅𝗂𝗍 has a single outgoing edge, we can convert it into a relay. A 𝗌𝗉𝗅𝗂𝗍 after a

42

𝑥′ ∉ ;;
 ′ = [𝑥′∕𝑥]

;; ⟺ ;; ′ ∪ {𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥; 𝑥′)}
RELAY

𝑥𝑠, 𝑥′𝑠 ∉ ;;
𝐸 =

{

𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥; 𝑥𝑠, 𝑥′𝑠),𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥𝑠; 𝑥1,… , 𝑥𝑘),𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥′𝑠; 𝑥𝑘+1,… , 𝑥𝑚)
}

;; ∪
{

𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥; 𝑥1,… , 𝑥𝑚)
}

⟺ ;; ∪ 𝐸
SPLIT-SPLIT

𝑥𝑐 , 𝑥′𝑐 ∉ ;;
𝐸 =

{

𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥1,… , 𝑥𝑘; 𝑥𝑐),𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥𝑘+1,… , 𝑥𝑚; 𝑥′𝑐),𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥𝑐 , 𝑥
′
𝑐; 𝑥)

}

;; ∪
{

𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥1,… , 𝑥𝑚; 𝑥)
}

⟺ ;; ∪ 𝐸
CONCAT-CONCAT

𝑥1,… , 𝑥𝑛 ∉ (;;)
𝐸 =

{

𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥; 𝑥1,… , 𝑥𝑛),𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥1,… , 𝑥𝑛; 𝑥′),
}

;; ∪
{

𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥; 𝑥′)
}

⟺ ;; ∪ 𝐸
SPLIT-CONCAT

𝑥𝑢1, 𝑥
𝑑
1 , 𝑥

𝑢
2, 𝑥

𝑑
2 ,… , 𝑥𝑢𝑛, 𝑥

𝑑
𝑛 ∉ ;;

𝐸 =
{

𝖭𝗈𝖽𝖾(𝗍𝖾𝖾; 𝑥1; 𝑥𝑢1, 𝑥
𝑑
1),𝖭𝗈𝖽𝖾(𝗍𝖾𝖾; 𝑥2; 𝑥

𝑢
2, 𝑥

𝑑
2),… ,𝖭𝗈𝖽𝖾(𝗍𝖾𝖾; 𝑥𝑛; 𝑥𝑢𝑛, 𝑥

𝑑
𝑛),

𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥𝑢1, 𝑥
𝑢
2,… , 𝑥𝑢𝑛; 𝑥𝑜),𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥

𝑑
1 , 𝑥

𝑑
2 ,… , 𝑥𝑑𝑛 ; 𝑥

′
𝑜)
}

;; ∪
{

𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥1, 𝑥2,… , 𝑥𝑛; 𝑥),𝖭𝗈𝖽𝖾(𝗍𝖾𝖾; 𝑥; 𝑥𝑜, 𝑥′𝑜)
}

⟺ ;; ∪ 𝐸
TEE-CONCAT

;; ∪ {𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥; 𝑥′)} ⟺ ;; ∪ {𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥; 𝑥′)}
ONE-CONCAT

;; ∪ {𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥; 𝑥′)} ⟺ ;; ∪ {𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥; 𝑥′)}
ONE-SPLIT

𝐸 =
{

𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥1; 𝑥′1),𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥2; 𝑥
′
2),… ,𝖭𝗈𝖽𝖾(𝗋𝖾𝗅𝖺𝗒; 𝑥𝑛; 𝑥′𝑛)

}

;; ∪
{

𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥1, 𝑥2,… , 𝑥𝑛; 𝑥),𝖭𝗈𝖽𝖾(𝗌𝗉𝗅𝗂𝗍; 𝑥; 𝑥′1, 𝑥
′
2,… , 𝑥′𝑛)

}

⟹ ;; ∪ 𝐸
CONCAT-SPLIT

Fig. 4.3: Auxiliary transformations applied by the compiler on dataflow programs to enable the parallelization trans-
formation.

43

x x relay x’

x
x1

split
xm
… x

xs

split
x’s

x1

split
xk
…

x+1

split
xm
…

x
x1

catxm
… x

xc

catx’c

x1

catxk
…

xk+1

catxm
…

x relay x’ x
x1

split
xn
… x’cat

x
x1

catxn
…

xo
tee

x’o

x1
xu1

tee

xd1
…

cat…

cat

xo

x’o

x’x cat x relay x’

x’x split x relay x’

x’1

split
x’n
…x

x1

catxn
…

x1 relay
x’1

xn relay
x’n

…

Fig. 4.4: Visualization of auxiliary transformations applied by the compiler on dataflow programs.

44

𝖼𝖺𝗍 can be converted into relays, if the input arity of 𝖼𝖺𝗍 is the same as output arity of 𝗌𝗉𝗅𝗂𝗍. The first seven
transformations can be performed both ways, while the last transformations can only be applied from left to
right; applying it from right to left would require carefully selecting which edges to apply it to, to not create
invalid and circular programs.
4.5.2. Data Parallelism and Transformations
The dataflow model exposes task parallelism as each different node can execute independently—only com-
municating with the other nodes through their communication channels. In addition to that, it is possible to
achieve data parallelism by executing some nodes in parallel by partitioning part of their input.
Sequential Consumption Nodes: We are interested in nodes that produce a single output and consume
their main inputs in sequence (one after the other when they are depleted), after an initialization phase of
consumption of configuration inputs. There are several examples of shell commands that correspond to such
nodes, e.g. grep, sort, grep -f, and sha1sum. Let 𝑓 be such a node, where 𝑥′ = 𝑓 (𝑥1,… , 𝑥𝑛+𝑚) and
𝑥1, 𝑥2,… , 𝑥𝑛 represent the configuration inputs and 𝑥𝑛+1,… , 𝑥𝑛+𝑚 represent the sequential consumption
inputs. Without loss of generality we assume that the configuration inputs are the first inputs of a node and
the rest are sequentially consumed.

The consumption order of such a command is shown below:

𝖼𝗁𝗈𝗂𝖼𝖾𝑓 (𝑣) =

⎧

⎪

⎨

⎪

⎩

{𝑖 ∶ 𝑖 ≤ 𝑛 ∧ ¬ closed(𝑣𝑖)} if ∃𝑖 ≤ 𝑛,¬closed(𝑣𝑖)
{𝑖 ∶ ∀𝑗 < 𝑖, closed(𝑣𝑗)} otherwise

If we know that a command 𝑓 satisfies the above property we can represent it as 𝑓 (𝑥1,… , 𝑥𝑛, 𝑥𝑛+1 ⋅ …),
essentially concatenating its sequential inputs into a single input.
Data Parallel Nodes: We now shift our focus to a subset of the sequential consumption nodes, namely
those that can be executed in a data parallel fashion by splitting their inputs. These are nodes that can be
broken down in a parallel map 𝑓𝑚 and an associative aggregate 𝑓𝑟. Formally, a data parallel node has to
satisfy the following (for simplicity we show the requirement for a single configuration input 𝑣𝑐):

𝑓 (𝑣𝑐 , 𝑣1 ⋅… ⋅ 𝑣𝑛) = 𝑓𝑟(𝑣𝑐 , 𝑓𝑚(𝑣𝑐 , 𝑣1), 𝑓𝑚(𝑣𝑐 , 𝑣2),… , 𝑓𝑚(𝑣𝑐 , 𝑣𝑛)).

45

𝑥𝑐1,… , 𝑥𝑐𝑛, 𝑥
𝑐
𝑛+1, 𝑥

𝑚
1 ,… , 𝑥𝑚𝑛 ∉ ;;

dp(𝑓, 𝑓𝑚, 𝑓𝑟)
𝐸 =

{

𝖭𝗈𝖽𝖾(𝗍𝖾𝖾; 𝑥𝑐; 𝑥𝑐1,… , 𝑥𝑐𝑛, 𝑥
𝑐
𝑛+1)

}

∪
{

𝖭𝗈𝖽𝖾(𝑓𝑚; 𝑥𝑐1, 𝑥𝑖; 𝑥
𝑚
𝑖) ∶ ∀𝑖 ∈ {1… 𝑛}

}

∪
{

𝖭𝗈𝖽𝖾(𝑓𝑟; 𝑥𝑐𝑛+1, 𝑥
𝑚
1 ,… , 𝑥𝑚𝑛 ; 𝑥

′)
}

;; ∪
{

𝖭𝗈𝖽𝖾(𝖼𝖺𝗍; 𝑥1,… , 𝑥𝑛; 𝑥),𝖭𝗈𝖽𝖾(𝑓 ; 𝑥𝑐 , 𝑥; 𝑥′)
}

⟹ ;; ∪ 𝐸
PARALLEL

Fig. 4.5: Parallelization transformation applied by the compiler on the dataflow program to expose available data
parallelism.

xx1

catxn
…

xc
f x’

xc
xc1

x1

fm

…

xm1
fr

tee
…

xcn+1

x’

Fig. 4.6: Visualization of parallelization transformation applied by the compiler on dataflow programs.

Note that the above property does not depend on a specific input “split”, and can support splitting the input
in arbitrary points, e.g., setting 𝑣1 to contain all input and all the rest (𝑣2,…) to contain 𝜖. This is why the
transformations described later are correct even though the characterizatin of the 𝗌𝗉𝗅𝗂𝗍 auxiliary function is
nondeterministic. We denote data parallel nodes as dp(𝑓, 𝑓𝑚, 𝑓𝑟) Example of such a node that satisfies this
property is the sort command, where 𝑓𝑚 = sort and 𝑓𝑟 = sort -m.

An important observation is that a subset of all data parallel nodes are trivially parallelizable, meaning that
𝑓𝑚 = 𝑓 and 𝑓𝑟 = 𝖼𝖺𝗍.

We can now define a transformation on any data parallel node 𝑓 , that replaces it with a map followed by
an aggregate. This transformation is described in Figure 4.5 and depicted in Figure 4.6. Essentially, all the
sequential consumption inputs (that are concatenated using 𝖼𝖺𝗍) are given to different 𝑓𝑚 nodes the outputs
of which are then aggregated using 𝑓𝑟 while preserving the input order. Note that the configuration inputs
have to be duplicated using tee to ensure that all parallel 𝑓𝑚 and 𝑓𝑟 instances will be able to read them in
case they are pipes and not files on disk.

Using the auxiliary transformations—by adding a split followed by cat before a data parallel node, we can

46

always parallelize them using the parallelization transformation.
Correctness of Transformations: We now prove a series of statements regarding the correctness of our
transformations after describing what it means for two programs to be equivalent. Our notion of equivalence
only refers to executions that terminate, akin to partial correctness, because out transformations focus on
improving the performance of batch computation scripts, assuming that the user only observes the output
of a script once it is done executing. Intuitively, dataflow programs are guaranteed to terminate because (1)
they do not have cycles; (2) all variables are reachable from the input variables; and (3) all of their nodes
are assumed to terminate, meaning that if their inputs are closed with ⊥, they will eventually stop producing
output and close their outputs with ⊥.

Program Equivalence: Let 𝑃 = ;; and 𝑃 ′ = ′;′; ′ be two dataflow programs, where =

⟨𝑥𝑖1,… , 𝑥𝑖𝑛⟩, ′ = ⟨𝑦𝑖1,… , 𝑦𝑖𝑛⟩, = ⟨𝑥𝑜1,… , 𝑥𝑜𝑚⟩, and ′ = ⟨𝑦𝑜1,… , 𝑦𝑜𝑚⟩. We say that two programs are
equivalent if and only if given any executions 𝑃 ⊢ Γ𝑖, 𝜎𝑖 ⇝∗ Γ, 𝜎 and 𝑃 ′ ⊢ Γ′

𝑖, 𝜎
′
𝑖 ⇝

∗ Γ′, 𝜎′ that terminate,
i.e., Γ, 𝜎,Γ′, 𝜎′ are all closed, and given that all initial input values are equal, i.e., for all 𝑘 ∈ [1, 𝑛]. Γ𝑖(𝑥𝑖𝑘) =

Γ′
𝑖(𝑦

𝑖
𝑘), then the values of output variables are the same, i.e., for all 𝑘 ∈ [1, 𝑚]. Γ(𝑥𝑜𝑘) = Γ′(𝑦𝑜𝑘).

Theorem 3. Let 𝑃 = ;; ∪ 𝐸 and 𝑝′ = ⟨;; ∪ 𝐸′
⟩ be two dataflow programs. Let 𝑖 be the set of

input variables in node set 𝐸 (variables read in 𝐸 but not assigned inside 𝐸). Let 𝑜 be the set of output

variables in the node set 𝐸 (variables assigned in 𝐸 but not read inside 𝐸). Let ′
𝑖 ,

′
𝑜 be the input variables

and output variables of 𝐸′. We assume 𝑖 = ′
𝑖 and 𝑜 = ′

𝑜. If 𝑖;𝑜;𝐸 is equivalent to ′
𝑖 ;

′
𝑜;𝐸

′, then

program 𝑃 is equivalent to 𝑃 ′.

Proof. We want to show that for any executions 𝑃 ⊢ Γ𝑖, 𝜎𝑖 ⇝∗ Γ, 𝜎 and 𝑃 ′ ⊢ Γ′
𝑖, 𝜎

′
𝑖 ⇝∗ Γ′, 𝜎′ that ter-

minate, Γ(𝑥𝑜𝑘) = Γ′(𝑦𝑜𝑘) holds for all 𝑘 ∈ [1, 𝑚] as long as all initial input values are equal, i.e., for all
𝑘 ∈ [1, 𝑛]. Γ𝑖(𝑥𝑖𝑘) = Γ′

𝑖(𝑦
𝑖
𝑘).

First, we know that Γ(𝑥) = Γ′(𝑥) for any 𝑥 in 𝑖, as the dataflow graphs are acyclic and the subgraphs which
compute variables in 𝑖 are the same in both 𝑃 and 𝑃 ′, and the outputs in terminated programs are only
determined by the nodes and inputs (according to Theorem 2).

47

Given that, and since 𝑖;𝑜;𝐸 is equivalent to 𝑖;𝑜;𝐸′, we know that Γ(𝑥) = Γ(𝑥′) for all 𝑥 in 𝑜.

Using Theorem 2 we can now show that all the rest of the variables (and therefore also output variables 𝑥 in
) have equal mappings, i.e., Γ(𝑥) = Γ′(𝑥).

Therefore, both 𝑃 and 𝑃 ′ are equivalent.

Theorem 4. The transformations presented in Figure 4.3 and Figure 4.5 preserve program equivalence.

Proof. We use Theorem 3 to only show equivalences for the transformed subgraphs. The equivalence for
all transformations then follows directly from the semantics of the special nodes 𝖼𝖺𝗍, 𝗋𝖾𝗅𝖺𝗒, 𝗌𝗉𝗅𝗂𝗍, 𝗍𝖾𝖾, and the
properties of 𝑓𝑚 and 𝑓𝑟 for data parallel commands 𝑓 .

4.6. Related work
Dataflow Graph Models: Graph models of computation where nodes represent units of computation and
edges represent FIFO communication channels have been studied extensively [47, 98, 107, 105, 93, 94].
ODFM sits somewhere between Kahn Process Networks [93, 94] (KPN), the model of computation adopted
by UNIX pipes, and Synchronous Dataflow [107, 105] (SDF). A key difference between ODFM and SDF is
that ODFM does not assume fixed item rates—a property used by SDF for efficient scheduling determined at
compile-time. Two differences between ODFM from KPNs is that (i) ODFM does not allow cycles, and (ii)
ODFM exposes information about the input consumption order of each node. This order provides enough
information at compile time to perform parallelizing transformations while also enabling translation of the
dataflow back to a UNIX shell script.

Systems for batch [46, 129, 186], stream [67, 168, 113], and signal processing [107, 33] provide dataflow-
based abstractions. These abstractions are different from ODFM which operates on the UNIX shell, an exist-
ing language with its own peculiarities that have guided the design of the model.

One technique for retrofitting order over unordered streaming primitives such as sharding and shuffling is to
extend the types of elements using tagging [21, 181, 20]. This technique would not work in the UNIX shell,
because (1) commands are black boxes operating on stream elements in unconstrained ways (but in known

48

order), and (2) because data streams exchanged between commands contain flat strings, without support for
additional metadata extensions, and thus no obvious way to augment elements with tags. ODFM instead
captures ordering on the edges of the dataflow graph, and leverages the consumption order of nodes (the
choice function) in the graph to orchestrate execution appropriately.

Synchronous languages [104, 147, 29, 115] model stream graphs as circuits where nodes are state machines
and edges are wires that carry a single value. Lustre [147] is based on a dataflow model that is similar to
ours, but its focus is different as it is not intended for exploiting data-parallelism.
Semantics and Transformations: Prior work proposes semantics for streaming extensions to relational
query languages based on dataflow [109, 19]. In contrast to our work, it focuses on transformations of time-
varying relations.

More recently, there has been significant work on the correct parallelization of distributed streaming appli-
cations by proposing sound optimizations and compilation techniques [81, 154], type systems [114], and dif-
ferential testing [96]. These efforts aim at producing a parallel implementation of a dataflow streaming com-
putation using techniques that do not take into account the order of consumption of each node—preventing
them from being applicable in our setting.

Recent work proposes a semantic framework for stream processing that uses monoids to capture the type
of data streams [112]. That work mostly focuses on generality of expression, showing that several already
proposed programming models can be expressed on top of it. It also touches upon soundness proofs of
optimizations using algebraic reasoning, which is similar to our approach.
Divide and Conquer Decomposition: Prior work has shown the possibility of decomposing programs
or program fragments using divide-and-conquer techniques [152, 56, 57, 157]. The majority of that work
focuses on parallelizing special constructs—e.g., loops, matrices, and arrays—rather than stream-oriented
primitives. Techniques for automated synthesis of MapReduce-style distributed programs [157] can be of
significant aid for individual commands. In some cases [56, 57], the map phase is augmented to maintain
additional metadata used by the reducer phase. These techniques complement our work, since they can be
used to derive aggregators and the parallelizability properties of yet unknown shell commands, making them

49

possible to capture in our model.
Parallel Shell Scripting: Tools exposing parallelism on modern UNIXes such as qsub [63], SLURM [184],
AMFS [187] and GNU parallel [164] are predicated upon explicit and careful orchestration from their
users. Similarly, several shells [50, 117, 180, 159] add primitives for non-linear pipe topologies—some of
which target parallelism. Here too, however, users are expected to manually rewrite scripts to exploit these
new primitives without jeopardizing correctness.
POSIX Shell Semantics: Our work depends on Smoosh, an effort focused on formalizing the semantics of
the POSIX shell [71]. Smoosh focuses on POSIX semantics, whereas our work introduces a novel dataflow
model in order to transform programs and prove the correctness of parallelization transformations on them.
One of the Smoosh authors has also argued for making concurrency explicit via shell constructs [69]. This is
different from our work, since it focuses on the capabilities of the shell language as an orchestration language,
and does not deal with the data parallelism of pipelines.
Parallel Userspace Environments: By focusing on simplifying the development of distributed programs,
a plethora of environments inadvertently assist in the construction of parallel software. Such systems [136,
128, 24], languages [177, 155, 99], or system-language hybrids [140, 175, 52] hide many of the challenges
of dealing with concurrency as long as developers leverage the provided abstractions—which are strongly
coupled to the underlying operating or runtime system. Even when these efforts are shell-oriented, such as
Plan9’s rc, they are backward-incompatible with the UNIX shell, and often focus primarily on hiding the
existence of a network rather than on modelling data parallelism.

4.7. Discussion
Directly accessing the IR in the implementation: Our implementation currently allows manually devel-
oping programs in the ODFM intermediate representation. However, this interface is not that convenient to
use as an end-user since it requires manually instantiating each node of the graph with the necessary com-
mand metadata, e.g., inputs and outputs. It would be interesting future work to design different frontends
that interface with this IR. For example, a frontend compiler from the language proposed by dgsh [159]; a
shell that supports extended syntax for creating DAG pipelines. The IR could also act as an interface for
different backends, for example one that implements ODFM in a distributed setting.

50

Parallel Script Debugging: Debugging standard shell pipelines can be hard and it usually requires several
iterations of trial and error until the user gets the script right. Our approach does not make the debugging
experience any worse, as the system produces as output a parallel shell script, which can be inspected and
modified like any standard shell script (as seen in §4.3). For example, a user could debug a script by re-
moving a few stages of the parallel pipeline, or redirecting some intermediate outputs to permanent files for
inspection. This is possible because of the expressiveness of ODFM and the existence of a bidirectional
transformation from dataflow programs to shell scripts, which allows the compiler to simply use a standard
shell such as bash as its backend.

An approach that is particularly helpful, and which we have used ourselves, is to ask the compiler to add
a relay node between every two nodes of the graph and then instantiate this relay node with an identity
command that duplicates its input to its output and also a log file.

tee $LOG < $IN > $OUT

This allows for stream introspection without affecting the behavior of the pipeline, facilitating debugging
since the user can inspect all intermediate outputs at once.
Stream Finiteness and Extensions: In our current model, parallelism is achieved by partitioning the finite
stream, processing the partitions in parallel, and merging the results. Therefore, our model cannot support
nonterminating computations over infinite data streams. All of the data processing scripts that we have
encountered conform to this model and are terminating.

51

CHAPTER 5

Specification framework

Material from this chapter was previously published as “Nikos Vasilakis, Konstantinos Kallas, Konstantinos
Mamouras, Achilles Benetopoulos, and Lazar Cvetković. PaSh: Light-Touch Data-Parallel Shell Processing.
In Proceedings of the Sixteenth European Conference on Computer Systems, EuroSys ’21, page 49-66, New
York, NY, USA, 2021. Association for Computing Machinery.” [173]. Nikos Vasilakis and I were the
primary authors of this paper and contributed equally to all parts of the work; the rest of the coauthors
contributed with the development of some command specifications and runtime components, as well as with
the system evaluation.

5.1. Introduction
A significant challenge when trying to analyze, optimize, and transform shell scripts, is that they compose
arbitrary commands, written in arbitrary languages, for which we might not even have access to their source
code. This makes it extremely hard to reason about the script behavior, since it depends on these black-box
arbitrary commands.

To address this challenge, we propose a command specification framework that can be used by analysis and
optimization systems for shell scripts to reason about commands. The specification for each command can
be written by an expert and can be independently verified, thus allowing system designers to focus on their
task without having to implement cross language analyses to reason about each individual command.
Running Example: Weather Analysis

Suppose an environmental scientist wants to get a quick sense of trends in the maximum temperature across
the U.S. over the past five years. As the National Oceanic and Atmospheric Administration (NOAA) has
made historic temperature data publicly available [132], answering this question is only a matter of a simple
data-processing pipeline.

Fig. 5.1’s script starts by pulling the yearly index files and filtering out URLs that are not part of the com-
pressed dataset. It then downloads and decompresses each file in the remaining set, extracts the values that

52

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";

for y in {2015..2019}; do

curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |

sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |

cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |

sed "s/^/Maximum temperature for $y is: /"

done

Fig. 5.1: Calculating maximum temperatures per year. The script downloads daily temperatures recorded across the
U.S. for the years 2015–2019 and extracts the maximum for every year.

indicate the temperature, and filters out bogus inputs marked as 999. It then calculates the maximum yearly
temperature by sorting the values and picking the top element. Finally, it matches each maximum value
with the appropriate year in order to print the result. The effort expended writing this script is low: its data-
processing core amounts to 12 stages and, when expressed as a single line, is only 165 characters long. This
program is no toy: a Java program implementing only the last four stages takes 137 LoC [182, §2.1]. To
enable such a succinct program composition, UNIX incorporates several features.

UNIX provides an environment for composing commands written in any language. Many of these commands
come with the system—e.g., ones defined by the POSIX standard or ones part of the GNU Coreutils—
whereas others are available as add-ons. The fact that commands are developed in a variety of languages—
including shell scripts—provides users with significant flexibility. For example, one could replace sort

and head with ./avg.py to get the average rather than the maximum—the pipeline still works, as long as
./avg.py conforms to the interface outlined earlier.

Command options and flags, used pervasively in UNIX, are configuration options that the command’s de-
veloper has decided to expose to its users to improve the command’s general applicability. For example, by
omitting sort’s -r flag that enables reverse sorting, the user can easily get the minimum temperature. The
shell does not have any visibility into these flags; after it expands special characters such as ~ and *, it leaves
parsing and evaluation entirely up to individual commands.

While these features aid development-effort economy through powerful program composition, they compli-
cate shell script reasoning and parallelization.
Challenge: In contrast to restricted programming frameworks that enable parallelization by supporting a
few carefully-designed primitives [168, 37, 46, 186], the UNIX shell provides a wide variety of composable

53

commands. To be parallelized, each command may require special analysis and treatment—e.g., exposing
data parallelism in Fig. 5.1’s tr or sort would require splitting their inputs, running them on each partial in-
put, and then merging the partial results.5 Automating such an analysis is infeasible, as individual commands
are black boxes written in a variety of programming languages and models. Manual analysis is also chal-
lenging, due to the sheer number of commands and the many flags that affect their behavior—e.g., Fig. 5.1’s
program invokes cut with two separate sets of flags.
Solution: We address this challenge as follows. To understand standard commands available in any shell,
we groups POSIX and GNU commands into a small but well-defined set of parallelizability classes (§5.2).
Rather than describing a command’s full observable behavior, these classes focus on information that is
important for data parallelism. To allow other commands to use its transformations, we define a light spec-

ification framework (also called annotation language in this dissertation) for describing a command’s par-
allelizability class (§5.3). Specifications are expressed once per command rather than once per script and
are aimed towards command developers rather than its users, so that they can quickly and easily capture the
characteristics of the commands they develop. The specification framework described in this chapter is used
to determine the command predicate and relations described in Chapter 4.

In summary, this dissertation chapter makes the following contributions:

• UNIX Command Parallelizability: It studies the parallelizability of a wide variety of shell commands
in the POSIX and GNU Coreutils command sets (§5.2)

• Command Specification Framework: Based on this study, it introduces a lightweight specification
framework for commands that are executable in a data-parallel manner (§5.3)

5.2. Parallelizability of Standard Libraries
Broadly speaking, shell commands can be split into four major classes with respect to their parallelization
characteristics, depending on what kind of state they mutate and access when processing their input (Tab.5.1).
These classes are ordered in ascending difficulty (or impossibility) of parallelization. In this order, classes can
be thought of as subsets of the next—e.g., all stateless commands are pure—meaning that the synchroniza-

5Commands such as sort may have ad hoc flags such as --parallel, which do not compose across commands and may risk
breaking correctness or not exploiting performance potential (§6.5.5).

54

Tab. 5.1: Parallelizability Classes. Broadly, UNIX commands can be grouped into four classes according to their
parallelizability properties.
Class Key Examples Coreutils POSIX
Stateless S⃝ tr, cat, grep 13 (12.5%) 19 (12.7%)
Parallelizable Pure P⃝ sort, wc, head 17 (16.3%) 13 (8.7%)
Non-parallelizable Pure N⃝ sha1sum 13 (12.5%) 11 (7.3%)
Side-effectful E⃝ env, cp, whoami 61 (58.6%) 105 (70.4%)

tion mechanisms required for any superclass would work with its subclass. Commands can change classes
depending on their flags, which are discussed later (§5.3).
Stateless Commands: The first class, S⃝, contains commands that operate on individual line elements of
their input, without maintaining state across lines. These are commands that can be expressed as a purely
functional map or filter—e.g., grep filters out individual lines and basename removes a path prefix from
a string. They may produce multiple elements—e.g., tr may insert NL tokens—but always return empty
output for empty input. Workloads that use only stateless commands are trivial to parallelize: they do not
require any synchronization to maintain correctness, nor caution about where to split inputs.

The choice of line as the data element strikes a convenient balance between coarse-grained (files) and fine-
grained (characters) separation while staying aligned with UNIX’s core abstractions. This choice can af-
fect the allocation of commands in S⃝, as many of its commands (about 1/3) are stateless within a stream
element—e.g., tr transliterates characters within a line, one at a time—enabling further parallelization by
splitting individual lines. This feature may seem of limited use, as these commands are computationally
inexpensive, precisely due to their narrow focus. However, it may be useful for cases with very long lines
such as the .fastq format used in bioinformatics.
Parallelizable Pure Commands: The second class, P⃝, contains commands that respect functional purity—
i.e., same outputs for same inputs—but maintain internal state across their entire pass. The details of this state
and its propagation during element processing affect their parallelizability characteristics. Some commands
are easy to parallelize, because they maintain trivial state and are commutative—e.g., wc simply maintains
a counter. Other commands, such as sort, maintain more complex invariants that have to be taken into
account when merging partial results.

Often these commands do not operate in an online fashion, but need to block until the end of a stream. A

55

typical example of this is sort, which cannot start emitting results before the last input element has been
consumed. Such constraints affect task parallelism, but not data parallelism: sort can be parallelized using
divide-and-conquer techniques—i.e., by encoding it as a group of (parallel) 𝑚𝑎𝑝 functions followed by an
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 that merges the results.
Non-parallelizable Pure Commands: The third class, N⃝, contains commands that, while purely func-
tional, cannot be parallelized within a single data stream. This is because their internal state depends on
prior state in non-trivial ways over the same pass. For example, hashing commands such as sha1sum main-
tain complex state that has to be updated sequentially. If parallelized on a single input, each stage would
need to wait on the results of all previous stages, foregoing any parallelism benefits.

It is worth noting that while these commands are not parallelizable at the granularity of a single input, they
are still parallelizable across different inputs. For example, a web crawler involving hashing to compare
individual pages would allow sha1sum to proceed in parallel for different pages.
Side-effectful Commands: The last class, E⃝, contains commands that have side-effects that cannot be
captured precisely—for example, updating environment variables, interacting with the filesystem in unpre-
dictable or difficult to describe ways, and accessing the network. Such commands are not parallelizable
without finer-grained concurrency control mechanisms and therefore are not the main focus of this work.
This is the largest class, for two main reasons. First, it includes commands related to the file-system—a
central abstraction of the UNIX design and philosophy [150]. In fact, UNIX uses the file-system as a proxy to
several file-unrelated operations such as access control and device driving. Second, this class contains com-
mands that do not consume input or do not produce output—and thus are not amenable to data parallelism.
For example, date, uname, and finger are all commands interfacing with kernel- or hardware-generated
information and do not consume any input from user programs or files.

5.3. Extensibility Framework
To address the challenge of a language-agnostic environment, we develop a specification framework that can
describe key details about commands and their parallelizability. The framework is extensible and contains
two components: an annotation language, and an interface for developing parallel command aggregators. The
framework can be used by developers of new commands and maintainers of existing commands. The latter

56

group can express additions or changes to the command’s implementation or interface, which is important
as commands are maintained or extended over long periods of time.

The extensibility framework is expected to be used by individuals who understand the commands and their
parallelizability properties. The framework could be used as a foundation for crowdsourcing the annotation
effort, for testing annotation records, and for generating command aggregators.
Key Concerns: The annotations of our framework focus on three crucial concerns about a command: (C1)
its parallelizability class, (C2) its inputs, outputs, and the characteristics of its input consumption, and (C3)
how flags affect its class, inputs, and outputs. The first concern was discussed extensively in the previous
section; we now turn to the latter two.

Manipulating a shell script in its original form to expose parallelism is challenging as each command has
a different interface. Some commands read from standard input, while others read from input files. Or-
dering here is important, as a command may read several inputs in a predefined input order. For example,
grep "foo" f1 - f2 first reads from f1, then shifts to its standard input, and finally reads f2.

Additionally, commands expose flags or options for allowing users to control their execution. Such flags may
directly affect a command’s parallelizability classification as well as the order in which it reads its inputs.
For example, cat defaults to S⃝, but with -n it jumps into P⃝ because it has to keep track of a counter and
print it along with each line.

To address all these concerns, we introduce an annotation language encoding first-order logic predicates.
The language allows specifying the aforementioned information, i.e., correspondence of arguments to inputs
and outputs and the effects of flags. Annotations assign one of the four parallelizability class as a default
class, subsequently refined by the set of flags the command exposes. Additionally, for commands in S⃝ and
P⃝, the language captures how a command’s arguments, standard input, and standard output correspond to its

inputs and outputs. Annotations in these classes can also express ordering information about these inputs—
effectively lifting commands into a more convenient representation where they only communicate with their
environment through a list of input and output files.

57

The complete annotation language currently contains 8 operators, one of which supports regular expres-
sions. It was used to annotate 47 commands, totaling 708 lines of JSON—an effort that took about 3–4
hours. Annotation records are by default conservative so as to not jeopardize correctness, but can be in-
crementally refined to capture parallelizability when using increasingly complex combinations of flags. The
language is extensible with more operators (as long as the developer defines their semantics); it also supports
writing arbitrary Python code for commands whose properties are difficult to capture—e.g., xargs, whose
parallelizability class depends on the class of the command that it invokes.
Example Annotations: Two commands whose annotations sit at opposing ends of the complexity spec-
trum are chmod and cut. The fragment below shows the annotation for chmod.

{ "command": "chmod",

"cases": [{ "predicate": "default",

"class": "side-effectful" }] }

Each annotation is a JSON record that contains the command name and a sequence of cases. Each case
contains a predicate that matches on the arguments of the command invocation. It assigns a parallelizability
class (C1) to a specific command instance, i.e., the combination of its inputs-output consumption (C2) and
its invocation arguments (C3). In this case, chmod is side-effectful, and thus the "default" predicate of its
single cases value always matches—indicating the presence of side-effects.

The annotation for the command cut, which can be configured to project parts of its input, e.g., a field, is
significantly more complex and has two cases. Each of the cases consists of a predicate on cut’s arguments
and an assignment of its parallelizability class, inputs, and outputs as described above.

{ "command": "cut",

"cases": [

{ "predicate": {

"operator": "or",

"operands": [

{ "operator": "val_opt_eq",

"operands": ["-d", "\n"] },

{ "operator": "exists",

58

"operands": ["-z"] }

]

},

"class": "pure",

"inputs": ["args[:]"],

"outputs": ["stdout"]

},

{ "predicate": "default",

"class": "stateless",

"inputs": ["args[:]"],

"outputs": ["stdout"]

}

],

"options": ["stdin-hyphen", "empty-args-stdin"],

"short-long": [

{ "short": "-d", "long": "--delimiter" },

{ "short": "-z", "long": "--zero-terminated" }

]

}

This predicate indicates that if cut is called with -z as an argument, then it is in N⃝, i.e., it only interacts
with the environment by writing to a file (its stdout) but cannot be parallelized. This is because -z forces
cut to delimit lines with NUL instead of newline, meaning that we cannot parallelize it by splitting its input
in the line boundaries. The case also indicates that cut reads its inputs from its non-option arguments.

Experienced readers will notice that cut reads its input from its stdin if no file argument is present. This is
expressed in the "options" part of cut’s annotation, shown below:

{ "command": "cut",

"cases": [...],

"options": ["empty-args-stdin",

"stdin-hyphen"] }

Option "empty-args-stdin" indicates that if non-option arguments are empty, then the command reads

59

from its stdin. Furthermore, option "stdin-hyphen" indicates that a non-option argument that is just a
dash - represents the stdin.
Custom Aggregators: For commands in S⃝, the annotations are enough to enable parallelization: com-
mands are applied to parts of their input in parallel, and their outputs are simply concatenated.

To support the parallelization of arbitrary commands in P⃝, our framework allows supplying custom map

and aggregate functions. In line with the UNIX philosophy, these functions can be written in any language
as long as they conform to a few invariants: (i) map is in S⃝ and aggregate is in P⃝, (ii) map can consume
(or extend) the output of the original command and aggregate can consume (and combine) the results of
multiple map invocations, and (iii) their composition produces the same output as the original command.

Most commands only need an aggregate function, as the map function for many commands is the sequential
command itself. We define a set of aggregators for many POSIX and GNU commands in P⃝. This set doubles
as both an “aggregator standard library” and an exemplar for community efforts tackling other commands.
Below is the Python code for one of the simplest aggregate functions, the one for wc:

#!/usr/bin/python

import sys, os, functools, utils

def parseLine(s):

return map(int, s.split())

def emitLine(t):

f = lambda e: str(e).rjust(utils.PAD_LEN, ' ')

return [" ".join(map(f, t))]

def agg(a, b):

print(a, b)

if not a:

return b

az = parseLine(a[0])

bz = parseLine(b[0])

return emitLine([(i+j) for (i,j) in zip(az, bz)])

60

utils.help()

res = functools.reduce(agg, utils.read_all(), [])

utils.out("".join(res))

The core of the aggregator, function agg, takes two input streams as its arguments. The reduce function
lifts the aggregator to arity 𝑛 to support an arbitrary number of parallel 𝑚𝑎𝑝 commands. This lifting allows
developers to think of aggregators in terms of two inputs, but generalize them to operate on many inputs.
Utility functions such as read and help, common across our aggregator library, deal with error handling
when reading multiple file descriptors, and offer a -h invocation flag that demonstrates the use of each
aggregator.

The library currently contains over 20 aggregators, many of which are usable by more than one command or
flag. For example, the aggregator shown above is shared among wc, wc -lw, wc -lm, etc.

61

CHAPTER 6

PaSh: Automatic parallelization of shell dataflow regions

Material from this chapter was previously published as “Nikos Vasilakis, Konstantinos Kallas, Konstantinos
Mamouras, Achilles Benetopoulos, and Lazar Cvetković. PaSh: Light-Touch Data-Parallel Shell Processing.
In Proceedings of the Sixteenth European Conference on Computer Systems, EuroSys ’21, page 49-66, New
York, NY, USA, 2021. Association for Computing Machinery.” [173]. Nikos Vasilakis and I were the
primary authors of this paper and contributed equally to all parts of the work; the rest of the coauthors
contributed with the development of some command specifications and runtime components, as well as with
the system evaluation.

6.1. Introduction
A key issue with shell scripts is their performance, and in particular the fact that they cannot adequately
exploit multicore computing resources. To parallelize a script requires significant effort shared between two
different programmer groups:

• Command developers, responsible for implementing individual commands such as sort, uniq, and
jq. These developers usually work in a single programming language, leveraging its abstractions
to provide parallelism whenever possible. As they have no visibility into the command’s uses, they
expose a plethora of ad-hoc command-specific flags such as -t, --parallel, -p, and -j [139, 119].

• Shell users, who use POSIX shell constructs to combine multiple such commands from many lan-
guages into their scripts and are thus left with only a few options for incorporating parallelism. One
option is to use manual tools such as GNU parallel [164], ts [84], qsub [63], SLURM [184]; these
tools are either command-unaware, and thus at risk of breaking program semantics, or too coarse-
grained, and thus only capable of exploiting parallelism at the level of entire scripts rather than indi-
vidual components. Another option is to use shell primitives (such as &, wait) to explicitly induce
parallelism, at a cost of manual effort to split inputs, rewrite scripts, and orchestrate execution—an
expensive and error-prone process. To top it off, all these options assume a good understanding of

62

parallelism; users with domain of expertise outside computing—from hobbyists to data analysts—are
left without options.

This dissertation chapter presents PASH, a system for parallelizing POSIX shell scripts that benefits both
programmer groups, with emphasis on shell users. Command developers are given a set of abstractions, akin
to lightweight type annotations, for expressing the parallelizability properties of their commands: rather
than expressing a command’s full observable behavior, these annotations focus primarily on its interaction
with state. Shell users, on the other hand, are provided with full automation: PASH analyzes their scripts and
extracts latent parallelism. PASH’s transformations are conservative, in that they do not attempt to parallelize
fragments that lack sufficient information—i.e., at worst, PASH will choose to not improve performance rather
than risking breakage.

PASH’s transformations build on the dataflow model and the transformations described in Chapter 4 and its
specification framework is the one described in Chapter 5. These components are tied together with PASH’s
runtime component. Aware of the UNIX philosophy and abstractions, it packs a small library of highly-
optimized data aggregators as well as high-performance primitives for eager data splitting and merging.
These address many practical challenges and were developed by uncovering several pathological situations,
on a few of which we report.

We evaluate PASH on 44 unmodified scripts including (i) a series of small scripts, ranging from classic
UNIX one-liners to modern data-processing pipelines, and (ii) two large and complex use cases for tempera-
ture analysis and web indexing. Speedups range between 0.89–61.1× (avg: 6.7×), with 39 out of 44 scripts
seeing non-trivial speedups. PASH’s runtime primitives add to the base speedup extracted by PASH’s pro-
gram transformations—e.g., 8.83× over a base 5.93× average for 10 representative UNIX one-liners. PASH

accelerates a large program for temperature analysis by 2.52×, parallelizing both the computation (12.31×)
and the preprocessing (2.04×) fragment (i.e., data download, extraction, and cleanup), the latter traditionally
falling outside of the focus of conventional parallelization systems—even though it takes 75% of the total
execution time.

The chapter is structured as follows. It starts by introducing the necessary background on shell scripting and

63

presenting an overview of PASH (§6.2). Section 6.3 ties PASH together with the dataflow model described in
Chapter 4. Section 6.4 highlights PASH’s runtime component, discussing the correctness and performance
challenges it addresses. Finally, PASH is thoroughly evaluated on a variety of workloads (§6.5).

6.2. Background and overview
Let’s look back at the weather analysis script in Figure 5.1, but with an extended focus on the whole script (in-
stead of looking at individual commands). In addition to the features described in Section 5.1, the UNIX shell
also supports seamless composition, which is primarily achieved with pipes (|), a construct that allows for
task-parallel execution of two commands by connecting them through a character stream. This stream con-
tains contiguous character lines separated by newline characters (NL) delineating individual stream elements.
For example, Fig 5.1’s first grep outputs (file-name) elements containing gz, which are then consumed by
tr. A special end-of-file (EOF) condition marks the end of a stream.

Different pipeline stages process data concurrently and possibly at different rates—e.g., the second curl

produces output at a significantly slower pace than the grep commands before and after it. The UNIX kernel
facilitates scheduling, communication, and synchronization behind the scenes.

While the shell’s features aid development-effort economy through powerful program composition, they
complicate parallelization, which even for simple scripts such as the one in Fig. 5.1 create several challenges.
Challenge: Composition: Another challenge is due to the language of the POSIX shell. First, the lan-
guage contains constructs that enforce sequential execution: The sequential composition operator (;) in
Fig. 5.1 indicates that the assignment to base must be completed before everything else. Moreover, the
language semantics only exposes limited task-based parallelism in the form of constructs such as &. Even
though Fig. 5.1’s for focuses only on five years of data, curl still outputs thousands of lines per year; naive
parallelization of each loop iteration will miss such opportunities. Any attempt to automate parallelization
should be aware of the POSIX shell language, exposing latent data parallelism without modifying execution
semantics.
Challenge: Implementation: On top of command and shell semantics, the broader UNIX environment
has its own set of quirks. Any attempt to orchestrate parallel execution will hit challenges related to task

64

mkfifo $t{0,1...}

curl $base/$y > $t0 & cat $t0 | split $t1 $t2 &

cat $t1 | grep gz > $t3 &

cat $t2 | grep gz > $t4 &

...

cat $t9 | sort -rn > $t11 & cat $t10 | sort -rn > $t12 &

cat $t11 | eager > $t13 & cat $t12 | eager > $t14 &

sort -mrn $t13 $t14 > $t15 &

cat $t15 | head -n1 > $out1 &

wait $! && get-pids | xargs -n 1 kill -SIGPIPE

Fig. 6.1: Output of pash �width=2 for Fig. 5.1 (fragment). PASH orchestrates the parallel execution through named
pipes, parallel operators, and custom runtime primitives—e.g., eager, split, and get-pids.

parallelism, deadlock prevention, and runtime performance. For example, forked processes piping their
combined results to Fig. 5.1’s head may not receive a PIPE signal if head exits prior to opening all pipes.
Moreover, several commands such as sort and uniq require specialized data aggregators in order to be
correctly parallelized.
6.2.1. PASH Design Overview
At a high level, PASH takes as input a POSIX shell script like the one in Fig. 5.1 and outputs a new POSIX
script that incorporates data parallelism. The degree of data parallelism sought by PASH is configurable
using a --width parameter, whose default value is system-specific. Fig. 6.1 highlights a few fragments of
the parallel script resulting from applying PASH with --width=2 to the script of Fig. 5.1—resulting in 2
copies of {grep, tr, cut, etc.}.

PASH first identifies sections of the script that are potentially parallelizable, i.e., lack synchronization and
scheduling constraints, and converts them to dataflow graphs (DFGs). It then performs a series of DFG trans-
formations that expose parallelism without breaking semantics, by expanding the DFG to the desired width.
Finally, PASH converts these DFGs back to a shell script augmented with PASH-provided commands. The
script is handed off to the user’s original shell interpreter for execution. PASH addresses the aforementioned
challenges as described below.
Composition: To maintain sequential semantics, PASH first analyzes a script to identify dataflow regions

containing commands that are candidates for parallelization (§6.3.1). This analysis is guided by the script
structure: some constructs expose parallelism (e.g., &, |); others enforce synchronization (e.g., ;, ||). PASH

then converts each dataflow region to a dataflow graph (DFG) (§6.3.2), a flexible representation that enables

65

a series of local transformations to expose data parallelism, converting the graph into its parallel equiva-
lent (§6.3.3). Further transformations compile the DFG back to a shell script that uses POSIX constructs to
guide parallelism explicitly while aiming at preserving the semantics of the sequential program (§6.3.4).
Implementation: PASH addresses several practical challenges through a set of constructs it provides—i.e.,
modular components for augmenting command composition (§6.4). It also provides a small and efficient
aggregator library targeting a large set of parallelizable commands. All these commands live in the PATH

and are addressable by name, which means they can be used like (and by) any other commands.

6.3. Dataflow graph model
PASH’s core is an abstract dataflow graph (DFG) model (§6.3.2) used as the intermediate representation on
which PASH performs parallelism-exposing transformations. This core dataflow model is based on ODFM
(introduced in Chapter 4), but included here for completeness. PASH first lifts sections of the input script
to the DFG representation (§6.3.1), then performs transformations to expose parallelism (up to the desired
--width) (§6.3.3), and finally instantiates each DFG back to a parallel shell script (§6.3.4). A fundamental
characteristic of PASH’s DFG is that it encodes the order in which a node reads its input streams (not just
the order of input elements per stream), which in turn enables a set of graph transformations that can be
iteratively applied to expose parallelization opportunities for S⃝ and P⃝ commands.

To the extent possible, this section is kept informal and intuitive. The full formalization of the dataflow
model, the shell↔DFG bidirectional translations, and the parallelizing transformations, as well as their proof
of correctness with respect to the script’s sequential output, are all presented in Chapter 4.
6.3.1. Frontend: From a Sequential Script to DFGs
Dataflow Regions: In order to apply the graph transformations that expose data parallelism, PASH first has
to identify program sub-expressions that can be safely transformed to a dataflow graph, i.e., sub-expressions
that (i) do not impose any scheduling or synchronization constraints (e.g., by using ;), and (ii) take a set
of files as inputs and produce a set of files as outputs. The search for these regions is guided by the shell
language and the structure of a particular program. These contain information about (i) fragments that can be
executed independently, and (ii) barriers that are natural synchronization points. Consider this code fragment
(Fig. 6.2):

66

DFG1
DFG2

DFG1
cat f1 f2

grep foo

|

&& f1

f2

f3

DFG2
sort f3

cat grep foo f3

>

f3

mkfifo t1
cat f1 f2 > t1 & # node 1
grep foo > f3 & # node 2
wait $!
rm t1

Sort in1 in2 > out
=>

Mkfifo t1 t2
Sort in1 > t1 &
Sort in2 > t2 &
Sort -m t1 t2 > out & # node 3
Wait $!
Rm t1 t2

Grep > t1 &
Grep > t2 &
…

Cat t1 t2 t3 … > out &

“
F1 > t1;
F2 t1 > t2
“

“
F1 > t1
“

“
F2 t1 > t2
“

F1 > t1 &
F2 t1 > t2

F_m > t1 &
F_r t1 t2 > t3 &
F_m > t2 &

Assuming t1 t2 are pipes
F1 > t1 &
F2 > t2 &
Wait(t1, t2) > t3, t4 &
F3 t1 t2 > t3 &

Grep t1 > t2 &
Grep t3 > t4 &

Grep t2 > t5 &
Grep t4 > t6 &

Cat t5 t6 > t7

N Cat | split N | grep
| cat

N - grep
| cat

N > cat > grep

2 > cat > grep > t1

Cat t1 t2 > t3

N > grep > cat

Fm fm

fm, fr, fm
Combined

F1 > F2

Split N > F1 > Cat N
> F2

Split N > f1 > cat N >
split 2^N > f2 > cat N

N > fR> t2

Split K > f1 > f2 > cat
K

sort stdout

Fig. 6.2: From a script AST to DFGs. The AST on the left has two dataflow regions, each not extending beyond
&& (Cf.§6.3.1). Identifiers f1, f2, and f3 sit at the boundary of the DFG.

cat f1 f2 | grep "foo" > f3 && sort f3

The cat and grep commands execute independently (and concurrently) in the standard shell, but sort waits
for their completion prior to start. Intuitively, dataflow regions correspond to sub-expressions of the program
that would be allowed to execute independently by different processes in the POSIX standard [73]. Larger
dataflow regions can be composed from smaller ones using the pipe operator (|) and the parallel-composition
operator (&). Conversely, all other operators, including sequential composition (;) and logical operators (&&,
||), represent barrier constructs that do not allow dataflow regions to expand beyond them.
Translation Pass: PASH’s front-end performs a depth-first search on the AST of the given shell program.
During this pass, it extends the dataflow regions bottom-up, translating their independent components to
DFG nodes until a barrier construct is reached. All AST subtrees not translatable to DFGs are kept as they
are. The output of the translation pass is the original AST where dataflow regions have been replaced with
DFGs.

To identify opportunities for parallelization, the translation pass extracts each command’s parallelizability
class together with its inputs and outputs. To achieve this for each command, it searches all its available
annotations (§5.3) and resorts to conservative defaults if none is found. If the command is in S⃝, P⃝, or N⃝,
the translation pass initiates a dataflow region that is propagated up the tree.

Due to the highly dynamic nature of the shell, some information is not known to PASH at translation time.
Examples of such information include the values of environment variables, unexpanded strings, and sub-
shell constructs. For the sake of correctness, PASH takes a conservative approach and avoids parallelizing

67

nodes for which it has incomplete information. It will not attempt to parallelize sub-expressions for which
the translation pass cannot infer that, e.g., an environment variable passed as an argument to a command
does not change its parallelizability class.
6.3.2. Dataflow Model Definitions
The two main shell abstractions are (i) data streams, i.e., files or pipes, and (ii) commands, communicating
through these streams.
Edges—Streams: Edges in the DFG represent streams, the basic data abstraction of the shell. They are
used as communication channels between nodes in the graph, and as the input or output of the entire graph.
For example, the edges in DFG1 of Figure 6.2 are the files f1, f2, and f3, as well as the unnamed pipe that
connects cat and grep. We fix the data quantum to be character lines, i.e., sequences of characters followed
by the newline character,6 so edges represent possibly unbounded sequences of lines. As seen above, an edge
can either refer to a named file, an ephemeral pipe, or a UNIX FIFO used for interprocess communication.
Edges that do not start from a node in the graph represent the graph inputs; edges that do not point to a node
in the graph represent its outputs.
Nodes—Commands: A node of the graph represents a relation (to capture nondeterminism) from a pos-
sibly empty list of input streams to a list of output streams. This representation captures all the commands in
the classes S⃝, P⃝, and N⃝, since they only interact with the environment by reading and writing to streams.
We require that nodes are monotone, meaning that they cannot retract output once they have produced it. As
an example, cat, grep, and sort are the nodes in the DFGs of Figure 6.2.
Streaming Commands: A large subset of the parallelizable S⃝ and P⃝ classes falls into the special category
of streaming commands. These commands have two execution phases. First, they consume a (possibly
empty) set of input streams that act as configuration. Then, they transition to the second phase where they
consume the rest of their inputs sequentially, one element at a time, in the order dictated by the configuration
phase, and produce a single output stream. The simplest example of a streaming command is cat, which has
an empty first phase and then consumes its inputs in order, producing their concatenation as output. A more
interesting example is grep invoked with -f patterns.txt as arguments; it first reads patterns.txt as

6This is a choice that is not baked into PASH’s DFG model, which supports arbitrary data elements such as characters and words,
but was made to simplify alignment with many UNIX commands.

68

cat grep

Grep t1 > t2 &
Grep t3 > t4 &

Grep t2 > t5 &
Grep t4 > t6 &

Cat t5 t6 > t7

N Cat | split N | grep
| cat

N - grep
| cat

N > cat > grep

2 > cat > grep > t1

Cat t1 t2 > t3

N > grep > cat

Fm fm

fm, fr, fm
Combined

F1 > F2

Split N > F1 > Cat N
> F2

Split N > f1 > cat N >
split 2^N > f2 > cat N

N > fR> t2

Split K > f1 > f2 > cat
K

grep

grep

grep

cat τ

Fig. 6.3: Stateless parallelization transformation. The cat node is commuted with the stateless node to exploit available
data parallelism.

its configuration input, identifying the patterns for which to search on its input, and then reads a line at a time
from its standard input, stopping when it reaches EOF.
6.3.3. Graph Transformations
PASH defines a set of semantics-preserving graph transformations that act as parallelism-exposing optimiza-
tions. Both the domain and range of these transformations are graphs in PASH’s DFG model; transformations
can be composed arbitrarily and in any order. Before describing the different types of transformations, we
formalize the intuition behind classes S⃝ and P⃝ described informally earlier (§5.2).
Stateless and Parallelizable Pure Commands: Stateless commands such as tr operate independently on
individual lines of their input stream without maintaining any state (§5.2). To avoid referring to the internal
command state, we can instead determine that a command is stateless if its output is the same if we “restart”
it after it has read an arbitrary prefix of its input. If a command was stateful, then it would not produce the
same output after the restart. Formally, a streaming command 𝑓 is stateless if it commutes with the operation
of concatenation on its streaming input, i.e., it is a semigroup homomorphism:

∀𝑥, 𝑥′, 𝑐, 𝑓 (𝑥 ⋅ 𝑥′, 𝑐) = 𝑓 (𝑥, 𝑐) ⋅ 𝑓 (𝑥′, 𝑐)

In the above 𝑥 ⋅𝑥′ is the concatenation of the two parts of 𝑓 ’s streaming input and 𝑐 is the configuration input
(which needs to be passed to both instances of 𝑓). The above equation means that applying the command 𝑓

to a concatenation of two inputs 𝑥, 𝑥′ produces the same output as applying 𝑓 to each input 𝑥, 𝑥′ separately,
and concatenating the outputs. Note that we only focus on deterministic stateless commands and that is why

69

𝑓 is a function and not a relation in the above.

Pure commands such as sort and wc can also be parallelized, using divide-and-conquer parallelism. These
commands can be applied independently on different segments of their inputs, aggregating their outputs to
produce the final result. More formally, these pure commands 𝑓 can be implemented as a combination of a
function map and an associative function aggregate that satisfy the following equation:

∀𝑥, 𝑥′, 𝑐, 𝑓 (𝑥 ⋅ 𝑥′, 𝑐) = aggregate(map(𝑥, 𝑐),map(𝑥′, 𝑐), 𝑐)

Parallelization Transformations: Based on these equations, we can define a parallelization transforma-
tion on a node 𝑓 ∈ S⃝ whose streaming input is a concatenation, i.e., produced using the command cat, of
𝑛 input streams and is followed by a node 𝑓 ′ (Fig. 6.3). The transformation replaces 𝑓 with 𝑛 new nodes,
routing each of the 𝑛 input streams to one of them, and commutes the cat node after them to concatenate
their outputs and transfer them to 𝑓 ′. Formally:

𝑓 (𝑥1 ⋅ 𝑥2⋯ 𝑥𝑛, 𝑠) ⇒ 𝑓 (𝑥1, 𝑠) ⋅ 𝑓 (𝑥2, 𝑠)⋯ 𝑓 (𝑥𝑛, 𝑠)

The transformation can be extended straightforwardly to nodes 𝑣 ∈ P⃝, implemented by a (map, aggregate)
pair:

𝑣(𝑥1 ⋅ 𝑥2⋯ 𝑥𝑛, 𝑠) ⇒

aggregate(map(𝑥1, 𝑠),map(𝑥2, 𝑠),…map(𝑥𝑛, 𝑠), 𝑠)

Both transformations can be shown to preserve the behavior of the original graph assuming that the pair
(map, aggregate) meets the three invariants outlined earlier (§5.3) and the aforementioned equations hold.
Auxiliary Transformations: PASH also performs a set of auxiliary transformations 𝑡1−3 that are depicted
in Fig. 6.4. If a node has many inputs, 𝑡1 concatenates these inputs by inserting a cat node to enable the
parallelization transformations. In cases where a parallelizable node has one input and is not preceded by a
concatenation, 𝑡2 inserts a cat node that is preceded by its inverse split, so that the concatenation can be

70

cmd

Grep t1 > t2 &
Grep t3 > t4 &

Grep t2 > t5 &
Grep t4 > t6 &

Cat t5 t6 > t7

N Cat | split N | grep
| cat

N - grep
| cat

N > cat > grep

2 > cat > grep > t1

Cat t1 t2 > t3

N > grep > cat

Fm fm

fm, fr, fm
Combined

F1 > F2

Split N > F1 > Cat N
> F2

Split N > f1 > cat N >
split 2^N > f2 > cat N

N > fR> t2

Split K > f1 > f2 > cat
K

cmd τ
1

cat

τ
2

τ
3

relay

cat split

Fig. 6.4: Auxiliary transformations. These augment the DFG with cat, split, and relay nodes.

commuted with the node. Transformation 𝑡3 inserts a relay node that performs the identity transformation.
Relay nodes can be useful for performance improvements (§6.4), as well as for monitoring and debugging.
Degree of Parallelism: The degree of parallelism achieved by PASH is affected by the width of the final
dataflow graph. The dataflow width corresponds, intuitively, to the number of data-parallel copies of each
node of the sequential graph and thus the fanout of the split nodes that PASH introduces. The dataflow
width is configured using the --width parameter, which can be chosen by the user depending on their script
characteristics, input data, and target execution environment. By default, PASH assigns width to 2 if it is
executing on a machine with 2-16 processors, and floor(cpu_cores/8) if it is executing on a machine
with more than 16 processors. This is a conservative limit that achieves benefits due to parallelism but does
not consume all system resources. It is not meant to be optimal, and as shown in our evaluation, different
scripts achieve optimal speedup with different --width values, which indicates an interesting direction for
future work.
6.3.4. Backend: From DFGs to a Parallel Shell Script
After applying transformations (§6.3.3), PASH translates all DFGs back into a shell script. Nodes of the graph
are instantiated with the commands and flags they represent, and edges are instantiated as named pipes. A
prologue in the script creates the necessary intermediate pipes, and a trap call takes care of cleaning up
when the script aborts.

71

6.4. Runtime
This section describes technical challenges related to the execution of the resulting script and how they are
addressed by PASH’s custom runtime primitives.
Overcoming Laziness: The shell’s evaluation strategy is unusually lazy, in that most commands and shell
constructs consume their inputs only when they are ready to process more. Such laziness leads to CPU un-
derutilization, as commands are often blocked when their consumers are not requesting any input. Consider
the following fragment:

mkfifo t1 t2

grep "foo" f1 > t1 & grep "foo" f2 > t2 & cat t1 t2

The cat command will consume input from t2 only after it completes reading from t1. As a result, the
second grep will remain blocked until the first grep completes (Fig. 6.5a).

To solve this, one might be tempted to replace FIFOs with files, a central UNIX abstraction, simulating pipes
of arbitrary buffering (Fig. 6.5b). Aside from severe performance implications, naive replacement can lead
to subtle race conditions, as a consumer may reach EOF before a producer. Alternatively, consumers could
wait for producers to complete before opening the file for reading (Fig. 6.5c); however, this would insert
artificial barriers impeding task-based parallelism and wasting disk resources—that is, this approach allows
for data parallelism to the detriment of task parallelism.

To address this challenge, PASH inserts and instantiates eager relay nodes at these points (Fig. 6.5d). These
nodes feature tight multi-threaded loops that consume input eagerly while attempting to push data to the
output stream, forcing upstream nodes to produce output when possible while also preserving task-based
parallelism. In PASH’s evaluation (§6.5), these primitives have the names presented in Fig. 6.5.
Splitting Challenges: To offer data parallelism, PASH needs to split an input data stream to multiple chunks
operated upon in parallel. Such splitting is needed at least once at the beginning of a parallel fragment, and
possibly every time within the parallel program when an aggregate function of a stage merges data into a
single stream.

72

cp

relaycp

f

f

c

<EOF>

f

cp
b

(a) No Eager — (c) Blocking Eager —
p

(b) Wrong Eager ✘ (d) PaSh Eager ✓

Fig. 6.5: Eager primitive. Addressing intermediary laziness is challenging: (a) FIFOs are blocking; (b) files alone
introduce race conditions between producer/consumer; (c) files + wait inhibit task parallelism. Eager relay nodes
(d) address the challenge while remaining within the PASH model.

To achieve this, PASH’s transformations insert split nodes that correspond to a custom split command. For
split to be effective, it needs to disperse its input uniformly. PASH does not do this in a round-robin fashion,
as that would require augmenting the data stream with additional metadata to maintain FIFO ordering—a
challenge for both performance and correctness. PASH instead splits chunks in-order, which necessitates
knowledge of the input size beforehand and which is not always available. To address this challenge, PASH

provides a split implementation that first consumes its complete input, counts its lines, and then splits it
uniformly across the desired number of outputs. PASH also inserts eager relay nodes after all split outputs
(except for the last one) to address laziness as described above.
Dangling FIFOs and Zombie Producers: Under normal operation, a command exits after it has produced
and sent all its results to its output channel. If the channel is a pipe and its reader exits early, the command
is notified to stop writing early. In UNIX, this notification is achieved by an out-of-band error mechanism:
the operating system delivers a PIPE signal to the producer, notifying it that the pipe’s consumer has exited.
This handling is different from the error handling for other system calls and unusual compared to non-UNIX

systems7 primarily because pipes and pipelines are at the heart of UNIX. Unfortunately though, if a pipe has
not been opened for writing yet, UNIX cannot signal this condition. Consider the following script:

mkfifo fifo1 fifo2

cat in1 > fifo1 & cat in2 > fifo2 &

cat fifo1 fifo2 | head -n 1 & wait

7For example, Windows indicates errors for WriteFile using its return code—similar to DeleteFile and other Win32 func-
tions.

73

Sequential

Blocking
Eager

PaSh
w/o split

PaSh

No Eager

Fig. 6.6: Runtime setup lattice. Parallel No Eager and Blocking Eager improve over sequential, but are not directly
comparable. PASH w/o Split adds PASH’s optimized eager relay, and PASH uses all primitives in §6.4 (Fig. 6.7).

In the code above, head exits early, causing the last cat to exit before opening fifo2. As a result, the second
cat never receives a PIPE signal that its consumer exited—after all, fifo2 never even had a consumer! This,
in turn, leaves the second cat unable to make progress, as it is both blocked and unaware of its consumer
exiting. Coupled with wait at the end, the entire snippet reaches a deadlock.

This problem is not unique to PASH; it occurs even when manually parallelizing scripts using FIFOs (but
not when using e.g., intermediary files, Cf. §6.4, Laziness). It is exacerbated, however, by PASH’s use of the
cat fifo1 fifo2 construct, used pervasively when parallelizing commands in S⃝.

To solve this problem, PASH emits cleanup logic that operates from the end of the pipeline towards its start.
The emitted code first gathers the IDs of the output processes and passes them as parameters to wait; this
causes wait to block only on the output producers of the dataflow graph. Right after wait, PASH inserts a
routine that delivers PIPE signals to any remaining processes upstream.
Aggregator Implementations: As discussed earlier, commands in P⃝ can be parallelized using a map and
an aggregate stage (§5.1). PASH implements aggregate for several commands in P⃝ to enable parallelization.
A few interesting examples are aggregate functions for (i) sort, which amounts to the merge phase of a
merge-sort (and on GNU systems is implemented as sort -m), (ii) uniq and uniq -c, which need to check
conditions at the boundary of their input streams, (iii) tac, which reverses its input and consumes stream
descriptors in reverse order, and (iv) wc, which adds inputs with an arbitrary number of elements (e.g., wc -lw

or wc -lwc etc.). The aggregate functions iterate over the provided stream descriptors, i.e., they work with
more than two inputs, and apply pure functions at the boundaries of input streams (with the exception of
sort that has to interleave inputs).

74

Tab. 6.1: Summary of UNIX one-liners. Structure summarizes the different classes of commands used in the script.
Input and seq. time report on the input size fed to the script and the timing of its sequential execution. Nodes and
compile time report on PASH’s resulting DFG size (which is equal to the number of resulting processes and includes
aggregators, eager, and split nodes) and compilation time for a --width value of 16.

Script Structure Input Seq. Time #Nodes Compile Time Highlights
nfa-regex 3 × S⃝ 1 GB 79m35s 49 0.05s complex NFA regex
sort S⃝, P⃝ 10 GB 21m46s 77 0.09s sorting
top-n 2 × S⃝, 4 × P⃝ 10 GB 78m45s 96 0.14s double sort, uniq reduction
wf 3 × S⃝, 3 × P⃝ 10 GB 22m30s 96 0.15s double sort, uniq reduction
spell 4 × S⃝, 3 × P⃝ 3 GB 25m7s 193 0.34s comparisons (comm)
difference 2 × S⃝, 2 × P⃝, N⃝ 10 GB 25m49s 125 0.19s non-parallelizable diffing
bi-grams 3 × S⃝, 3 × P⃝ 3 GB 38m9s 185 0.31s stream shifting and merging
set-difference 5 × S⃝, 2 × P⃝, N⃝ 10 GB 51m32s 155 0.32s two pipelines merging to a comm

sort-sort S⃝, 2 × P⃝ 10 GB 31m26s 154 0.29s parallelizable P⃝ after P⃝
shortest-scripts 5 × S⃝, 2 × P⃝ 85 MB 28m45s 142 0.33s long S⃝ pipeline ending with P⃝

6.5. Evaluation
This section reports on whether PASH can indeed offer performance benefits automatically and correctly us-
ing several scripts collected out from the wild along with a few micro-benchmarks for targeted comparisons.
Highlights: This paragraph highlights results for width=16, but PASH’s evaluation reports on varying
widths (2–64). Overall, applying PASH to all 44 unmodified scripts accelerates 39 of them by 1.92–17.42×;
for the rest, the parallel performance is comparable to the sequential (0.89, 0.91, 0.94, 0.99, 1.01×). The total
average speedup over all 44 benchmarks is 6.7×. PASH’s runtime primitives offer significant benefits—for the
10 scripts that we measured with and without the runtime primitives they bump the average speedup from
5.9× to 8.6×. PASH significantly outperforms sort --parallel, a hand-tuned parallel implementation,
and performs better than GNU parallel, which returns incorrect results if used without care.

Using PASH’s standard library of annotations for POSIX and GNU commands (§5.1), the vast majority of
programs (> 40, with > 200 commands) require no effort to parallelize other than invoking PASH; only 6
(< 3%) commands, outside this library, needed a single-record annotation (§6.5.4).

In terms of correctness, PASH’s results on multi-GB inputs are identical to the sequential ones. Scripts feature
ample opportunities for breaking semantics (§6.5.5), which PASH avoids.
Setup: PASH was run on 512GB of memory and 64 physical × 2.1GHz Intel Xeon E5-2683 cores, Debian
4.9.144-3.1, GNU Coreutils 8.30-3, GNU Bash 5.0.3(1), and Python 3.7.3—without any special configura-

75

0

20

40

60
Sp

ee
du

p
nfa-regex

2

4

6

8
sort

2.5

5.0

7.5

10.0
top-n

2

4

6

8
wf

2

4

6

8 spell

4 8 16 32 64
--width

1

2

3

Sp
ee

du
p

difference

4 8 16 32 64
--width

2

4

6

8 bi-grams

4 8 16 32 64
--width

5

10

15
set-difference

4 8 16 32 64
--width

2

3

4

5 sort-sort

4 8 16 32 64
--width

5

10

15
shortest-scripts

PaSh
PaSh w/o split
Blocking Eager
No Eager

Fig. 6.7: PASH’s speedup for width=2–64. Different configurations per benchmark: (i) PaSh: the complete imple-
mentation with eager and split enabled, (ii) PaSh w/o split: eager enabled (no split), (iii) Blocking Eager: only
blocking eager enabled (no split), (iv) No Eager: both eager and split disabled. For some pairs of configurations,
PASH produces identical parallel scripts and thus only one is shown.

tion in hardware or software. Except as otherwise noted, (i) all execution time measurements are averaged
over 3 runs, (ii) all pipelines are set to (initially) read from and (finally) write to the file-system, (iii) curl
fetches data from a different physical host on the same network connected by 1Gbps links.

We note a few characteristics of our setup that minimize measurement variability: (1) our evaluation exper-
iments take several hours to complete (about 23 hours for the full set), (2) our experimental infrastructure is
hosted on premises, not shared with other groups or researchers, (3) the runtime does not include any man-
aged runtimes, virtualization, or containment,8 (4) many commands are repeated many times—for example,
there are more than 40 instances of grep in our benchmark set. The set of benchmarks also executes with
smaller inputs multiple times a week (using continuous integration), reporting minimal statistical differences
between runs.
Parallelism: PASH’s degree of parallelism is configured by the --width flag (§6.3.3). PASH does not
control a script’s initial parallelism (e.g., a command could spawn 10 processes), and thus the resulting
scripts often reach maximum parallelization benefits with a value of width smaller than the physical cores
available in our setup (in our case 64).

8While PASH is available via Docker too, all results reported in this paper are from non-containerized executions.

76

6.5.1. Common UNIX One-liners
We first evaluate PASH on a set of popular, common, and classic UNIX pipeline patterns [27, 28, 165].
The goal is to evaluate performance benefits due to PASH’s (i) DFG transformations alone, including how
--width affects speedup, and (ii) runtime primitives, showing results for all points on the runtime configu-
ration lattice (Fig. 6.6).
Programs: Tab. 6.1 summarizes the first collection of programs. NFA-Regex is centered around an ex-
pensive NFA-based backtracking expression and all of its commands are in S⃝. Sort is a short script centered
around a P⃝ command. Wf and Top-n are based on McIlroy’s classic word-counting program [28]; they use
sorting, rather than tabulation, to identify high-frequency terms in a corpus. Spell, based on the original
spell developed by Johnson [27], is another UNIX classic: after some preprocessing, it makes clever use of
comm to report words not in a dictionary. Shortest-scripts extracts the 15 shortest scripts in the user’s PATH,
using the file utility and a higher-order wc via xargs [165, pg. 7]. Diff and Set-diff compare streams via
a diff (in N⃝, non-parallelizable) and comm (in P⃝), respectively. Sort-sort uses consecutive P⃝ commands
without interleaving them with commands that condense their input size (e.g., uniq). Finally, Bi-grams
replicates and shifts a stream by one entry to calculate bigrams.
Results: Fig. 6.7 presents PASH’s speedup as a function of width=2–64. Average speedups of the op-
timized PASH, i.e., with eager and split enabled, for width={2, 4, 8, 16, 32, 64} are {1.97, 3.5, 5.78,
8.83, 10.96, 13.47}×, respectively. For No Eager, i.e., PASH’s transformations without its runtime support,
speedups drop to 1.63, 2.54, 3.86, 5.93, 7.46, 9.35×.

Plots do not include lines for configurations that lead to identical parallel programs. There are two types
of such cases. In the first, the PaSh (blue) and PaSh w/o Split (red, hidden) lines are identical for scripts
where PASH does not add split, as the width of the DFG is constant; conversely, when both lines are
shown (e.g., Spell, Bi-grams, and Sort), PASH has added splits due to changes in the DFG width (e.g.
due to a N⃝ command). In the second type, Pash w/o Split (red) is identical to No Eager (green, hidden)
and Blocking Eager (orange, hidden) because the input script features a command in P⃝ or N⃝ relatively
early. This command requires an aggregator, whose output is of width 1, beyond which PaSh w/o Split
configurations are sequential and thus see no speedup. Finally, Tab. 6.1 shows that PASH’s transformation

77

time is negligible, and its COST [120], i.e., the degree of parallelism threshold over which PASH starts
providing absolute execution time benefits, is 2.
Discussion: As expected, scripts with commands only in S⃝ see linear speedup. PASH’s split benefits
scripts with P⃝ or N⃝ commands, without negative effects on the rest. PASH’s eager primitive improves over
No Eager and Blocking Eager for all scripts. No Eager is usually faster than Blocking Eager since it allows its
producer and consumer to execute in parallel. Sort-sort illustrates the full spectrum of primitives: (i) PaSh
w/o Split offers benefits despite the lack of split because it fully parallelizes the first sort, and (ii) PaSh
gets full benefits because splitting allows parallelizing the second sort too.

As described earlier, PASH often achieves the maximum possible speedup for a width that is lower than the
number of available cores—i.e., width=16–32 for a 64-core system. This is also because PASH’s runtime
primitives spawn new processes—e.g., Sort with width=8 spawns 37 processes: 8 tr, 8 sort, 7 aggregate,
and 14 eager processes.
Take-aways: PASH accelerates scripts by up to 60×, depending on the characteristics of the commands
involved in a script. Its runtime constructs improve over the baseline speedup achieved by its parallelization
transformations.
6.5.2. Unix50 from Bell Labs
We now turn to a set of UNIX pipelines found out in the wild.
Programs: In a recent celebration of UNIX’s 50-year legacy, Bell Labs created 37 challenges [103] solvable
by UNIX pipelines. The problems were designed to highlight UNIX’s modular philosophy [118]. We found
unofficial solutions to all-but-three problems on GitHub [30], expressed as pipelines with 2–12 stages (avg.:
5.58). They make extensive use of standard commands under a variety of flags, and appear to be written by
non-experts (contrary to §6.5.1, they often use sub-optimal or non-UNIX-y constructs). PASH executes each
pipeline as-is, without any modification.
Results: Fig. 6.8 shows the speedup (left) over the sequential runtime (right) for 31 pipelines, with width=16
and 10GB inputs. It does not include 3 pipelines that use head fairly early thereby finishing execution in
under 0.1 seconds. We refer to each pipeline using its x-axis index (#0–30) in Fig. 6.8. Average speedup is

78

0 5 10 15 20 25 30
Script Index

101

102

103

Se
qu

en
tia

l T
im

e (
s)

1.0

3.5

6.0

8.5

11.0

13.5

16.0
Sp

ee
du

p
Mean Speedup

Fig. 6.8: Unix50 scripts. Speedup (left axis) over sequential execution (right axis) for Unix50 scripts. Parallelism is
16× on 10GB of input data (Cf.§6.5.2). Pipelines are sorted in descending speedup order.

6.02×, and weighted average (with the absolute times as weights) is 5.75×.
Discussion: Most pipelines see significant speedup, except #25-30 that see no speedup because they con-
tain general commands that PASH cannot parallelize without risking breakage—e.g., awk and sed -d. A
UNIX expert would notice that some of them can be replaced with UNIX-specific commands—for example
awk "{print \$2, \$0}" | sort -nr, used to sort on the second field can be replaced with a single
sort -nr -k 2 (#26). The targeted expressiveness of the replacement commands can be exploited by
PASH—in this specific case, achieving 8.1× speedup (vs. the original 1.01×).

For all other scripts (#0–24), PASH’s speedup is capped due to a combination of reasons: (i) scripts contain
pure commands that are parallelizable but don’t scale linearly, such as sort (#5, 6, 7, 8, 9, 19, 20, 21, 23,
24), (ii) scripts are deep pipelines that already exploit task parallelism (#4, 10, 11, 13, 15, 17, 19, 21, 22), or
(iii) scripts are not CPU-intensive, resulting in pronounced I/O and constant costs (#3, 4, 11, 12, 14, 16, 17,
18, 22).
Take-aways: PASH accelerates unmodified pipelines found in the wild; small tweaks can yield further im-
provements, showing that PASH-awareness and scripting expertise can improve performance. Furthermore,
PASH does not significantly decelerate non-parallelizable scripts.

79

6.5.3. Use Case: NOAA Weather Analysis
We now turn our attention to Fig. 5.1’s script (§6.2).
Program: This program is inspired by the central example in “Hadoop: The Definitive Guide” [182, §2],
where it exemplifies a realistic analytics pipeline comprising 3 stages: fetch NOAA data (shell), convert
them to a Hadoop-friendly format (shell), and calculate the maximum temperature (Hadoop). While the
book focuses only on the last stage, PASH parallelizes the entire pipeline.
Results: The complete pipeline executes in 44m2s for five years (82GB) of data. PASH with width=16
leads to 2.52× speedup, with different phases seeing different benefits: 2.04× speedup (vs. 33m58s) for
all the pre-processing (75% of the total running time) and 12.31× speedup (vs. 10m4s) for computing the
maximum.
Discussion: The speedup of the preprocessing phase of the pipeline is bounded by the network and I/O
costs since curl downloads 82GB of data. However, the speedup for the processing phase (CPU-bound) is
12.31×, much higher than what would be achieved by parallelizing per year (for a total of five years). Similar
to Unix50 (§6.5.2), we found that large pipelines enable significant freedom in terms of expressiveness.
Take-aways: PASH can be applied to programs of notable size and complexity to offer significant accel-
eration. PASH is also able to extract parallelism from fragments that are not purely compute-intensive, i.e.,
the usual focus of conventional parallelization systems.
6.5.4. Use Case: Wikipedia Web Indexing
We now apply PASH to a large web-indexing script.
Program: This script reads a file containing Wikipedia URLs, downloads the pages, extracts the text from
HTML, and applies natural-language processing—e.g., trigrams, character conversion, term frequencies—to
index it. It totals 34 commands written in multiple programming languages.
Results: The original script takes 191min to execute on 1% of Wikipedia (1.3GB). With width=16, PASH

brings it down to 15min (12.7×), with the majority of the speedup coming from the HTML-to-text conversion.
Discussion: The original script contains 34 pipeline stages, thus the sequential version already benefits
from task-based parallelism. It also uses several utilities not part of the standard POSIX/GNU set—e.g., its

80

url-extraction is written in JavaScript and its word-stemming is in Python. PASH can still operate on
them as their parallelizability properties— S⃝ for url-extract and word-stem—can be trivially described
by annotations. Several other stages are in S⃝ allowing PASH to achieve benefits by exposing data parallelism.
Take-aways: PASH operates on programs with (annotated) commands outside the POSIX/GNU subsets
and leads to notable speedups, even when the original program features significant task-based parallelism.
6.5.5. Further Micro-benchmarks
As there are no prior systems directly comparable to PASH, we now draw comparisons with two specialized
cases that excel within smaller fragments of PASH’s proposed domain.

4 8 16 32 64
--width

2

4

6

8

Sp
ee

du
p

Pash
Pash - No Eager
sort --parallel

Parallel Sort: First, we compare a sort parallelized by PASH (𝑆𝑝)
against the same sort invoked using the --parallel flag set (𝑆𝑔).9
While the --parallel flag is not a general solution, since it is not of-
fered by all commands, but the comparison serves to establish a baseline
for PASH. 𝑆𝑔’s parallelism is configured to 2× that of 𝑆𝑝’s --width

(i.e., the rightmost plot point for 𝑆𝑔 is for --parallelism=128) to account for PASH’s additional runtime
processes.

A few points are worth noting. 𝑆𝑝 without eager performs comparably to 𝑆𝑔, and with eager it outper-
forms 𝑆𝑔 (∼ 2×); this is because eager adds intermediate buffers that ensure CPU utilization is high. 𝑆𝑔

indicates that sort’s scalability is inherently limited (i.e., due to sort, not PASH); this is why all scripts that
contain sort (e.g., §6.5.1–6.5.4) are capped at 8× speedup. The comparison also shows PASH’s benefits to
command developers: a low-effort parallelizability annotation achieves better scalability than a custom flag
(and underlying parallel implementation) manually added by developers.
GNU Parallel: We compare PASH to parallel (v.20160422), a GNU utility for running other commands
in parallel [164], on a small bio-informatics script. Sequential execution takes 554.8s vs. PASH’s 128.5s
(4.3×), with most of the overhead coming from a single command—cutadapt.

There are a few possible ways users might attempt to use GNU parallel on this program. They could use
9Both sorts use the same buffer size internally [142].

81

it on the bottleneck stage, assuming they can deduce it, bringing execution down to 304.4s (1.8× speedup).
Alternatively, they could (incorrectly) sprinkle parallel across the entire program. This would lead to
3.2× performance improvements but incorrect results with respect to the sequential execution—with 92%
of the output showing a difference between sequential and parallel execution. PASH’s conservative program
transformations are not applied in program fragments with unclear parallelizability properties.

82

CHAPTER 7

PaSh-JIT: Just-in-time automatic parallelization of complete shell programs

Material from this chapter was previously published as “Konstantinos Kallas, Tammam Mustafa, Jan Bielak,
Dimiris Karnikis, Thurston H.Y. Dang, Michael Greenberg, and Nikos Vasilakis. Practically Correct, Just-
in-Time Shell Script Parallelization. In 16th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 22), pages 769–785, Carlsbad, CA, July 2022. USENIX Association.” [95]. I was the
primary author of this paper, being the lead developer of the system and its just-in-time architecture; the
rest of the coauthors helped with the development of the commutativity-aware optimizations and the parsing
library, as well as with the system evaluation.

7.1. Introduction
PASH, the system described in Chapter 6 accelerates shell pipelines by exploiting data parallelism: using
ahead-of-time (AOT) analysis and transformation, these systems parse, analyze, and transform shell scripts
into new scripts that execute in parallel.

Unfortunately, AOT parallelization quickly becomes intractable due to the dynamic nature of the shell: dy-
namic features such as variable expansion and command substitution, pervasive in shell scripts, generate
and consume values at run-time while depending on and interacting with the broader environment—i.e.,
the filesystem, the environment variables, and the shell interpreter itself. Additionally, modern shells offer
several different configurations and execution modes, leading to complex behaviors described in hundreds
of pages of POSIX standardese [22]. The complexity of these interactions and their side-effects lead exist-
ing parallelization tools to an unavoidable trade-off between (1) being conservative, aborting on scripts that
use dynamic features, or (2) being unsound, possibly breaking scripts during parallelization. Recent sys-
tems [144, 173, 156] tend to be conservative—operating only on fully expanded shell pipelines and having
a hard time even on simple uses of variables (see §7.2).

This dissertation chapter presents PASH-JIT, a production-grade just-in-time (JIT) shell-script compiler
aimed at non-interactive parallelization: PASH-JIT focuses on three practical (but conflicting) goals: (G1)

83

run-time-informed parallelization: PASH-JIT leverages run-time information to parallelize script fragments
that depend on state that is statically indeterminable; (G2) full behavioral equivalence: PASH-JIT is aware
of the full set of dynamic behaviors present in POSIX shells, producing results that are indistinguishable
from the sequential execution on the system’s shell interpreter; (G3) loose shell coupling: PASH-JIT avoids
modifications to the system’s underlying shell interpreter, eschewing practical problems (e.g., maintaining
two Bash implementations). PASH-JIT behaves as a drop-in shell shim enhancing any non-interactive shell
use, providing significant speedups without any risk of breakage.

PASH-JIT’s key insight is to parallelize scripts just-in-time: by intermixing evaluation and parallelization
during a script’s execution, PASH-JIT collects and uses the latest possible run-time information about the
state of an expression’s variables, the shell, and the filesystem. PASH-JIT parallelizes script fragments when
it is safe to do so, resolving indeterminacies in the broader environment on the fly. Unfortunately, low-
overhead run-time-informed parallelization (G1) is particularly challenging to implement in view of full
behavioral equivalence (G2) and loose shell coupling (G3). PASH-JIT addresses this conundrum using:
(1) a dynamic interposition framework, guided by an instrumentation preprocessing pass; (2) support for
reentrance, transparently pausing and resuming the execution of the underlying shell interpreter at run-time;
and (3) a stateful, long-lived compilation server that communicates with the current shell by exchanging
messages. A 9K-LOC implementation and several run-time optimizations—e.g., dynamic independence
discovery, commutative-aware parallelization—complete the picture.

We apply PASH-JIT to a variety of benchmarks, ranging from scripts collected from the wild to the POSIX
test suite. PASH-JIT behaves identically to Bash 4.4.20(1) on 406 out of 408 applicable POSIX tests; match-
ing Bash is a significant achievement even for a non-parallelizing shell—shells in widespread use differ on
much larger subsets of tests. PASH-JIT offers speedups up to 33.7× over Bash on a 64-core machine (im-
proving the state of the art [173] by 2× on average), notably parallelizing scripts that prior work failed to
parallelize due to dynamic behaviors.

The chapter begins by exemplifying dynamic shell features and the application of PASH-JIT’s techniques (§7.2).
Sections 7.3–7.6 describe PASH-JIT’s main contributions:

84

script PASH-JIT
Preprocessor (§7.3.2)

PASH-JIT
Parsing Library (§7.3.3)

instrumented
script

State (vars, set, files)

...

source jit.sh

...

PASH-JIT
JIT Engine (§7.4)

PASH-JIT
Compilation Server
(§7.5)

User Shell

Fig. 7.1: PASH-JIT overview. PASH-JIT instruments scripts with calls to the JIT engine, which passes program frag-
ments to the compilation server at run-time.

• A dynamic interposition framework for the shell: A just-in-time analysis and optimization subsystem
enables safe and effective parallelization during the execution of a script, dealing with the challenges of
dynamic shell-script behavior. A first pass determines where to insert calls to a parallelizing optimizer
in a given input script (§7.3), which is then invoked on-the-fly while the script is executing (§7.4).

• A stateful, parallelizing compilation server: PASH-JIT queries a long-lived parallelization server at
run-time to compile script fragments. This model improves run-time efficiency by avoiding startup
costs on every JIT invocation, and enables additional run-time optimizations for (1) executing inde-
pendent regions in parallel, and (2) pipelining compilation and execution. The core of the server has
been modelled and formally verified using SPIN [82] (§7.5).

• Commutativity-aware optimization: Additional compilation optimizations target commands that are
commutative with respect to their input, along with parallelizing transformations and run-time primi-
tives that improve the run-time performance of scripts that contain such commands (§7.6).

The chapter then presents PASH-JIT’s evaluation (§7.7) and related work (§7.8), before concluding (§7.9).
PASH-JIT is MIT-licensed open-source software supported by the Linux Foundation at https://github.com/
binpash/.

7.2. Example and overview
Below is a shell program that downloads a compressed archive of text files (books from Project Gutenberg),
extracts them in a directory, and then performs an analysis to find the frequencies of all words of a specific
form.

85

https://github.com/binpash/
https://github.com/binpash/

IN=${IN:-$TOP/pg}

mkdir "$IN"

cd "$IN"

echo "Download will take some time, be patient..."

wget "$SOURCE/data/pg.tar.xz"

if [$? -ne 0]; then

echo "Download failed!"

exit 1

fi

cat pg.tar.xz | tar -xJ

cd "$TOP"

OUT=${OUT:-$TOP/output}

mkdir -p "$OUT"

for input in $(ls "$IN"); do

cat "$IN/$input" | tr -sc '[A-Z][a-z]' '[\012*]' |

grep '^....$' | sort | uniq -c > "$OUT/$input.out"

done

The program makes pervasive use of the shell’s dynamic features. For example, it uses environment variables
such as $TOP, variable expansion like ${OUT:-$TOP/output} to assign default values, command substitu-
tion $(...) as part of the loop condition, and state reflection on the file system by running ls on $IN (itself
resolved dynamically).

None of the values of these variables can be known ahead of time just by analyzing the program’s source
code. They become known only at run-time, when the shell interpreter reaches these points in the program’s
execution. A sound AOT compiler such as PASH [173] or POSH [144] would fail to parallelize—foregoing
all the performance benefits of data-parallel execution spread across many files in $IN.

PASH-JIT instead takes a JIT approach that interjects parallelization opportunities during and throughout the
script’s execution (Fig. 7.1).
Dynamic interposition (§7.3): PASH-JIT first uses a preprocessing step to instrument all potentially opti-
mizable program regions with calls to the JIT engine. PASH-JIT chooses regions to maximize the potential

86

benefits of parallelizing them: intuitively, commands and pipelines can yield significant benefits, whereas
word expansion, control flow, and variable assignments are operations that do not perform heavy computa-
tion and can therefore be left as they are. PASH-JIT’s preprocesor and compiler both make extensive use of
parsing/unparsing of shell source code, implemented as a new parsing library. After PASH-JIT has inserted
calls to the JIT engine, it invokes the user’s shell interpreter to execute this transformed script. During this
execution, the JIT engine calls the parallelizing compiler at run-time—right before the execution of each
fragment, when the state of the shell and the file system have already been resolved. The transformed pro-
gram maps original commands to regions—for example, region8 corresponds to the cd call and region10

corresponds to the pipeline in the for loop.

source jit.sh "$region8" # cd $TOP

OUT=${OUT:-$TOP/output}

source jit.sh "$region9" # mkdir -p "$OUT"

for input in $(ls "$IN"); do

source jit.sh "$region10" # cat "$IN/$input" | ...

done

The command source jit.sh "$regionN" invokes the JIT engine passing as argument the corresponding
fragment. The source built-in retains the same shell environment, reflecting any effects directly into the
current environment.
JIT engine (§7.4): Internally, the JIT engine first saves the state of the shell at that point in the script’s
execution to isolate it from compilation—protecting the shell from the JIT engine and protecting the JIT
engine from obscure shell configurations. PASH-JIT then invokes the compiler to attempt to parallelize
the fragment. If the compiler succeeds, PASH-JIT runs the resulting parallel fragment; if not, it runs the
original, unmodified region. In both cases, PASH-JIT will first restore the state of the shell before executing
the fragment. Whether the compiler succeeds or not depends on the properties of the fragment’s code—e.g.,
PASH-JIT will reject region8 due to the side-effectful cd command, but will accept region10 compiling
grep and sort into the parallel fragment below:

c_split /tmp/fifo8 /tmp/fifo9 /tmp/fifo10 &

c_wrap 'grep "^....$"' </tmp/fifo9 >/tmp/fifo11 &

87

c_wrap 'grep "^....$"' </tmp/fifo10 >/tmp/fifo12 &

c_strip </tmp/fifo11 >/tmp/fifo13 &

c_strip </tmp/fifo12 >/tmp/fifo14 &

sort </tmp/fifo13 >/tmp/fifo15 &

sort </tmp/fifo14 >/tmp/fifo16 &

eager.sh </tmp/fifo15 >/tmp/fifo17 &

eager.sh </tmp/fifo16 >/tmp/fifo18 &

sort -m /tmp/fifo17 /tmp/fifo18 >/tmp/fifo19 &

The resulting compiled fragment executes in a data-parallel fashion: data is split by PASH-JIT primitives,
then fed to multiple instances of grep and sort runnning in parallel, and finally merged at the end of the
parallel execution.
Dependency untangling (§7.5): While the JIT engine operates as if invoked on every region, PASH-JIT
is engineered to spawn a long-running stateful compilation server just once, feeding it compilation requests
until the execution of the script completes. This design has two benefits: (1) it reduces run-time overhead by
avoiding reinitializing the compiler for each compilation request; and (2) it allows maintaining and querying
past compilation results when compiling a new fragment. The latter allows PASH-JIT to untangle dependen-
cies across regions, finding and exploiting opportunities for cross-region parallel execution. For example, the
server’s first invocation on region10 (the body of the loop) determines that all prior successfully compiled
regions have finished executing. PASH-JIT can thus simply run the loop in the background and continue
with the second iteration in a task-parallel fashion, without waiting for the first iteration to complete exe-
cuting. During the second invocation on region10, PASH-JIT will use the dependency state to determine
that while the previously compiled fragment is still running, the input and output files of the two regions
are completely independent and can thus be executed in parallel: our loop is now pipelined! PASH-JIT goes
beyond intra-region data parallelism: the JIT enables inter-region task parallelism by resolving dependencies
and confirming they are independent.
Commutativity analysis & compilation (§7.6): The first goal when compiling fragments such as region10
is to identify command sequencies that are parallelizable using a divide-and-conquer strategy. Due to the
shell’s order-aware nature [76], naive divide-and-conquer would need to (1) read the entire input before split-
ting it, to determine the exact size of each batch, leading to stalled pipeline parallelism; and (2) wait until

88

all of its predecessors have consumed their batch, storing data after split on disk, to ensure that all parallel
nodes will not wait for their input.

While these overheads are unavoidable in the general case, and are indeed incurred by prior systems [173,
156], they can fortunately be alleviated for subsets of parallelizable commands. Two such subsets include
(1) stateless commands such as grep -c '^....$' that operate in a line-oriented fashion, meaning that
data-parallel copies of these commands can combine their partial output using a reordering operation, and (2)
commutative commands such as sort -u that produce equivalent output regardless of the order of the input
lines. PASH-JIT leverages this insight to achieve more effective parallelization by splitting into streaming
micro-batches (using c_split) in a round-robin fashion—avoiding the overheads of reading all the input
before splitting and of unnecessary storage to disk. It also wraps stateless commands to strip and re-add the
microbatch headers (using c_wrap) and removes these headers completely before commutative commands
(using c_strip).
Zooming back out: Fundamentally, PASH-JIT is neither a shell nor requires modifications to a user’s shell.
Rather, it is an interposition shim located between a user and their shell, deciding whether to optimize parts
of the user script on the fly, using information about the execution state of the shell interpreter. PASH-JIT
combines several techniques that allow harnessing speedups not attainable by ahead-of-time parallelization
on both dataflow-only scripts and larger scripts with dynamic components and complex control flow; all of
this, without modifying the behavior of the original script.

7.3. Interfacing with the shell
PASH-JIT works by interposing on the shell, effectively rewriting invocations to external commands. Chal-
lenges arise due to the shell’s complex semantics and its intricate internal state, both of which complicate
side-effect-free interposition. The shell uses a string-based, bi-modal semantics: commands undergo expan-

sion, a string rewriting phase where variables, tildes, and globs are processed before the commands undergo
evaluation. Both modes have complex semantics heavily involved with the shell’s state [71]; any rewriting
must be careful to leave the shell’s state unaltered.

89

7.3.1. Dynamic Interposition
To understand PASH-JIT’s interposition, we must first understand the simpler structure of ahead-of-time
(AOT) parallelization. While preserving a script’s original behavior, AOT parallelization rewrites calls to
external commands to exploit parallelism. External commands consume substantially more time and re-
sources than shell language features (like expansion or loops) during the execution of typical shell scripts.

AOT parallelization centers around the identification of parallelizable regions—script fragments that may
be safely parallelized to yield performance gains. Semantically, parallelizable regions only contain a set of
command invocations that satisfy the following conditions: (1) they have no file dependencies (interference-

free), i.e., all commands can execute concurrently without affecting each other, (2) they communicate with
each other using explicit UNIX channels (fifos/pipes); (3) they are pure, only affecting the environment by
reading and writing to files, i.e., they do not modify environment variables; and, (4) they are fully expanded.
An AOT compiler parses and transforms these regions to an intermediate representation such as directed-
acyclic [144] or dataflow [173] graphs, abstracted as functions that take a set of input files and produce a set
of output files [76]. It then applies transformations on these graphs to perform the original computation in
parallel.

PASH-JIT works similarly, but applies these steps at a much finer granularity and in a dynamic, online
fashion. PASH-JIT’s dynamic interposition mechanism pauses execution right before each parallelizable
region, compiling it to an efficient and equivalent parallel script fragment, and executing that instead. Work-
ing dynamically means PASH-JIT has up-to-date information and can achieve increased parallelism using
profile-guided optimizations.
7.3.2. Preprocessor
Dynamic script interposition without any shell-interpreter modifications is hard. To achieve this, PASH-JIT
opts for a light-weight script instrumentation pre-processing step: it marks possible parallelizable regions
with code that dynamically determines whether or not to invoke the compiler.

The intuition behind PASH-JIT’s preprocessor is that a syntactic analysis of a shell script is enough to suggest
potential parallelizable regions. This analysis is imprecise: there is no way to determine whether a command

90

invocation will be pure ahead of time. Its goal however, is not to find parallelizable regions exactly, but rather
to find potential compilation sites—PASH-JIT sorts out the details at run-time, using up-to-date information
about the system’s state.

There is a trade-off when choosing the right size for these regions: the larger the region, the more opportuni-
ties exist for analysis and optimization but the less likely it is for the entire region to be parallelizable. PASH-
JIT targets a middle-ground: maximal syntactic schedule-free regions—i.e., command sequences composed
using shell primitives that do not impose scheduling restrictions. By focusing on maximal schedule-free
regions, PASH-JIT minimizes the number of compiler invocations and maximizes the cross-command paral-
lelization opportunities for the compiler. Note that schedule-free regions underapproximate interference-free
regions (§7.3.1), e.g., two commands composed in sequence, using ;, that write to different files do not in-
terfere but are not syntactically schedule-free.

The preprocessor finds these maximal regions by searching the AST bottom-up, combining schedule-free
subtrees when they are composed using constructs that do not introduce scheduling constraints (e.g., &, |).
When a region cannot outgrow a certain subtree, it is replaced with a call to the JIT engine. If successfully
compiled, a region is transformed to a dataflow graph—a convenient and well-studied computation model
amenable to transformation-based optimizations [76]. The instrumented AST resulting from the compilation
is finally translated (unparsed) back to shell code and sent over to the underlying shell for execution.
7.3.3. Parsing Library
Parsing and unparsing are key operations in PASH-JIT and must address several challenges.

PASH-JIT parses lines of shell script as they come in, and unparses lines in order to execute them in the
user’s shell; it also uses parsing and unparsing during compilation, when the compilation server emits an
optimized string or passes strings to the shell for expansion. PASH-JIT initially used libdash—an OCaml
library built using the dash parser and part of Smoosh [70, 71]—but this caused two main issues. First,
libdash’s unparsing introduced several bugs, as at the time it was used by the libdash project primarily for
testing and diagnostics and had much of its was functionality untested. Second, libdash parsing introduced
significant run-time overhead due to (1) the cost of forking and executing the OCaml binary, (2) overheads

91

shell mode PASH-JIT mode

S

C

R

E

…

S

D

R
…

S Save shell state and
set PASH-JIT state

C Query parallelizing
compiler server

R Restore shell state

E Execute (optimized or
original) fragment

D Gather execution and
debug information

debug
mode

Fig. 7.2: JIT engine overview. The different stages of the engine’s execution.

due to serialization and deserialization during communication, and (3) suboptimal implementation. Run-
time overheads were a significant concern due to PASH-JIT’s online JIT parallelization, which intermixes
calls to the compiler during the program’s execution—bringing parsing and unparsing into the critical path
of program execution.

To address these issues, PASH-JIT reimplements its own version of libdash in Python called Pylibdash.
The Pylibdash implementation develops Python bindings for the dash parser and completely reimplements
unparsing—adding 0.9k LOC of Python over libdash, structured as a separate library usable by other projects.
The Pylibdash implementation contains several optimizations such as caching, inlining, and careful array
appending to avoid some accidentally quadratic costs in the original implementation. As a side benefit,
using a custom implementation reduces the number of dependencies required by PASH-JIT’s installation.

7.4. The JIT engine
The PASH-JIT preprocessor identifies possible parallelizable regions and instruments the shell script to dy-
namically determine whether they can be optimized by invoking the JIT engine. The JIT engine faces two
key challenges: it must not change the original script behavior, and it must run with low overhead as it is
invoked multiple times per script.

The JIT engine is a reflective shell script: by inspecting the state of the shell and that of the broader system, it
can transparently work with the compiler to determine whether or not to parallelize a script (Fig. 7.2). When
running scripts with PASH-JIT, it is helpful to think of the shell as having two modes: (1) conventional shell

92

mode, where scripts execute in the original shell context, and (2) PASH-JIT mode, where the runtime reflects
on shell state and invokes a compiler to determine whether to execute the original or an optimized version of
the target region. To switch from shell mode to PASH-JIT mode, the JIT engine must carefully save the state
of the user’s shell; to switch back, it must carefully put things back just the way they were. A shell’s state is
quite complex: beyond saving and restoring variables, the runtime must account for various shell flags along
with other internal shell state (e.g., the previous exit status, working directory).
7.4.1. JIT Stages
When running normally, the JIT engine transitions into and out of PASH-JIT mode once per possible paral-
lelizable region (Fig. 7.2): the JIT engine saves the shell state and switches into PASH-JIT mode (S); then
it tries to compile the current fragment (C); whether successful or not, the JIT engine restores the state and
switches back to shell mode (R); and, finally, either the original fragment or the optimized parallel version
is executed (E). With debugging enabled, the JIT engine switches back into PASH-JIT mode (S) to collect
debugging information (D), restoring again afterwards (R).
Saving (S): When entering a possible parallelizable region, the first step is to save the shell state—recording
the previous command’s exit status, the values of environment variables, and the configuration of the shell—
essentially, a continuation that can later be restored to execute the target fragment. Once the state is saved,
PASH-JIT mode reconfigures the user’s shell to avoid changing script behavior. For example, if the user’s
shell has the -e “exit on error” flag set, the shell should exit immediately when a command (or a pipeline)
returns a non-zero exit status, unless that command is in a checked position (e.g., after !, or in the condition
of an if or while) [22]. However, failing commands should not stop the JIT itself, so -e is unset (and will
be restored later in (R)).
Compilation (C): With the state saved and shell reconfigured, PASH-JIT tries to compile the script frag-
ment: the JIT engine queries the compilation server (§7.5) with the script fragment (already parsed during
preprocessing) along with the saved shell state, so that the compilation server can try to expand all of the
words in the fragment. The server responds to indicate whether it managed to optimize the fragment.
Restoring (R): Whether or not compilation was successful, the JIT engine exits PASH-JIT mode, restoring
the continuation saved earlier (S) to prepare to execute the fragment. One particular challenge in this mode is

93

to restore state while accommodating different shell modes. Suppose PASH-JIT is in -e mode, trying to run
some possible parallelizable region, and the command before this region exited with status 47 in a checked
position, i.e., without forcing the shell to exit. The JIT engine saves the exit status so as to not overwrite it.
The fragment may depend on the exit status, so PASH-JIT needs to restore it before running the fragment.
But it must be careful—simply running (exit 47) would force the shell to exit. Thus PASH-JIT runs the
subshell in a checked position:

if (exit "$pash_previous_exit_code"); then

source "$fragment"; ...

else

source "$fragment"; ...

fi

This odd code ensures that the fragment (in identical branches) has access to the previous exit status (in the
checked, conditional position of the if) without exiting when -e is set.
Execution (E): Back in shell mode, the JIT engine executes the fragment. If the compiler was successful,
then the JIT engine selects the optimized script fragment. If the compiler failed, the JIT engine falls back to
the original fragment. Either way, control flows back to the original shell.
Debug mode (S) (D) (R): When PASH-JIT is in debugging mode, the JIT engine will re-enter PASH-JIT
mode after execution (E) in order to log information about the script, such as execution time and exit status.
Standard execution skips this extra save/restore cycle.

7.5. Parallelizing compilation server
For each possible parallelizable region, the JIT engine queries the compiler: can this region actually be
optimized? To answer this question, PASH-JIT builds on the foundation of PASH (see Chapter 6) dataflow
compiler (§7.5.1). As ever, it focuses on preserving behavior and minimizing overhead.

To preserve correct behavior in the face of the shell’s dynamism, PASH-JIT expands each script region prior
to compilation (§7.5.2). To minimize overhead due to fixed startup costs—e.g., initialization, dependency
loading, logging setup, and output file arrangement—PASH-JIT packages the new compiler as a stateful

94

compilation server communicating via UNIX domain sockets.10

The compilation server is also augmented to support a larger set of optimization opportunities, by storing
and using information from one compilation to help another. PASH-JIT’s long-lived compilation server
achieves these additional optimizations by allowing parallelizable regions that work on independent inputs
and outputs to be run in parallel (§7.5.3) and by learning to improve its parallelism configuration from past
compilations (§7.5.4).
7.5.1. Command Annotations
PASH-JIT uses the command annotation and specification framework introduced in Chapter 5, extended to
also indicate whether a command invocation is commutative (§7.6.1). This framework provides information
about a command invocation’s parallelizability class, inputs, and outputs. A command annotation can be
used to extract high-level information about a specific command invocation, i.e., a precise instantiation of its
flags, options, and arguments. For example, annotations determine whether a given command invocation is
pure and what its inputs and outputs are.

PASH-JIT uses this annotation framework to extract information for commands that are not shell builtins—
that is, commands like sort and grep. Annotations enable analyses and transformations over command
invocations by lifting them to pure dataflow nodes in a dataflow intermediate representation (IR) [76]. For
example, grep -f dict.txt src.txt > out.txt is a dataflow node with two input files (dict.txt and
src.txt) and one output file (out.txt), which are all extracted from the annotation of the grep command.
Annotations also describe parallelization opportunities, e.g., grep "pattern" src.txt processes each line
of src.txt independently, and so it can be parallelized.
7.5.2. Early, Pure Expansion
PASH can only attempt to compile script fragments where all words are completely expanded. Running
dynamically, PASH-JIT goes beyond PASH by expanding words according to the current state of the system
(shell, file system, etc.).

One way to achieve expansion would be for PASH-JIT to maintain a “mirror” Bash process when initializing,
10We experimented with both socket and FIFO-based communication, but we saw no significant performance differences.

95

which it could then query with any word to expand using echo. Every time PASH-JIT would query the
compilation server with a fragment, it would also provide the latest state of the shell, which would in turn be
passed to the mirror process to ensure it reflects the latest state. This expansion method would be correct, as
it would leverage the underlying shell. It would, however, be expensive, since each fragment contains many
unexpanded words and each unexpanded word would have to be expanded using its own echo command—
leading to unnecessary run-time costs.

PASH-JIT avoids the overhead of a mirror shell by performing its own expansion, relying on the optimistic
nature of the JIT engine (§7.4): if most common forms can be expanded in the compiler itself, the compiler
will succeed often without incurring interprocess communication overheads; if expansion fails, PASH-JIT
will just run the original fragment. Armed with this insight, PASH-JIT implements a subset of expansion
in the compilation server itself. PASH-JIT’s custom expansion is purely functional, in that it does not affect
shell state by setting variables or running command substitutions. The expansion routine is implemented in
less than 300 LOC of Python, and reduces the compilation overhead significantly (§6.5). Expansion takes
the host shell’s configuration and expands common, safe expansions in as many positions as possible—in
simple commands, pipelines, and other parallelizable regions.

PASH-JIT’s expansion routine implements most parameter formats, plain tildes, and appropriate quoting.
Currently, it does not cover impure expansion (e.g., parameter formats that have side-effects like ${x=foo},
which will set x to foo if x is unset), since impurity violates the parallelizable region requirements. It
also does not implement a few expansion cases—e.g., arithmetic expansions of the form $((x + 1))—
that were not seen in the corpus of parallelizable scripts used to evaluate PASH-JIT (§6.5). Adding support
for unimplemented forms would require engineering effort, but not a fundamental change to PASH-JIT’s
expansion. If the expansion encounters a term it cannot expand—because it is unimplemented or because
it would be impure—the compilation process aborts and PASH-JIT runs the original fragment.
7.5.3. Dependency Untangling
PASH-JIT’s compilation server makes it easy to detect when parallelizable regions are independent—including,
for example, independent program fragments that are sequentially composed with ; or different iterations
of a for loop. A key insight here is the semantics of PASH-JIT’s successful compilation: if the PASH-JIT

96

State contains a map from ids to

inputs and outputs.

while True:

req = receive_request()

if reached_script_end(req):

wait_all()

exit()

else if is_exit_request(req):

state.remove_id(req.id)

else if is_compile_request(req):

compile_res = compile(region)

if not compile_res.success:

wait_all()

respond(compile_res)

else if compile_res.success:

Wait until all ids with dependencies

finish executing.

wait_for_dependencies(compile_res.inputs,

compile_res.outputs)

request_id = fresh_id()

state.add_request(request_id, compile_res)

respond(compile_res, request_id)

Fig. 7.3: Compilation server algorithm (pseudocode) extended for dependency untangling.

compiler succeeds on a given region, that region’s original script fragment must only affect its input and
output streams (files). That is, successful fragment compilation means that the fragment is pure, reading
from and writing to a well-defined set of streams without modifying any other global system state such as
non-temporary streams or environment variables.

The PASH-JIT compiler thus tracks each parallelizable region in terms of its read and write sets, which
suffice to detect read-write and write-write dependencies between fragments. If two fragments (a) compile
successfully and (b) have no dependencies, they can be executed in parallel. This optimization improves
performance not only because of the parallel speedup, but also because it overlaps (i.e., pipelines) compilation
and execution, reducing net run-time overhead.

To discover independent fragments, the compilation server (Fig. 7.3) and JIT engine (Fig. 7.4) are extended
to communicate about successfully compiled fragments. Coordinating using exit requests, the compilation
server maintains a map of running fragments. When it receives a compilation request that succeeds, the
server waits for all prior fragments with dependencies to finish executing; only then does it send the compiled
fragment to the JIT engine for execution in the background. While the compiled fragment executes in the

97

Blocking query

res = query_server(compile_request(region))

if res.success:

Run the compiled code in parallel

fork({

run(compiled)

send_exit(res.id)

})

else:

run(original)

...

Fig. 7.4: JIT engine algorithm (pseudocode) extended for dependency untangling.

background, the JIT engine can exit PASH-JIT mode, and execution proceeds with the rest of the input script.
When execution reaches another fragment and the JIT engine returns to PASH-JIT mode, the JIT engine will
block again until the compilation server responds. Even if the compilation server encounters a fragment
that fails to compile, the server blocks on dependencies: the uncompilable fragment might have arbitrary
side-effects.

To ensure that our algorithm is correct, we modeled it using the SPIN Model Checker [82] and we verified
(i) that it does not lead to deadlocks, (ii) that no failed compiled region is running simultaneously with any
other region, and (iii) that two regions with dependencies never run at the same time.
7.5.4. Profile-driven Compiler Configuration
The long-lived PASH-JIT compilation server can additionally use dynamic information to improve compila-
tion. One particularly effective optimization is to dynamically determine maximum parallelism degree. As
scripts might already feature task-based parallelism, spawning too many data-parallel processes can overload
the system—leading to higher overheads that cut into the speedup or even result in a slowdown. These slow-
downs tend to occur when there are many computationally light commands with small inputs, i.e., when the
overhead of managing parallelism is higher relative to the actual work to be done. The PASH-JIT compiler
can reflect on prior fragments to determine an appropriate parallelism degree.

The compilation server is often queried to compile the same fragment many times—e.g., in each iteration of
a loop. At run-time, the compiler collects and maintains execution-time information. As program fragments
are recompiled, PASH-JIT tries progressively narrower parallelization degrees in an attempt to minimize

98

overall execution time.

7.6. Commutativity awareness
Commutative commands can improve parallelization gains by allowing PASH-JIT to split and process data-
parallel partial inputs in small and order-independent batches. Splitting input into many small batches im-
proves expected CPU utilization and allows for additional pipeline parallelism. CPU utilization is improved
due to an increase in partial input batches: the more work items, the more uniform the work each parallel copy
does. Additional pipeline parallelism is achieved by overlapping input splitting and processing: rather than
reading the entire input before deciding how to split it into batches, input can be split via small incremental
steps that are immediately handed off to data-parallel commands for processing.

The PASH-JIT compiler uses these insights to produce more efficient parallel implementations of scripts that
contain commutative commands. It introduces a few auxiliary nodes in its intermediate representation (IR)
that orchestrate parallel execution for stateless and commutative commands, and compiler transformations
that insert these nodes in a dataflow graph. It also provides efficient primitives implementing these nodes
when instantiating in the parallel target script.
7.6.1. Compilation: Dataflow Model
The PASH-JIT compiler operates on a dataflow IR that builds on PASH, where commands correspond to
nodes and communication channels correspond to edges between nodes. To enable commutativity-aware
transformations, PASH-JIT extends PASH’s annotation framework (§7.5.1) to indicate whether a command
invocation is commutative (in addition to its parallelizability characteristics).
Command nodes: PASH-JIT introduces the following four dataflow nodes, which correspond to PASH-
JIT-provided binary commands available in the PATH: c_split, c_wrap, c_strip, and c_merge. The
c_split node takes a single input stream and N output streams. It splits its input into small batches, prepends
a header on each batch identifying its sequence number, and then forwards it to one of the N outputs depending
on a load-balancing strategy. Currently, PASH-JIT implements a round-robin strategy. The c_merge node
performs the inverse operation: it merges N input streams into one and removes any headers. The c_wrap

command is used to wrap stateless commands. It removes the header, forwards the input to the command,
and then adds the header back to the command output. Finally, c_strip is a single-input-single-output

99

c_split c_merge

c_merge stateless

c_wrap stateless

c_wrap stateless c_merge

...

c_merge commut.

...

commut.

commut. aggregator

batch mode

batch mode

batch mode

batch mode

batch mode

c_strip

c_strip

Fig. 7.5: Overview of commutativity-aware transformations.

header-removal node that often precedes commutative commands.
Transformations: To expose commutativity-aware parallelism, PASH-JIT transforms the dataflow graph;
see §7.2 for an example. The transformations are visualized in Figure 7.5. The first transformation introduces
a pair of c_split and c_merge before any commutative (e.g., sort) or stateless (e.g., grep) command.
Another transformation then tries to eliminate unnecessary splits and merges, delaying c_merge as late as
possible (i.e., enclosing the biggest possible part of the graph). If a stateless command follows a c_merge,
the command is wrapped with c_wrap and the c_merge is commuted after it. If a commutative command
follows a c_merge, the command is parallelized and c_merge is transformed to a set of c_strip commands.
Finally, if a c_split follows a c_merge, then the two are fused together to the identity function, connecting
the inputs of c_merge with the outputs of c_split.

An important execution invariant is that c_split and c_merge (or c_strip) satisfy the requirements of well-
formed parentheses, i.e., a c_split must always be followed by a c_merge or a set of c_strip commands.
PASH-JIT’s dataflow graphs are essentially bimodal, since subgraphs that are between a c_split and a
c_merge will execute with batches, requiring all commands in them to be wrapped with c_wrap, while the
rest of the dataflow graph executes like the original.

100

Tab. 7.1: Benchmark summary. Summary of all the benchmarks used to evaluate PASH-JIT and their characteristics.
Benchmark Set Short Label Sections Scripts LOC Input Source

1 POSIX Test Suite PosixTests §7.7.1 7 29k — [73]
2 Common & Classic One-liners Classics §7.7.1–7.7.3 10 123 14G [28, 27, 165, 92, 118]
3 Bell Labs Unix50 Unix50 §7.7.1–7.7.3 36 142 21G [103, 30]
4 COVID-19 Transit Analytics COVID-mts §7.7.1–7.7.3 4 79 3.4G [171]
5 Natural-Language Processing NLP §7.7.1–7.7.3 21 306 1060 books [44]
6 NOAA Weather Analysis AvgTemp §7.7.1–7.7.3 1 31 36.2G [182]
7 Wikipedia Web Indexing WebIndex §7.7.1–7.7.3 1 116 1000 files [173]
8 Video/Audio Processing MediaConv §7.7.1–7.7.3 2 35 2.2+2.2G [144, 159]
9 Program Inference ProgInf §7.7.1–7.7.3 1 18 2330 libraries [176]
10 Traffic/PCAP Log Analysis LogAnalysis §7.7.1–7.7.3 2 63 10–20G [144, 159]
11 Genomics Computation Genomics §7.7.1–7.7.3 1 34 100G [143, 39]
12 AUR Package Compilation AurPkg §7.7.1–7.7.3 1 27 150 packages [41]
13 Encryption/Compression FileEnc §7.7.1–7.7.3 2 44 20G [125]
14 Microbenchmarks MicroBench §7.7.3 1 6 — custom (ours)

7.6.2. Runtime: Commutativity Implementation
The runtime splits the source in small batches (that contain complete lines) in a round-robin fashion.
Protocol: To reconstruct the order of different outputs while merging, PASH-JIT needs to keep track of
ordering as input batches are sent to different command copies for processing and, more generally, as input-
output batches flow throughout the parallelized script. To achieve this, PASH-JIT wraps all input batches
with a header that contains the three following fields: block_id, for ordering blocks; block_size, the size
of the block in bytes; and is_last, a boolean value true only for the last block with a given block_id.
Utilization and deadlocks: PASH-JIT must avoid deadlocks during write operations between the wrapper
commands and the commands they wrap—i.e., the two should never be blocked trying to write at the same
time. Additionally, the wrappers must maximize utilization of the command they wrap, i.e., they should never
wait on input unnecessarily. To avoid deadlocks, PASH-JIT wrappers use non-blocking read and write; and
to increase utilization and reduce waiting time, they write in small chunks of 32KB.
Handling inputs with long lines: An input may contain lines that are longer than the c_split block size.
Such an event leads to non-uniform block sizes and high memory consumption, because each block must
be read and sized completely before splitting and adding to the header. PASH-JIT addresses this issue by
introducing the is_last header field in c_split: if a block exceeds the specified size (due to containing
large lines) the block is split into multiple blocks; all blocks share the same block_id but only the last

101

sets is_last to true. Sub-blocks with the same block_id are sent downstream in-order, and therefore
downstream commands can use the is_last information to correctly reconstruct the output and know when
a block ends. Block splitting reduces memory requirements and improves performance, as it allows for higher
utilization regardless of the frequency of newlines. And blocks maintain a constant size throughout the flow,
despite the presence of commands with high output-to-input ratio such as curl.
Handling small inputs: Inputs that are smaller than c_split’s block size lead to a single block and thus
sequential execution. PASH-JIT’s c_split addresses this issue by first attempting to read an input size 𝑠

equal to downstream_count * block_size bytes before forwarding any blocks. If the total input is larger
than 𝑠, this buffering ensures that all parallel instances will get at least one block; if the total input is smaller
than 𝑠, then the input read is re-split into blocks fairly and forwarded downstream. The size 𝑠 is configurable
and defaults to 1MB, which we empirically determined avoids both high overhead and low utilization.

7.7. Evaluation
The PASH-JIT implementation comprises 6784 lines of Python (preprocessor, compilation server, expan-
sion, compiler, and parser), 1011 lines of shell code (JIT engine and various utilities), and 1174 lines of C
(commutativity primitives, and other runtime components). All line counts are of semantically meaningful
lines only.

To evaluate PASH-JIT, we use three experiments on benchmarks (Tab. 7.1). The first experiment focuses
on PASH-JIT’s compatibility and uses the entire POSIX test suite as well as additional scripts (§7.7.1).
The second experiment focuses on the performance gains achieved by PASH-JIT’s parallelization, evaluated
using a variety of benchmarks and workloads (§7.7.2). The last experiment zooms into PASH-JIT-internal
overheads and associated optimizations (§7.7.3).
Hardware & software setup: PASH-JIT was run on 64 physical × 2.1GHz Intel Xeon E5-2683 cores
with 512GB of RAM, Debian 4.9.144-3.1, GNU Coreutils 8.30-3, GNU Bash 4.4.20(1), and Python 3.7.3.
There is no special configuration in hardware or software. We use Dash v.0.5.8-2.10 and Ksh v.93u+ 2012-
08-01. All scripts were executed completely unmodified, using environment variables, loops, and other
shell constructs. To minimize statistical non-determinism, we host our experimental infrastructure on our
own premises, avoid sharing with other research groups, and repeat the experiments several times noting

102

Tab. 7.2: Correctness results. Running the POSIX test suite on Bash and PASH-JIT. Tests are grouped in rows by
theme. Columns contain the group name, total tests, non-applicable tests, and passing tests for PASH-JIT and Bash.

Test Suite Tests Untested PASH-JIT Bash
1 Parsing 38 5 33/33 33/33
2 Expansion 83 8 71/75 71/75
3 Errors 38 3 26/35 27/35
4 Commands and redirects 99 2 96/97 96/97
5 Subshells and pipelines 56 7 46/49 46/49
6 Builtins 113 40 60/73 61/73
7 Special cases 67 21 42/46 42/46

imperceptible variance.
7.7.1. Correctness
We evaluate the correctness of PASH-JIT across all benchmarks from Tab. 7.1 by checking that PASH-JIT’s
stdout and exit status are equivalent to the ones produced from Bash. The output is over 650 million lines
(18GB), taken from 82 scripts, in all of which PASH-JIT’s output and exit status are correct. To increase our
confidence on correctness, we use the POSIX shell test suite with both Bash and PASH-JIT.
Benchmarks: The POSIX test suite is a thorough evaluation of shell behavior, comprising 1007 ‘asser-
tions’ evaluated using 494 distinct, assertion-numbered test cases over 29k LOC of shell scripts (plus library
support). We exclude (a) 78 test cases because they test the platform (e.g., locales) rather than the shell,
and (b) 8 cases because they test interactivity, which is out of scope for PASH-JIT (§7.1). These leave a
total of 408 runnable test cases. The test cases use a mix of shell language features (e.g., redirection, pipes),
builtin commands (e.g., set, echo), and standard UNIX utilities (e.g., printf, grep). The POSIX suite tests
many corner cases of shell behavior—e.g., that aliases ending in space continue alias expansion (Assertion
no. 284), that pipelines take precedence over redirections in their constituent commands (no. 454), or that
return in a trap action restores the previous command’s exit status (no. 651)—totaling several thousand
behaviors. The exact number of ‘tests’ is hard to quantify: some test cases check a single behavior (e.g.,
expanding an unset variable under set -u); others check hundreds (e.g., many different characters escape
properly; many different arithmetic expressions evaluate correctly).
Results: PASH-JIT overwhelmingly agrees with Bash (Tab. 7.2). PASH-JIT passes 374 and fails 34 POSIX
tests, while Bash passes 376 and fails 32 POSIX tests. PASH-JIT diverges from Bash on the test cases for a
mere 2 tests (no. 430 and 691) where Bash passes but PASH-JIT fails. These two failures concern the ranges

103

0

10

20

30

C
la

ss
ic

s

U
ni

x5
0

C
O
V

ID
−m

ts
N

LP

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

W
eb

In
de

x

M
ed

ia
C
on

v1

M
ed

ia
C
on

v2

Pro
gI

nf

Log
A

na
ly

si
s1

Log
A

na
ly

si
s2

G
en

om
ic

s

A
ur

Pkg

File
Enc

1

File
Enc

2

PaSh−JIT

PaSh−AOT

Fig. 7.6: PASH-JIT Performance. PASH-JIT speedup (vs. PASH whenever possible) over Bash for Tab. 7.1 rows 2–5
(left, box) and 6–13 (right, bar) (Cf.§7.7.2).

of non-zero exit status and are in fact due to an unusual inconsistency in Bash itself (see “Discussion”, below).

When running the test suite, PASH-JIT invokes the compiler a total of 3304 times, each for a different poten-
tially optimizable fragment; 713 (20%) of those invocations successfully compile, i.e., PASH-JIT generates
and runs parallel code. Successful compilation does not necessarily translate to a speedup on individual
tests, though: the POSIX suite tends to test with small scripts, so the compiled fragments contain very little
computation—not much for PASH-JIT to optimize.
Discussion: PASH-JIT diverges from Bash in two cases only in the exit status returned. Both PASH-JIT
and Bash exit with an error: Bash returns 1, and PASH-JIT returns 127. For the two failing cases, POSIX
mandates (since 2008) that the exit status be between 1–125, making PASH-JIT’s behavior incorrect. Why
does PASH-JIT produce a different status?

Bash is inconsistent when called with the -c flag. Contrary to most other shells (i.e., dash, ksh, mksh, posh,
sash, Smoosh, yash, zsh), Bash is the only shell that, when failing during -c invocations, exits with 127—i.e.,
outside the POSIX-mandated range. When PASH-JIT invokes the underlying Bash interpreter using -c in
order to set $0, it receives and propagates an exit status that does not comply with POSIX. The rest of the
Bash failing tests are caused by various subtleties; it is not clear which failures are ‘true bugs’ and which
are considered desirable divergences from the spec. Greenberg and Blatt [71] discuss how implementations
diverge from the POSIX spec. PASH-JIT mirrors the behavior of Bash in all those cases.

To put the number of diverging tests of PASH-JIT and Bash into perspective, we note that other production

104

shells fail in significantly greater numbers: dash passes 3 tests that Bash fails and fails 20 that Bash passes;
ksh passes 2 tests that Bash fails and fails 20 that Bash passes; and zsh cannot run the test suite at all. These
results combined show that, in practice, PASH-JIT is virtually indistinguishable from its underlying shell
interpreter on POSIX features.
7.7.2. Performance
We evaluate PASH-JIT’s performance on 12 sets of real-world shell scripts taken from a variety of sources
(Tab. 7.1, rows 2–13), totalling 82 shell scripts and 1015 LOC.
Benchmarks: Classics and Unix50 contain classic and recent (c. 2019) scripts making heavy use of UNIX

and Linux built-in commands. COVID-mts contains four scripts used to analyze real telemetry data from
mass-transit schedules during a large metropolitan area’s COVID-19 response. NLP contains several scripts
from UNIX-for-poets, a tutorial for developing programs for natural-language processing out of UNIX and
Linux utilities. AvgTemp contains a large script downloading and processing multi-year temperature data
across the US. WebIndex is a large multi-stage script for web crawling and indexing, using a variety of
third-party and built-in utilities. MediaConv contains two scripts that process, transform, and compress
video and audio files. ProgInf contains a script that downloads JavaScript packages from the npm registry
and applies a security-oriented static program analysis. LogAnalysis contains two scripts that apply typical
system-administration and network-traffic analyses over log files. Genomics contains a script that processes
next-generation sequencing data for the purposes of diagnostic virology. AurPkg contains the main script
that compiles, builds, and packages software for the AUR Linux distribution. Finally, FileEnc contains long
aliases that encrypt and compress files.
Results: PASH-JIT surpasses PASH’s speedups (vs. Bash) on existing benchmarks and extends speedups
to new ones (Fig. 7.6). Box-plots show results for multi-benchmark suites (Tab. 7.1, rows 2–5) and bars
for individual scripts (Tab. 7.1, rows 5–13). PASH-JIT can run several more scripts than PASH (for which
performance bars are set to 0). Across all benchmarks, PASH-JIT achieves an average speedup of 5.86× (vs.

2.9× for PASH) and a maximum speedup of 33.7× (vs. 15.38× for PASH).

A few scripts exhibit slowdowns when compiler startup, runtime, and parallelization overheads (splitting,
merging) start dominating. PASH-JIT decelerates 14 scripts; PASH decelerates 20 scripts—and cannot run

105

30 additional scripts that PASH-JIT parallelizes. The scripts that PASH-JIT decelerates either have short
sequential running times (8ms–10s) or have very short-running fragments in tight loops (e.g., 1K iterations,
14ms per iteration). For example, PASH-JIT decelerates Unix50’s 20.sh (Bash: 8ms; PASH-JIT: 1.3s) and
NLP’s no-vowel.sh (Bash: 14s; PASH-JIT: 0.24×), on which PASH cannot operate.
Discussion: PASH-JIT is faster than PASH on all suites 2–5 (w.r.t. average) and on all individual bench-
marks 5–13, often by a significant margin (3.1×).

PASH-JIT speeds up many scripts PASH cannot, as PASH’s ahead-of-time parallelization cannot reason about
the shell’s dynamic features. PASH offers no speedup on the NLP suite, nor on any individual scripts except
for AvgTemp and WebIndex.

Compared to Bash, PASH-JIT is faster (or at least as good) in all cases, except when the given script
is very short-running (e.g., unix50-20.sh), or with a tight loop with a very short-running body (e.g.,
nlp-no-vowel.sh).
7.7.3. Further Microbenchmarks
This section zooms into the benefits of PASH-JIT’s optimizations targeting dependency untangling, profile-
driven compiler configuration, commutativity analysis, and JIT engine overheads.
Dynamic optimizations: To better understand the benefits of dependency untangling and profile-driven
compiler configuration (CC), we use benchmarks that have sequences of statements—e.g., some form of
sequential composition or for-loops: rows 5, 6, 8–13 from Tab. 7.1. One-line scripts such as Unix50 and
WebIndex feature single pipelines and thus cannot benefit from any inter-region optimizations.

Across all scripts and compared to Bash, PASH-JIT achieves a speedup of 8.17×. PASH-JIT without profile-
driven CC achieves 7.58×, and additionally without dependency untangling 0.55× (Fig. 7.7). The 0.55×

slowdown is due to limited intra-region parallelization in these benchmarks. Profile-driven CC may slightly
reduce speedup in highly parallelizable scripts, because it explores lower parallelization degrees.
Commutativity awareness: To evaluate the benefits of commutativity-related optimizations, we focus on
all scripts with intra-region parallelization potential: Classics, Unix50, COVID-mts, AvgTemp, and We-
bIndex; the performance of the rest is affected negligibly by changes to single-region transformations. We

106

PaSh−JIT PaSh−JIT no_prof PaSh−JIT no_prof no_du

0

10

20

30

N
LP

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

M
ed

ia
C
on

v1

M
ed

ia
C
on

v2

Pro
gI

nf

Log
A

na
ly

si
s1

Log
A

na
ly

si
s2

G
en

om
ic

s

A
ur

Pkg

File
Enc

1

File
Enc

2

Fig. 7.7: PASH-JIT Dynamic Optimizations. PASH-JIT speedup over Bash when toggling profile-driven compiler
configuration and dependency untangling for Tab. 7.1 row 5 (left, box) and 6, 8–13 (right, bar) (Cf.§7.7.3).

disable all dynamic optimizations to isolate the benefits of commutativity, and compare with the sequential
Bash baseline.

Commutativity-aware PASH-JIT achieves an average speedup of 4.52× and a maximum of 14.68× (Fig. 7.8).
Without commutativity-related optimizations, PASH-JIT achieves an average speedup of 3.72× and a maxi-
mum of 15.38×. Commutativity improves the average case but not cases that already see high speedups, as
these (1) have negligible overheads coming from input reading—most overheads come due to line processing—
and (2) commutativity extensions add some overhead due to the c_wrap primitive.

Config. Time (s)

Bash 0.008
PASH-JIT -esd 59.334
PASH-JIT -sd 15.376
PASH-JIT -d 6.124
PASH-JIT 4.708

JIT engine overhead: To evaluate the benefits of PASH-JIT’s runtime opti-
mizations, we design a worst-case parallelization benchmark: a script that con-
tains a for loop that performs 100 iterations of echo hi. A tight loop with a
minimal-overhead body emphasizes the JIT engine overheads by allowing no
parallelization gains. The table on the right shows the run-time performance of
four PASH-JIT configurations compared to Bash: (1) PASH-JIT without cus-
tom expansion, compilation server, and dynamic optimizations, (2) PASH-JIT without compilation server,

107

PaSh−JIT PaSh−JIT no_comm

0

5

10

15

C
la

ss
ic

s

U
ni

x5
0

C
O
V

ID
−m

ts

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

W
eb

In
de

x

Fig. 7.8: PASH-JIT Commutativity Awareness. PASH-JIT speedup over Bash when toggling commutativity awareness
for Tab. 7.1 rows 2–4 (left, box) and 6, 7 (right, bar) (Cf.§7.7.3).

and dynamic optimizations, (3) PASH-JIT without the dynamic optimizations, and (4) the complete PASH-
JIT. PASH-JIT’s runtime optimizations (custom expansion, compilation server, and dependence untangling)
improve performance by 12× (over the -esd configuration without them). As echo hi writes to stdout,
dependence untangling does not manage to run it in parallel, and thus its benefit is only due to pipelining.
Even then, PASH-JIT’s JIT engine overhead is not negligible (about 47ms per JIT invocation), as it needs to
save the state and invoke the compiler for every iteration of the loop body.

7.8. Related work
Parallel shell scripting: Recent work addresses significant challenges related to automatic shell script
parallelization. POSH [144] and PASH [173] are mostly-automated ahead-of-time shell-script parallelization
systems; as described earlier, these systems focus on fully expanded shell pipelines that do not make use
of dynamic features. Recent work explored an order-aware dataflow model as a foundation for modeling
the transformations these systems perform and proving them correct [76]. To enable divide-and-conquer
parallelism, KumQuat [156] proposes a program-synthesis technique for generating aggregators for black-
box commands.

108

PASH-JIT builds on all this prior work, addressing fundamental limitations in static, ahead-of-time paral-
lelization: AOT approaches apply to a very small subset of real shell scripts. By opting for just-in-time
parallelization, PASH-JIT achieves parallel script behavior that is practically indistinguishable from the se-
quential execution—and ample opportunities for additional acceleration.

Other work on shell script parallelization either requires manual effort or is applicable to a smaller subset of
scripts than our work. Such work includes: utilities like qsub [63], SLURM [184], and parallel [164];
shells with non-linear pipe topologies [50, 117, 159]; and using the shell itself as a DSL for concurrency [69].
Unix-related parallelization: There has been a significant body of work on parallel (and distributed) UNIX

and UNIX-like environments [136, 128, 24], including shell-oriented efforts such as Plan9’s rc [140]. Con-
trary to PASH-JIT, these systems did not (aim to) offer full compatibility with the sequential UNIX shell.
They also focused on systems-level and program-runtime support, rather than automated program analyses
and transformations.
Just-in-time compilation: Just-in-time compilation has been studied for long time [23], mainly in two
contexts: (1) as a compilation technique for interpreted languages such as JavaScript [65], where critical
type information is unavailable prior to execution; and (2) as a performance optimization over ahead-of-time
compilation, allowing for specialization [167, 86], loop unrolling and function inlining [32, 141], and other
profile-guided optimizations [135, 97]. PASH-JIT draws inspiration from work in both contexts—resolving
unavailable dynamic information at run-time and performing additional optimizations. It also leverages the
optimistic compilation technique employed commonly by just-in-time compilers: when it fails to compile
(parallelize), it simply runs the original fragment using the shell interpreter as a fallback option. PASH-JIT
differs from most JITs, dealing with different challenges: it operates at a higher level of abstraction, in a
unique programming environment with no single unified runtime.

PASH-JIT also draws inspiration from staged compilation [42] and partial evaluation [91]. These techniques
perform some compilation ahead-of-time, waiting for the runtime to specialize and further optimize when
there is more information about the environment of the target program and how it is used.
Parallelization in other contexts: More general parallelization support can be grouped into two cate-
gories: languages and tools. One approach to parallelization support is to use tools that requires writing in a

109

new higher-level programming language [60, 168, 102] or a dataflow-based model embedded in an existing
language [46, 186, 129, 40, 163, 25]. These tools usually offer automation, but require re-expressing exist-
ing computations in domain-specific programming models; PASH-JIT operates on completely unmodified
POSIX shell scripts that use unusual features and obscure corner cases.

Another approach to parallelization support uses tools that provide automatic parallelization for standard se-
quential code, requiring no program modifications but often posing limitations with respect to the granularity
of the parallelism that they can extract. The general approach started with explicit DOALL and DOACROSS an-
notations [38, 111], continuing with analysis-based compilers [137, 75, 149], and more recent work using
profiling-guided speculation [121, 169, 100, 89, 18]. PASH-JIT draws inspiration from this line of work: it
does not require manual modification to user code, and it leverages run-time information to optimize and
parallelize user scripts. Existing tools work on imperative code with memory accesses, but PASH-JIT works
at a higher level of abstraction: commands that affect the file system and the broader executing environment.
Shell correctness and POSIX compliance: Smoosh [71] offers a formalized, executable reference seman-
tics for the POSIX shell, aiming to address subtleties in the standard [22]. PASH-JIT leverages Smoosh to
identify and resolve issues in its JIT engine (§7.4) and to guide its early expansion routine (§7.5.2). It also
builds on Smoosh’s analysis to leverage the POSIX test suite for characterizing shell behavior.

PASH-JIT reimplements Smoosh’s libdash [70], which presents dash’s parser as a library (§7.3.3). We
chose libdash over Morbig [148] because (1) libdash reuses dash’s production-grade parser, and (2)
libdash supports line-oriented input, but Morbig is strictly ahead-of-time.

7.9. Discussion
The shell provides a dynamic programming language with complex evaluation-and-expansion semantics
and ubiquitous side-effects—effects that interact with the entire UNIX system similar to how a conventional
programming language interacts with its runtime environment. The benefits of just-in-time compilation for
dynamic languages are clear, and PASH-JIT is the first JIT compiler that targets challenges unique in the
UNIX shell ecosystem. PASH-JIT forms a promising drop-in shebang replacement: its POSIX compliance
rivals shells in widespread use; and its performance benefits go well beyond the state of the art.

110

Interactivity: PASH-JIT’s design goals (§7.1) do not include interactivity; an interactive shell switches be-
tween consuming its input (shell commands) and redirecting it to its executing commands—challenging for
PASH-JIT’s loose coupling. Furthermore, avoiding shell modifications leads to additional runtime overhead
(since the state of the shell has to be reflected upon and is not accessible with a single dereference). Adding
robust support for interactivity and improving runtime overhead would likely require a more intrusive de-
sign, e.g., altering Bash’s source and interposing directly. However, such a design would make PASH-JIT
Bash-specific, requiring users to install a new shell, and would significantly complicate the engineering and
maintenance effort involved.
Expansion: Some of PASH-JIT’s expansion behaves in a way not exactly as specified by POSIX, although
we conjecture (and our evaluation confirms, §6.5) it is safe. For example, pipelines are supposed to expand
each component in its own subshell (though the last component may run in the outer shell, depending on a
shell’s implementation choices). PASH-JIT’s expansion operates on each component of the pipeline early;
each component uses its own copy of the shell environment, to simulate the subshells. We haven not proved
these early expansions sound, and it would be interesting future work to pursue that, e.g., by using Smoosh’s
semantics.
Enabling other analyses: Even though PASH-JIT is mainly focused on parallelization, its just-in-time
structure is not limited to it. By slightly modifying the preprocessor and by replacing the compilation server
logic, PASH-JIT can be made to perform different types of analyses and transformations, while maintaining
its benefits—compliance with the underlying shell, loose coupling, and low runtime overheads. This enables
exciting avenues of future tooling and support for the shell, like incremental execution, automatic distribution,
and safety monitoring.

111

CHAPTER 8

DiSh: Scaling out shell programs on a distributed cluster

Material from this chapter was previously published as “Tammam Mustafa, Konstantinos Kallas, Pratyush
Das, and Nikos Vasilakis. DiSh: Dynamic Shell-Script Distribution. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23), pages 341–356, Boston, MA, April 2023. USENIX
Association.” [131]. Tammam Mustafa, a master’s student at the time, was the first author of this paper and
the lead developer of the DISH system; Nikos Vasilakis (Tammam’s supervisor) and I worked extensively
with Tammam to develop the ideas and the system behind this paper.

8.1. Introduction
Chapters 6 and 7 describe how shell scripts can be parallelized to effectively harness resources of a single
multiprocessor. However, today’s workloads have grown to such an extent that the resources of multiple
computers are required to process them effectively. Such scale-out is often necessary not only to accelerate
computations, but also to compute over data that either do not fit on a single computer or are naturally
distributed across multiple computers.
State of the art: Shell users dealing with large datasets that do not fit on a single computer are left with
only a few options (Tab. 8.1). One option is to use a distributed shell [172, 62, 50]. Distributed shells require
rewriting scripts manually and only support a small subset of UNIX features—often with limited, if any, dy-
namic features and varying support for composition constructs. A recent distributed shell named POSH [144]
can handle a subset of shell scripts without rewriting—although that subset is limited to dataflow-only com-
putations and also does not include arbitrary dynamic shell behaviors. In addition, since POSH is a shell
reimplementation, it is not behaviorally equivalent with existing shells and thus risks breaking ported scripts.
A second option is to rewrite (parts of) the script in a cluster-computing framework [46, 186, 129, 182]. These
only support pure computations (e.g., batch, stream), require manual rewriting, and only rarely [74, 85] sup-
port language-agnostic components. Another option is job scheduling tools [164, 84, 63, 184], but these
operate at a coarse granularity and do not leverage parallelism available in individual commands. Yet an-
other option is to rewrite scripts in languages that support distribution [177, 17, 122, 127], foregoing the

112

Tab. 8.1: Available options for scaling out shell programs. Compatibility: support unmodified shell scripts. Granu-
larity: support fine-grained distribution. Expressiveness: support arbitrary dynamic behaviors. Agnosticism: support
components in any programming language. Equivalence: behavior equivalence with existing shells.

Approach Co
mp

ati
bil

ity
Gr

anu
lar

ity
Ex

pre
ssi

ven
ess

Ag
no

stic
ism

Eq
uiv

ale
nce

Examples
Distributed Shells □ ■ ■ ■ □ [50, 172, 62]

POSH ■ ■ □ ■ □ [144]
Cluster Comp. Frameworks (CCF) □ ◪ □ □ □ [186, 129, 161, 182]
Language-agnostic CCFs □ ◪ □ ■ ■ [74, 85]
Job Scheduling Tools ■ □ □ ■ ■ [164, 84, 63, 184]
Other languages □ ■ ■ □ □ [177, 166, 52]
DISH ■ ■ ■ ■ ■

shell’s succinctness and language agnosticism. To summarize, these options operate on a subset of the shell,
require significant manual effort, risk breaking correctness, or—most often—suffer from a combination of
these limitations (see §8.8 for more details).
Dynamic shell-script distribution: This chapter presents DISH, a system designed to scale out shell
scripts operating on distributed filesystems while maintaining full POSIX compatibility. DISH satisfies all
requirements in Table 8.1: it operates on existing shell scripts; it distributes scripts at the granularity of in-
dividual commands; it handles arbitrary dynamic shell features such as substitution and expansion; it allows
the use of commands and utilities of any language; and, most importantly, it is behaviorally equivalent to
Bash.

DISH first instruments the execution of a script to identify regions that may benefit from distribution. At
runtime, it compiles these regions to an intermediate representation which it then optimizes to introduce
appropriate parallelism, buffering, communication, and coordination. DISH then executes each compiled
region in a distributed fashion using the same shell interpreter, components, and data as the original script.
Implementation and results: DISH is implemented as a shim layer (following the architecture introduced
in Chapter 7) that wraps and orchestrates the (completely unmodified) user shell, delegating all execution
to the underlying shell available on each computing node. This design hides distribution from the user and
avoids modifying the underlying shell interpreter: the user thinks that their original script is being executed

113

(but faster); each underlying shell is given a part of the distributed script to execute. As a result, DISH

achieves a new milestone in automated shell-script distribution: it offers significant performance benefits, it
avoids modifications to shell scripts, and it maintains full POSIX compatibility. Additionally, this modular
design allows further research and improvements without modifications in the underlying shell.

We characterize DISH’s performance on a 4-node on-premise cluster and a 20-node cloud deployment using
76 scripts—including ones not trivially expressible in modern distributed computing frameworks, such as
scripts with for loops, side-effects, and complex third-party components. DISH surpasses the speedups
achieved by production-grade systems on existing benchmarks and extends speedups to new ones: it achieves
significant speedups over (1) Bash (avg: 13.6×; max: 136.3×), a single-node shell-interpreter baseline; (2)
PASH (avg: 8.9×; max: 108.8×), a shell-script parallelization system; and (3) Hadoop Streaming (avg: 7.2×;
max: 32.3×), a cluster computing framework that supports language-agnostic components and shell scripts.
Moreover, whereas Hadoop Streaming does not support 27/76 scripts and requires rewriting 7/76 scripts,
DISH runs all scripts without any modifications; in fact, DISH is able to execute the entire POSIX shell test
suite, only diverging in one error code out of thousands of assertions.
Chapter outline: The chapter begins with an example and overview (§8.2) of DISH’s use and techniques.
Sections 8.3–8.6 present DISH’s key components:

• Dynamic orchestration (§8.3): DISH parses, pre-processes, expands, and orchestrates its input script
to enable dynamic distribution at runtime. This architecture heavily builds on PASH-JIT that was
described in Chapter 7.

• Compilation (§8.4): During script execution, DISH compiles certain regions to an intermediate repre-
sentation and applies a series of optimizations. The compiler core is the same as the one described in
Chapter 6.

• Distribution (§8.5): DISH distributes each region to a set of workers in a way that promotes co-location
of processing primitives and the data blocks these operate on.

• Runtime support (§8.6): DISH bundles additional runtime primitives supporting correct and efficient

114

communication in the context of distributed shell script execution.

We then present DISH’s evaluation (§8.7) and related work (§8.8).
DISH limitations: DISH currently does not tolerate failures such as worker aborts or network partitions. In
such occasions, users are expected to rerun their scripts similar to how they do in non-distributed executions:
due to the shell’s dynamic features and its support for third-party components, users often re-run failing
scripts from the start. The current DISH prototype does not implement support for security features such as
encryption and containment.
Availability: All the work described in this chapter has been implemented and incorporated into PASH,
and can be found at https://github.com/binpash/dish.

8.2. Background, Example, and Overview
DISH allows everyday shell scripts to reap the benefits of distributed computing: processing datasets that do
not fit on a single machine, often also speeding up expensive computations.
Intended use: DISH is designed to support a variety of use cases, depending on the details of the dis-
tributed environment on which the system is executing. The most common case is one where input data
are downloaded and stored in a distributed file system such as HDFS11 and then processed using various
analyses. This is useful for datasets that do not fit on a single computer, that are naturally distributed across
multiple computers, or that can be processed faster in a data-parallel fashion. DISH will distribute the com-
putation appropriately, often running data-parallel instances on multiple machines and multiple processors
per machine. DISH also supports hybrid operation where data resides on both distributed and local file sys-
tems; this is useful for computations that contain CPU-intensive stages over datasets that do not necessarily
reside on distributed file systems.
Example script: Fig. 8.1 shows a shell script that calculates maximum and average temperatures across
the US, on datasets hosted on the National Oceanic and Atmospheric Administration (NOAA). The script
is split into three parts: (p. 1) an 11-stage pre-processing pipeline to download data from NOAA and store
them on HDFS, with the data range controlled upon invocation via dynamic arguments $1 and $2; (p. 2, 3)

11The choice of HDFS is not binding. DISH could work on top of any distributed file system (e.g., NFS or Alluxio [108]) that
exposes the locations of file blocks. To achieve performance benefits due to co-location, there also needs to be available compute
on the nodes that host that file system.

115

https://github.com/binpash/dish

two 5-stage pipelines calculating and storing maximum and average temperatures to the local file system.

HDFS is a distributed file system for handling large data sets on commodity hardware. Scripts like the one
in Fig. 8.1 that process files stored in distributed file systems spend most of their execution time moving files
across the network. On a 4-node cluster (§8.7) and 3.6GB of input, running just hdfs dfs -cat takes 346s;
computing pipeline 2 (maximum temperature) only adds 6s. This phenomenon is due to pipeline parallelism:
the execution time of all concurrently executing commands is mostly shadowed by hdfs dfs -cat.
Opportunities for scale-out: There are ample opportunities for improving the performance of this script.
Since all parts contain stages that operate on large datasets, we should be able to execute (at least some of)
their stages in a data-parallel fashion. For example, we should parallelize commands that process their input
independently, such as cut and grep, by having them operate in parallel over partial inputs.

Additionally, carefully colocating computation and data should also improve performance. For example, we
should schedule the data-parallel execution of the aforementioned cut and grep instances on machines that
store the respective data segments. Directly operating on distributed file segments, rather than gathering and
processing data on a subset of the machines, eliminates most data-movement overheads.

Finally, the execution of program fragments that do not depend on each other could become concurrent: since
parts 2 and 3 are independent on each other, we should be able to overlap their execution in a task-parallel
fashion.
Key challenges: Unfortunately, exploiting these opportunities to scale out execution automatically is par-
ticularly challenging in the context of the shell. First, exposing opportunities at the level of individual com-
mands such as cut and grep is challenging—and this is why prior systems often focused on coarser, script-
level or job-level granularity [63, 184].

Second, pervasive dynamic features, file-system introspection, and other side-effects impede traditional dis-
tribution approaches based on static transformation—this is why prior shell-script distribution work [144, 74]
focuses on side-effect-free dataflow subsets. These challenges are compounded by the presence of more elab-
orate control flow such as for loops, break, and trap statements present in ordinary shell scripts.

116

NOAA=${NOAA:-http://ndr.md/data/noaa/}

TEMPS=${TEMPS:-/noaa/temps.txt}

hdfs dfs -mkdir /noaa

Pipeline 1: Download temperature data

and store to HDFS

seq $1 $2 | sed "s;^;$NOAA;" |

sed 's;$;/;' | xargs -r -n 1 curl -s | grep gz |

tr -s ' \n' | cut -d ' ' -f9 |

sed 's;^\(.*\)\(20[0-9][0-9]\).gz;\2/\1\2\.gz;' |

sed "s;^;$NOAA;" | xargs -n1 curl -s |

gunzip | hdfs dfs -put - $TEMPS

Pipeline 2: Compute maximum temperature

over all data

hdfs dfs -cat $TEMPS | cut -c 89-92 | grep -v 999 |

sort -rn | head -n1 > max.txt

Pipeline 3: Compute average temperature

over all data

hdfs dfs -cat $TEMPS | cut -c 89-92 | grep -v 999 |

awk "{ t += \$1; i++ } END { print t/i }" > avg.txt

Fig. 8.1: Example script: Downloading a temperature dataset, storing on a distributed file system, and running analysis
to extract statistics.

Third, behavioral equivalence with existing shells is practically unattainable, especially with new shell im-
plementations; after all, even production-grade shells such as Bash and zsh diverge subtly in their POSIX
behavior [71]. A new distributed shell [144, 50] has little hope of not breaking some scripts.
DISH overview: To overcome these challenges DISH (1) extracts details about the behavior of commands
through command annotations, (2) deals with dynamic features and side-effects by analyzing scripts at run-
time using dynamic orchestration, and (3) achieves behavioral equivalence with Bash by only performing
script transformations and delegating execution to the underlying interpreter. DISH is designed to dynam-
ically orchestrate, compile, schedule, and support the execution of shell scripts (Fig. 8.2). DISH’s orches-
tration (§8.3) kicks in when a potentially distributable script region is identified, saves a snapshot of the
user’s shell environment (variables, configuration) and invokes the DISH compiler with the candidate region
(Fig. 8.2a). The compiler analyzes this region and if possible, translates it to a dataflow graph—which it then
optimizes to introduce parallelism, buffering, etc. (§8.4), finally passing it off to the scheduler (Fig. 8.2b); or
aborts compilation (Fig. 8.2d) because it cannot guarantee that the region is pure, i.e., side-effect-free. The

117

script
Dynamic (§8.3)
Orchestration User Shell

Compiler (§8.4) Scheduler (§8.5)

Annotations
(§8.4.1)

Node

Worker

Shell

Node

Worker

Shell

(a)

(b)

(d)
(c) (c)

(c)

(e)

(e)

(e)

Fig. 8.2: DISH architecture overview. Steps: (a) compile script region; (b) schedule compiled dataflow; (c) send
dataflow subgraphs to workers; (d) compilation failed, fall back to original region; and (e) execute script region (com-
piled or original).

scheduler (§8.5) divides the compiled dataflow graph into different subgraphs which it sends to available
cluster workers (Fig. 8.2c). In response to these execution requests, workers apply a second pass of opti-
mizations to better utilize available resources, translate the dataflow graph back to a shell script (Fig. 8.2e),
load the snapshot of the shell environment stored by the orchestrator, and execute the script using the local,
unmodified shell interpreter (§8.6).
Applying DISH: DISH preprocesses the script in Fig. 8.1 to identify script regions that could benefit from
distribution—in this case, all three pipelines. It then replaces each of these regions with calls to the dynamic
orchestrator and attempts to distribute them at runtime. During execution, the orchestrator queries the DISH

compiler to determine whether a region is pure and thus distributable: if the compiler succeeds, it translates
the region to a dataflow graph. Since regions contain arbitrary black-box commands, DISH cannot analyze
them directly. Instead, it employs a command specification framework that contains partial specifications of
command invocations such as their inputs and outputs. For example, DISH’s compiler uses these specifica-
tions to determine that hdfs dfs -cat /noaa/temps.txt reads from the HDFS file /noaa/temps.txt

118

hdfs cat cut/temps.txt grep sort head max.txt

(a) HDFS file expansion

cut
/n1/block1

grep sort head max.txt

/n2/block2

(b) Parallelization

cut/n1/block1 grep sort
head max.txt

/n2/block2 cut grep sort
sort -m

Graph splitting and
worker assignment

cut/n1/block1 grep sort head max.txt

/n2/block2 cut grep sort

sort -m

Worker 1

Worker 2

Host

(c)

Fig. 8.3: DISH dataflow graph stages. (a) HDFS files are expanded to sequences of blocks. (b) the graph is parallelized
based on the command specifications. (c) the scheduler splits the graph and assigns subgraphs to workers.

and writes to stdout. Once a region is in dataflow form, DISH applies transformations to distribute it.

Fig. 8.3 shows the distribution stages for pipeline 2 (maximum temperature). DISH first detects operations
on HDFS files (i.e., HDFS cat) and expands each distributed file to its segments (datablocks), often stored
on different physical machines. Informed by command annotations, DISH applies parallelization transforma-
tions: commands like cut and grep are parallelizable directly and can be executed on the machine with the
raw input datablock. The scheduler then splits the compiled graph into subgraphs and maps them to work-
ers in a data-aware fashion. Finally, each worker translates the graph back to a shell script, adds additional
runtime primitives (commands), and executes it locally.

119

The result? DISH drops the execution of pipeline 2 from 352s to 6s while maintaining full behavioral equiv-
alence and requiring no modifications to the user shell.

8.3. Dynamic Shell Orchestrator
To facilitate adoption, an important desideratum in the design of DISH is to achieve behavioral equivalence
with the underlying shell interpreter. To achieve this, DISH is not designed to operate as another shell, but
rather wraps the user’s existing shell interpreter and the shell interpreters on the worker machines. As a result,
DISH hides parallelization and distribution from both the user and the underlying shells: the user thinks that
their original script is being executed—just faster—and each underlying shell simply executes a standard
non-distributed shell script. This allows DISH to achieve exceedingly high compatibility with the underlying
shell implementation (§8.7.3), while also minimizing maintenance costs since updates and modifications
on the underlying shell are reflected in DISH without any change. DISH’s orchestrator architecture heavily
builds on the PASH-JIT that was described in Chapter 7, extending it with environment sharing.

Fig. 8.4 shows an overview of the structure of DISH’s dynamic orchestration. To achieve dynamic shell script
orchestration without any shell-interpreter modification, DISH opts for a light-weight script instrumentation
pre-processing step: it instruments potentially distributable regions with invocations to the orchestration
engine. It chooses regions with the goal of maximizing distribution benefits: intuitively, it focuses on com-
mands and pipelines rather than control-flow statements and variable assignments. However, the choice of
these region boundaries is not binding—the preprocessor just needs to be precise enough to determine po-
tential regions, but DISH will eventually decide whether or not (and if yes, how) to distribute a candidate
region at runtime. The preprocessor first parses the original script, it then replaces the relevant program
regions with orchestration prefixes, and then un-parses (emits) it back as an instrumented script that is given
for execution to the user’s shell interpreter.

The instrumented script then makes calls to the orchestration engine. The orchestration engine is itself a
shell script coordinating with the compiler and worker manager and attempting to distribute the upcoming
region (see §8.4 and 8.5 for details). If it succeeds, it runs the distributed version of the region. If it aborts,
it just falls back to the original region, executing it normally. Reasons for aborting include the region being
side-effectful, e.g., modifying some environment variable, or lacking relevant command annotations.

120

Preprocessor: The preprocessor searches for maximal potentially distributable regions by processing the
AST bottom-up, combining distributable subtrees when they are composed using constructs that do not in-
troduce scheduling constraints (e.g., &, |). When a region cannot outgrow a certain subtree, DISH replaces it
with a call to the orchestration engine. If the region is successfully compiled (at runtime), DISH translates it
to a dataflow representation—a convenient and well-studied model amenable to transformation-based opti-
mizations [76]. At a later point, DISH running on each node translates the instrumented AST resulting from
the compilation back to shell code and passes it to the underlying shell for execution.
Parsing library: DISH invokes parsing and unparsing routines frequently, and therefore needs them to be
very efficient. To that end, it uses an internal Python implementation [95] of POSIX-shell-script parsing
and unparsing based on libdash [70, 71]. The DISH parser contains several optimizations such as caching,
inlining, and careful array appending to achieve improved performance.
Orchestration engine: DISH’s orchestration engine is designed to maintain the original script behavior and
minimize runtime overhead—as it is invoked multiple times per script. The engine is a reflective shell script:
it coordinates transparently with the compiler to determine whether or not to parallelize a script by inspecting
the state of the shell and that of the broader system. DISH constantly switches between two execution modes
when executing scripts: (1) conventional shell mode, where scripts execute in the original shell context, and
(2) DISH mode, where the runtime reflects on shell state and invokes the compiler to determine whether to
execute the original or an optimized version of the target region. To switch from shell mode to DISH mode,
the engine saves the state of the user’s shell; to switch back, it restores the state of the user’s shell. The
state of a shell is quite complex: apart from saving and restoring variables, DISH must account for various
shell flags along with other internal shell state (e.g., the previous exit status, working directory). During
an invocation, the engine first switches to DISH mode, communicates with the compiler and scheduler to
determine whether a region can be safely distributed, and it then switches back to shell mode to execute the
original or distributed version of the script.
Environment sharing: The distributed version of the script region might execute on a different shell (or
even machine). Therefore, a challenge that DISH needs to address is to make sure that all regions execute in
the correct environment—including access to the latest variable values and function definitions. To achieve
that the engine takes a snapshot of the environment right before execution. It then transfers the snapshot to

121

User Shellscript Preprocessor

State (vars, files)
Parsing lib

orch/ed
script

Orch. Engine

executing
script

Cluster
Workers

Fig. 8.4: Dynamic orchestration overview. DISH instruments scripts with calls to the orchestration engine, which
passes program fragments to the worker manager at run-time.

the distributed workers, which they load before executing the incoming script fragment. This is safe to do
since successful distribution of a region implies that it is pure (and therefore does not affect the environment),
and thus the snapshot will be valid until the region finishes execution.
String expansion: To correctly determine if a script region is safe to distribute, the compiler needs to
expand all strings in that region. Since DISH performs compilation and distribution of each script region at
runtime, right before execution, it has access to all the latest variables and system state to fully expand all
strings in the region. DISH only implements a common and safe subset of all available expansions, and avoids
implementing side-effectful expansions that have the risk of affecting the environment (e.g., ${x=foo}: set
x to foo if x is unset). Note that DISH keeps expansion local: it does not expand regions succeeding the
target region, as these might depend on the execution of the target region.

8.4. Compiler
This section describes the compiler of DISH, which builds on the PASH parallelizing compiler (see Chap-
ter 6). The compiler is given the AST of an input script fragment and information about the commands in that
fragment (§8.4.1). It then attempts to transform it to a dataflow graph (§8.4.2), an intermediate representa-
tion amenable to parallelization transformations. If the compiler succeeds in transforming a script region to
a parallel dataflow graph, that graph is then passed to the scheduler which then decides how to map subgraph
components to the available worker nodes. As the compiler operates at runtime in a just-in-time fashion, it
exploits ample opportunities for parallelization even across subgraphs (§8.4.3).

122

8.4.1. Command Annotations
DISH needs to support analyses and transformations over third-party commands, without access to their
source code. To achieve this, DISH uses the specification framework that was described in Chapter 5, which
we briefly overview here for completeness. Command annotations act as an intermediate layer that provides
restricted but sufficient information about the behavior of a command to analysis and transformation systems
like DISH. They also enable reuse, as they are not tied to a particular analysis and can thus be reused
by different tools. For this work, DISH reuses the set of annotations developed for PASH-JIT (Chapter 7)
extended with annotations for commands that appear in the evaluation of DISH (§8.7).

A command annotation in DISH encodes information at the level of individual command invocations, i.e.,
precise instantiations of a command’s flags, options, and arguments. Among other information, annotations
determine how a command invocation affects its environment, and specifically whether it is pure, i.e., whether
it only affects its environment by writing and reading to and from a well-defined set of files—information
which DISH uses when translating commands to and from dataflow nodes (§8.4.2). For example, the anno-
tation for grep can be used to extract that the script fragment grep -f dict.txt src.txt > out.txt

contains two input files dict.txt and src.txt and one output file out.txt. This knowledge of input and
output files is used by DISH to enable location-aware distribution, by scheduling the computation on nodes
that contain relevant data blocks. Additionally, annotations describe parallelization opportunities—e.g., that
grep "pattern" src.txt processes each line of src.txt independently and thus can be parallelized at a
line boundary.
8.4.2. Dataflow Model
The core of DISH’s compiler is the order-aware dataflow model introduced in Chapter 4 that captures pure
shell script regions that read from a well-defined set of input files and write to a well-defined set of output
files—i.e., they do not modify their environment in any other way. This model is expressive enough to capture
a shell subset used pervasively in data processing scripts.

In this model, nodes represent commands and edges represent files, pipes, named FIFOs, and file descriptors.
The model is order-aware in the sense that it keeps information about the order in which nodes read from their

123

inputs, which is important for the script’s semantics. For example, grep "pattern" in1.txt - in2.txt

first reads from in1.txt, then from its standard input, and then from in2.txt. This order awareness allows
DISH to perform transformations that optimize execution of a script—e.g., by exposing parallelism—but
preserve its original behavior.
Translation workflow: Given an AST representation of an input script region, the compiler uses annota-
tions to deduce whether commands are pure i.e., they only affect their environment through a well-defined
set of output files, and attempts to transform them to dataflow nodes. If all commands in the region are pure
the compiler transforms the region to a dataflow graph. It then applies transformations (described below),
optimizing the graph to expose parallelism and improve the script’s performance. Finally, it serializes the
graph back to a (now optimized) shell script, by translating every node back to a command and connecting
them all together with appropriate channels (e.g., FIFOs, RFIFOs, redirections).
Transformations: DISH’s transformations enable data-parallel execution by replicating nodes in the graph
and adding appropriate split and merge nodes around them. They apply a pass over the graph to remove pairs
of inverse nodes—i.e., pairs of nodes whose semantic effects cancel out but whose performance effects are
additive—for example, a concatenation-style merge followed by a linear split. For commutative commands,
i.e., commands that produce the same output irregardless of their input-line order, DISH applies transforma-
tions that pack and unpack metadata across the graph—achieving better performance by avoiding unneces-
sary blocking and buffering. Finally, to improve the flow of data across the graph, DISH applies additional
transformations that inject hybrid memory-disk buffer nodes in points in the graph that are likely to become
bottlenecks.
Remote file resources and HDFS files: To support scripts that perform data analysis on a combination of
HDFS and local files, DISH extends the dataflow model with remote-file resources (RFRs) that encode file
blocks in different nodes. RFRs usually represent blocks of files that are partitioned and replicated in HDFS,
and contain information about the location of the data in the distributed environment. This information could
contain multiple locations to support replication, and is used by the scheduler to assign script fragments to
different workers. When the DISH compiler comes across an HDFS file path, it queries HDFS to determine
the locations of its file blocks and then expands that file to a sequence of RFRs, each of which represents a
block.

124

for item in $(hdfs dfs -ls -C ${IN});

do

output_name=$(basename $item).zip

hdfs dfs -cat $item |

gzip -c > $OUT/$output_name

done

Fig. 8.5: Example of independent regions. This shell script compresses all files in a directory—but each iteration
results in an independent body region that can be executed in parallel.

8.4.3. Dynamic Dependency Untangling (DDU)
Scripts often contain regions that are independent, i.e., they have different (file) working sets. Independent
regions could potentially run in parallel, better utilizing computational resources and improving the execution
times of the scripts in which they belong. However, inferring independence statically and ahead of time is
challenging as shell scripts make extensive use of dynamic features. Figure 8.5 shows an example script that
contains independent fragments but also features dynamic behavior. This script iterates over all files in an
HDFS directory, compresses them using gzip, and finally stores them as independent files.

Determining independence statically in this script would require inferring values of environment variables
(like IN and OUT) and the state of the file system, e.g., hdfs dfs -ls. DISH’s dynamic orchestration (§8.3)
circumvents this challenge by making distribution decisions during the execution of the script when environ-
ment variables and the file system state are known. DISH further exploits this by discovering independent
dataflow regions at runtime and executing them in parallel—even if they were not parallel in the original
script.

When DISH successfully compiles a dataflow region (at runtime), it knows that the region is pure and there-
fore can determine the region’s inputs and outputs—and it does so for free, without additional analysis or
inference stages. DISH then uses this information to check for read-write or write-write dependency conflicts
with regions that are running concurrently. If none is found, DISH passes the region to the scheduler, which
orchestrates distributed execution, and then immediately continues the execution of the script until it reaches
the next dataflow region. Whenever the compilation of a dataflow region fails, DISH cannot safely detect
the input and output information of this region—and thus it needs to wait until every previous region is done
executing to ensure that no dependency will be violated.

125

cmd

cmd

aggregator

Worker 1

cmd cmd cmd cmdr_write r_read

Worker 2

Worker 1

Worker 2

Worker 3 cmd

cmd

aggregator

Worker 2

Worker 1

cmd cmd

Worker 1 Worker 1

/fifo

Host

cmd cmd

Worker 1

Fig. 8.6: Overview of commutativity-aware transformations. (Top) Remote writes and reads added during distributed
scheduling. (Mid) Worker-first aggregation. (Bot) Named FIFO teleportation.

Since DDU is done at runtime it is both sound, i.e., it does not execute dependent fragments concurrently, and
precise, i.e., it offers significant benefits due to improved parallelism and resource utilization—especially for
scripts that do not contain highly data-parallelizable commands, such as the commands in the aforementioned
compression script (Fig. 8.5). Compared to analyses over static languages, DDU cannot identify global
optimizations such as reordering the final command in the script to run first. This lack of optimality is not
specific to DDU, but applies to any shell script analysis; in fact, as far as we know there is no sound and
precise static analysis for shell scripts.

8.5. Distributed Scheduling
This section describes how DISH’s scheduler distributes a compiled script to a set of workers. The scheduler
is given a dataflow graph that is already parallelized and has HDFS files expanded to sequences of remote
file resources (RFRs) representing their blocks. The task of the scheduler is then to distribute this graph with
the goal of optimizing performance by both utilizing available resources and moving computation close to

126

the data. Currently the scheduler knows about the workers in the cluster ahead of time using a configuration
file.

The scheduler makes a decision on how to split the graph based on a policy that optimizes performance
through co-location of data blocks and the commands that execution over them. The scheduler processes the
top-level dataflow graph to generate a set of subgraphs, one for each worker and one for the host machine
executing the script. It then replaces edges corresponding to communication channels (e.g., FIFOs, pipes) at
the boundaries of each subgraph with remote channels—adding a remote write node on the sender side and
a remote read node on the receiver side (see Fig. 8.6, Top). It also inserts remote reads for subgraph nodes
that access files stored on remote workers. The final generated subgraph represents the script fragment that is
passed for execution to the user shell running on each worker: the compiled script handles all the redirection
to and from local files and the standard input, output, and error streams to and from the worker.
Data-aware scheduling policy: The highest performance overhead when executing distributed shell scripts
is networked data movement across workers. DISH addresses this overhead by introducing a greedy schedul-
ing policy that allocates subgraphs in a way that attempts to minimize data movement across workers. If a
data file (or block) is available on a worker, then DISH maps the maximal dataflow subgraph that starts from
that file to that worker—i.e., scheduling as much of the processing as possible on the worker. The scheduler
also tracks the amount of work that each worker currently has scheduled, which can vary due to dynamic
dependency untangling (§8.4.3): if a data file is replicated across multiple workers, DISH chooses the worker
with the least amount of pending work to execute that subgraph.
Worker-first aggregation: The distributed dataflow graphs that DISH executes often contain aggregation
(i.e., merge) nodes, similarly to the reduce stages in Hadoop Streaming. Regardless of the worker on which
the aggregation is performed, data from different workers will need to be combined onto a single worker and
thus these dataflow nodes will necessarily result in data movement. DISH prioritizes performing aggregation
on one of the participating workers, because workers already contain a subset of the data used in the aggre-
gation (see Fig. 8.6, Mid). This optimization is particularly beneficial for scripts that filter and aggregate
data, often containing commands such as grep and uniq, because any filtering stages prior to aggregation
result in reduced data transfer.

127

It is worth noting that, absent additional information about commands [144], the location of aggregators
involves challenging trade-offs not addressable with a single optimization policy. For scripts that include
aggregators that do not reduce data sizes, DISH’s worker-first aggregation optimization risks transferring
more data. As DISH’s evaluation confirms (§8.7), however, worker-first aggregation results in performance
benefits for most scripts.
Delegated script concretization: DISH’s scheduler sends workers dataflow subgraphs, encoded in DISH’s
intermediate representation, instead of concrete shell scripts ready for execution. Each dataflow subgraph
contains holes that workers are expected to fill in, based on the specifics of their local environment. This
choice simplifies DISH’s distributed execution, as the scheduler does not need to have up-to-date information
about several worker details such as the temporary directories they use. Additionally, this choice enables
better resource utilization in a heterogeneous environments with different worker capabilities: a worker can
apply another optimization pass to the dataflow subgraph it receives to better manage and utilize its resources.
Named FIFO teleportation: Scripts often use named FIFOs to share data between concurrently executing
processes. Named FIFOs introduce a performance challenge, because they are local files that reside on the
host machine where the script was executed. Therefore, by default, all data that would normally go through
named FIFOs in the original execution would now have to go back and forth between workers and the machine
for which the script was developed. DISH addresses this challenge by observing that named FIFOs are
ephemeral, i.e., they maintain no data after the execution of a dataflow region. Based on this observation,
DISH migrates named FIFOs to workers closer to the data, eventually deleting the migrated versions after the
dataflow region has finished executing (see Fig. 8.6, Bot). This transformation, termed FIFO teleportation,
improves performance by avoiding unnecessary data movement in scripts that use FIFOs.

8.6. Runtime Support
DISH has to address several runtime challenges: communication among workers, identification of HDFS data
block locations, and correctness in view of HDFS blocks split independently of newlines—an assumption
necessary for several dataflow transformations. This section describes several components of DISH’s runtime
that address the above challenges.

128

Remote FIFO channel: As described earlier (§8.5), connections between dataflow nodes are instantiated
using UNIX FIFOs in a single-machine setting. Unfortunately, FIFOs do not support networked operation and
thus cannot cross worker boundaries. To address this challenge, DISH introduces a remote FIFO primitive
(RFIFO) that is implemented in Go and uses socket-based communication. RFIFOs are intended to operate
identically to FIFOs, i.e., implement the semantics of dataflow graph edges, but with support for operation
over the network. They have a unique identifier and two ends—a read end and a write end.

Since shell streams are lazy, i.e., a producer blocks until its consumer requests input, the network link is often
not fully utilized, lowering throughput and risking introducing significant latency. To avoid these throughput
and latency challenges, DISH adds two buffer nodes to the dataflow graph: one before the write end of the
RFIFO, to allow uninterrupted access to data, and one after the read end of the RFIFO, to force the read to
request data. This lazy-to-strict optimization maintains correctness and improves performance in most cases;
in rare cases, it may lead to unnecessary data transfer between nodes—e.g., when there is a head command
right after the read end of an RFIFO.
Port discovery service: As transformations and optimizations are applied during the execution of a script—
contrary to most other distributed environments—DISH’s scheduler cannot statically predict which ports will
be available at runtime for RFIFOs at each worker: different scripts and script fragments running concur-
rently during a single execution may collide on port usage. To address that, each DISH worker implements
a port discovery service (PDS) that can be accessed by remote FIFOs to (1) advertise their port, and (2)
discover the port that their other end uses. The discovery service is implemented in Go with gRPC [2] and
supports a few remote procedure calls (RPCs), central among which are a put call for advertisement and a
get call for discovering the port of a remote end. RFIFOs are extended with gRPC clients to advertise ports
among local PDS or identify the ports corresponding to their other end by querying the PDS of the respective
worker. By deferring port selection until runtime execution, DISH’s port discovery service facilitates loose
subgraph coupling and simplifies remote subgraph execution on multiple workers.
HDFS data retrieval: During transformations, the DISH compiler (§8.4) needs to retrieve information
about HDFS paths to expand them into block sequences. This expansion happens on a critical runtime path
and thus needs to be efficient. A prior implementation of DISH invoked this expansion on every HDFS path

129

using a shell command—by wrapping fsck, a command offered by HDFS API for querying the health of the
disk in the cluster, returning information about a file and its partitioning into blocks. This implementation
ended up incurring significant latency (> 1s), and thus DISH switched to the web API reducing expansion
to sub-10ms latency.
Enforcing logical block boundaries: A key challenge when processing separate file blocks in HDFS is the
mismatch between compiler assumptions about the block shape and how blocks are actually stored in HDFS:
HDFS blocks might not be split on newline boundaries, but the parallelizing transformations performed by
the DISH compiler (§8.4) assume that all blocks are logically separated by newlines. This assumption is
crucial and depends on the way commands process their input, e.g., sort processes its input line by line, and
therefore would require a significantly more complex parallelization transformation if its input could be split
at arbitrary points. Developing complex custom parallelization transformations for each command would be
infeasible in practice due to the sheer number of available commands and would not allow DISH to reuse the
parallelization transformations developed for PASH [173].

Instead of relaxing the compiler assumption, DISH addresses the mismatch by ensuring it holds during script
execution using additional runtime support. DISH implements a distributed file reader (DFR) primitive that
runs as a service on every worker. The DFR service ensures that parallel dataflow nodes only process batches
that are split in newline boundaries, independent of how the actual physical blocks are split—providing the
illusion of a logical block that ends at a newline to its consumer. Given a distributed file path, DFR reads
the local file or block from the worker’s disk going beyond the first newline character in its block. If the
block is not terminated with a new line, then the DFR communicates with the reader of the next block (and
potentially any readers after that), returning a complete logical block to its consumer. When a compiled
dataflow graph is translated back to a script, DISH prefixes file paths with a command invoking a DFR client
that communicates with the relevant DFR service to retrieve the relevant logical block. Both service and
client are implemented in Go, communicating using gRPC and protobufs [66].

8.7. Evaluation
We are interested in evaluating two aspects of DISH: (1) its performance, and (2) its compatibility with Bash.

130

Tab. 8.2: Benchmark summary. Summary of all the benchmarks used to evaluate DISH, and their characteristics.
Benchmark Scripts Pure HS LOC Input Source

1 Classics 10 7/10 123 3G [28, 27, 165, 92, 118]
2 Unix50 34 30/34 142 21G [103, 30]
3 COVID-mts 4 4/4 79 3.4G [171]
4 NLP 21 - 306 120 books [44]
5 AvgTemp 1 1/1 31 3.6G [182]
6 MediaConv 2 - 35 0.8 & 0.4G [144, 159]
7 LogAnalysis 2 - 63 0.7 & 1.3G [144, 159]
8 FileEnc 2 - 44 1.3G [125]

Classics
Unix50

COVID-mts NLP

10
0

10
1

10
2

S
pe

ed
up

 (l
og

-s
ca

le
)

AvgTemp

MediaConv1

MediaConv2

LogAnalysis1

LogAnalysis2
FileEnc1

FileEnc2

Hadoop-streaming
PaSh
DiSh

Fig. 8.7: DISH performance on a 4-node cluster. DISH speedup (vs. PASH and Hadoop Streaming whenever possible)
over Bash for Tab. 8.2 rows 1–4 (left, box) and 5–8 (right, bar) (Cf.§8.7.1). (Log y-axis; higher is better.)

Experiments: We perform four experiments using several real-world shell scripts taken from a variety of
sources (Tab. 8.2). The first two experiments focus on the performance gains (§8.7.1) achieved by DISH’s
distribution on (1) a 4-node on-premise cluster, and (2) a 20-node cloud deployment—both over a variety
of benchmarks and workloads. We compare DISH’s performance against (1) GNU Bash [145], the de facto

sequential shell-script execution environment; (2) Apache Hadoop Streaming [74] (AHS), a production-grade
distributed data-processing framework that supports language-agnostic executables; and (3) in the case of
the 4-node setup, PASH-JIT [173, 95], a shell-script parallelization system from the Linux Foundation. For
the rest of this section we refer to PASH-JIT as PASH for brevity. PASH’s parallelism benefits make it a likely
alternative to DISH for smaller clusters, where DISH’s anticipated benefits of distribution might be smaller,
but this likelihood diminishes as the size of the cluster grows.

The last two experiments evaluate DISH’s dynamic dependency untangling (§8.7.2) and DISH’s correct-
ness (§8.7.3), i.e., its compatibility with respect to Bash across all scripts and the POSIX shell test suite.
Benchmarks: We use 8 sets of real-world benchmarks, totaling 76 shell scripts and 823 LoC. Classics
and Unix50 contain classic and recent (c. 2019) scripts that make heavy use of UNIX and Linux built-in

131

commands. COVID-mts contains four scripts used to analyze real telemetry data from mass-transit schedules
during a large metropolitan area’s COVID-19 response. NLP contains several scripts from UNIX-for-poets, a
tutorial for developing programs for natural-language processing out of UNIX and Linux utilities. AvgTemp
contains a large script downloading and processing multi-year temperature data across the US. MediaConv
contains two scripts that process, transform, and compress video and audio files. LogAnalysis contains two
scripts that apply typical system-administration and network-traffic analyses over log files. Finally, FileEnc
contains aliases that encrypt and compress files.
Baselines and implementations: Bash, PASH, and DISH executed every shell script completely unmod-
ified. Apache Hadoop Streaming (AHS) posed significant expressiveness limitations. Only 42 scripts in
Classics, Unix50, COVID-mts, and AvgTemp out of 76 scripts can be implemented natively (Tab. 8.2, col.
Pure HS). Another 7 scripts required manual porting by splitting them into mappers, reducers, and addi-
tional components: These components were not available natively by AHS—for example, components for
reading from two pipelines for diff.sh and for sorting after the reducer for bigrams.sh (both in Classics).
During porting, we put significant care to avoid limiting AHS’s parallelism: we modified 3 AHS scripts
in Classics to help HS introduce additional parallelism—for example, we manually expanded tr -cs into
tr -c | grep -v (both stateless). None of the scripts in NLP, MediaConv, or LogAnalysis can be imple-
mented in AHS as they perform processing in loops, the iterations of which depend on the files in a statically
indeterminable directory (see Fig. 8.5) and are therefore not expressible in AHS. We attempted to replace
the body of the loop with an AHS invocation but the startup overhead ended up dwarfing the execution time
by a factor of ten on average.
Hardware & software setup: The 4-node cluster consists of four 6-core Intel(R) Core(TM) i7-10710U
CPU nodes each with 64GBs of RAM, located in the same room and connected with an average bandwidth
of 90.8 Mbits/sec. The 20-node deployment consists of xl170 Cloudlab [51] nodes, each equipped with 10
× Intel Core E5-2640 2.4 GHz CPUs and 8GB of memory. Single-machine shells (Bash & PASH) were
evaluated on a machine with 20 × 2.80GHz Intel(R) Core(TM) i9-10900 CPUs and 32GB of memory.

For ease of deployment and reproducibility, we used Docker swarm to deploy (1) HDFS, and (2) the DISH

runtime. The containers were created using the standard Ubuntu 18.04 image. We use Bash v.5.0.3, PASH

132

Tab. 8.3: DISH performance in 20-node cloud deployment. DISH speedup over Hadoop Streaming for scripts that
AHS supports.
DISH speedup over AHS
Benchmark Avg Min 25th 50th 75th Max
Classics 2.74× 0.92× 2.41× 2.60× 2.85× 6.55×
Unix50 6.64× 0.91× 2.85× 5.38× 10.4× 16.9×
COVID-mts 10.4× 6.64× 8.91× 9.27× - 16.8×
AvgTemp 7.85× - - - - -

v.6e2ecba, and HDFS/Hadoop streaming version 3.2.2. We explicitly disabled checksum verification from
HDFS in all configurations, scripts, and measurements. All scripts were executed completely unmodified,
using environment variables, loops, and other shell constructs. To minimize statistical non-determinism we
repeated the experiments 3 times noticing imperceptible variance (< 1%).

The DISH implementation comprises 6784 lines of Python (preprocessor, compilation server, expansion,
compiler, and parser), 1011 lines of shell code (JIT engine and various utilities), and 1174 lines of C (com-
mutativity primitives, and other runtime components). All counts include only semantically meaningful lines
of code.
8.7.1. Performance
How does DISH’s distributed perform on small on-premise clusters and multi-node cloud deployments, and
how does it compare to state-of-the-art systems?
Results: Fig. 8.7 (note the log y-axis) shows the performance of DISH, PASH, and AHS on a 4-node on-
premise cluster across all benchmarks of Tab. 8.2. Box plots (left) show result quartiles for multi-benchmark
suites (Tab. 8.2, rows 1–4) and bars (right) show results for individual scripts (Tab. 8.2, rows 5–8). Across
all benchmarks, DISH achieves an average speedup of 13.6× (vs. 2.55× for PASH and 2.1× for AHS) and a
maximum speedup of 136.3× (vs. 7.8× for PASH and 8.6× for Hadoop Streaming). The average execution
time of all scripts on Bash is 299s, ranging from 1s for 34.sh in Unix50 to 2840s for nfa-regex.sh in
Classics. DISH is only slower than Bash (737s vs 568s) in the case of diff.sh from Classics, for which
AHS is even slower (766s). DISH achieves a performance comparable to Bash (1-2s) in 4.sh and 34.sh

from Unix50, because both perform a short-running head.

133

Tab. 8.3 shows the speedup of DISH over AHS on a 20-node Cloudlab deployment across all scripts imple-
mentable with AHS (Classics, Unix50, COVID-mts, AvgTemp). Across all benchmarks, DISH achieves an
average speedup of 6.17× and a maximum speedup of 16.95× over AHS. DISH is slower than AHS only for
three scripts: nfa-regex.sh from Classics (0.92×), 29.sh and 30.sh from Unix50 (0.91× and 0.94×).

Across all scripts in both deployments, DISH’s overheads (startup cost, dynamic orchestration, preprocessing,
compilation, scheduling) take less than 1 second.
Discussion: DISH is faster than Bash, PASH, and AHS across Tab. 8.2’s suites (rows 1–4) with respect to
average, and across all of Tab. 8.2 individual benchmarks (rows 5–8)—often by a significant margin (e.g.,
134× for AvgTemp against PASH). DISH’s (and PASH’s) speedup over Bash is due to parallelism. DISH’s
speedup over PASH is due to DISH’ co-location of data and computation: PASH cannot offload computation
and thus first gathers all data onto a single machine—a time-consuming stage—and then starts processing
in parallel. DISH is slower than Bash only for diff.sh, because (1) it is not highly parallelizable and (2) it
performs no filtering, i.e., its output is the same size as its input. In contrast to Bash, which simply fetches
all data and processes it locally, DISH tries to allocate most commands on the workers, but this leads to
increased data movement since moving data between workers does not avoid sending the whole output to the
client.

DISH’s speedup over AHS is due to a few different reasons. One reason is the increased expressiveness
of DISH’s dataflow model: DISH accepts and parallelizes complete scripts, discovering more opportunities
for parallelism. Many of the AHS scripts are broken into multiple map and reduce stages, often leaving
pipeline parallelism and data parallelism unexploited. Another reason is DISH’s dynamic independence
discovery, which allows for additional parallelism and better utilization of resources—in ways that AHS does
not support; we zoom into these benefits below (§8.7.2). In the Cloudlab deployment, DISH is (marginally)
slower than AHS in only two cases: (1) a script that is embarrassingly parallel and thus implementable in
AHS using only a single mapper (nfa-regex.sh), and (2) two scripts in Unix50 that see slightly more
benefits from our manual, hand-optimized AHS rewrite than they do from DISH’s automated distribution.

We found porting scripts to AHS a serious challenge. Many scripts required significant manual effort, re-

134

NLP

10
0

10
1

10
2

S
pe

ed
up

 (l
og

-s
ca

le
)

MediaConv1

MediaConv2

LogAnalysis1

LogAnalysis2
FileEnc1

FileEnc2
AvgTemp

DiSh no DDU
DiSh

Fig. 8.8: Dynamic dependency untangling. DISH speedup over Bash when toggling DDU (higher is better).

sulted in multiple error-and-fix cycles, and led to script size increases. To overcome AHS’s expressiveness
limitations, we had to modify a few scripts in unintuitive ways—often combining plain Bash scripts with
AHS mappers and reducers. These modifications made scripts significantly more complex and compounded
the effort to test and maintain them. Instead, DISH distributed scripts successfully without any such chal-
lenges.
8.7.2. Dynamic Dependency Untangling
What is the speedup due to dynamic dependency untangling?
Results: Figure 8.8 shows DISH’s speedup over Bash with and without dynamic dependency untangling
(DDU, § 8.4.3). It excludes scripts that contain a single dataflow, for which DDU is not applicable. DISH’s
average speedup over DISH-w/o-DDU is 6.9×, ranging between 1.2–13.9×.
Discussion: Enabling DDU improves performance significantly across all relevant scripts, by running in-
dependent dataflow regions in parallel. This allows DISH to expose parallelism not just within data pipelines
but across them, improving utilization. DDU also improves the distributed execution of scripts that operate
on many files, many or most of which are small enough to fit on a single HDFS block.

DDU is the main reason why DISH gets an edge over Bash on scripts that (1) have implicit independences
that are not highly parallelizable, and (2) operate on small data that incur imperceptible data-movement costs.

135

Examples of such scripts include MediaConv1 and FileEnc2.
8.7.3. Correctness
What is DISH’s output compatibility with respect to Bash?
Results: To check the correctness of DISH across all benchmarks, we check that its stdout and exit status
are equivalent to the ones produced by Bash. Across all benchmarks, totaling over 650 millions lines (18GB)
of output, DISH produces the same output and exit status as Bash.

We additionally execute the complete POSIX shell-test suite to evaluate DISH’s compatibility with Bash.
Out of all relevant tests, DISH diverges from Bash in two cases and only with respect to the exit status it
returns: both exit with an error, but Bash returns 1 whereas DISH returns 127, which is outside of the POSIX
mandated exit status range between 1–125. The reason is that DISH always invokes the underlying Bash
interpreter using the -c flag to set the $0 variable, and Bash (contrary to most other shells, e.g., dash, ksh,
mksh, sash, Smoosh, yash, zsh) exits with 127 in particular failing cases when called with -c.
Discussion: All benchmarks in Tab. 8.2 were executed with DISH repeatedly. After hundreds of runs over
several weeks, we observed dozens of different execution orders. Comparing the output on every run provides
significant confidence about the correctness of the resulting distributed execution. The POSIX test suite
mostly evaluates the correctness of dynamic orchestration (§8.3), as it does not feature many opportunities
for parallelization and features no opportunities for distribution.

8.8. Related Work
DISH is related to a large body of prior work.
Distributed data processing: Several environments assist in the development of distributed software sys-
tems: distributed computing frameworks [46, 130, 186, 129, 161] and domain-specific languages [17, 31,
122, 49, 127] simplify the development of distributed systems that fall under certain computational classes
such as batch processing, stream processing, etc. These systems deal with many of the challenges of dis-
tribution, but require developers to (re)write their computations manually in models that differ significantly
from UNIX shell programming.

Hadoop Streaming and Dryad Nebula are abstractions that allow using third-party language-agnostic com-

136

ponents similar to the UNIX shell, atop cluster-computing engines (Hadoop and Dryad, respectively). Both
require their users to understand and rewrite their shell scripts using the abstractions provided by each frame-
work. DISH can operate on arbitrary shell scripts automatically, without requiring any manual effort from
its users.
Distributed shells and tools: Several packages expose commands for specifying parallelism and distribu-
tion on modern UNIXes—e.g., qsub [63], SLURM [184], calls to GNU parallel [164]. Different from
DISH, their effectiveness is predicated upon explicit and careful invocation and is limited to embarrassingly
parallel (and short) programs. Often, these commands provide options to support an array of special sub-
cases—a stark contradiction to the celebrated UNIX philosophy. For example, parallel contains flags such
as --skip-first-line, -trim, and --xargs, that a UNIX user can achieve using head, sed, and xargs;
it also includes other programs with complex semantics, such as the ability transfer files between computers,
separate text files, and parse CSV. DISH embraces the UNIX philosophy, attempting to rewrite shell programs
to leverage distributed infrastructure.

Several shells [50, 117, 159] add primitives for non-linear pipe topologies—some of which target distribution.
Here too, however, developers are expected to manually rewrite scripts to exploit these new primitives.

POSH [144] is a recent shell for scripts operating on NFS-stored data. It brings pipeline components closer
to the data on which they operate, but operates only on shell pipelines that are fully expanded—i.e., ones that
do not use dynamic features. DISH operates on shell scripts that use (1) any POSIX composition primitive,
and (2) the full set of dynamic features present in the UNIX shell.
Distributed operating systems: There is a long history of networked and distributed operating systems [146,
179, 136, 128, 140, 151, 48, 24, 153]. These systems offer abstractions that (1) are similar, but not identical,
to the ones offered by UNIX, (2) operate at a lower level of abstraction (e.g., that of system calls, rather than
shell primitives), and (3) often aim at simply hiding the network rather than offering scalability benefits.
Instead of implementing full-fledged distributed operating system, DISH shows that a thin but sophisticated
rewriting-based shim can operate on completely unmodified programs, avoid requiring any user input, and
achieve significant speedups by executing fragments in parallel across nodes.

137

Cloud build systems: Several cloud build systems [4, 80, 53, 5] distribute and parallelize the execution
of large builds by constructing dependency graphs using dependency information explicitely specified by
their users. Contrary to these systems, DISH operates on general shell programs without exploiting domain-
specific information—e.g., build dependencies—and by taking a just-in-time approach that resolves depen-
dencies during the execution of the script.
Correct distribution of dataflow graphs: The DFG is a prevalent model in several areas of data process-
ing, including batch- and stream-processing. Systems implementing DFGs often perform optimizations that
are correct given subtle assumptions on the dataflow nodes that do not always hold, introducing erroneous
behaviors. Recent work [81, 154, 114, 96] attempts to address this issue by performing optimizations only in
cases where correctness is preserved, or by testing that applied optimizations preserve the original behavior.
DISH uses its dynamic orchestration to achieve compatibility with the underlying shell and then achieves
correct distribution on a per-region level by building on prior work on provably correct transformations for
order-aware dataflow graphs (see Chapter 4).

8.9. Discussion
Programmability: An important consideration with any automated system is how it affects programma-
bility, and specifically the ability to debug a misbehaving program or to test a program for correctness. DISH

does not negatively affect the developer experience compared to a shell: a developer can use a combination
of the many existing tools and commands—e.g., head and grep—as they would normally do to inspect their
script’s output and determine what is wrong. When it comes to shell scripts intended for distributed envi-
ronments, DISH in fact improves developer experience: a developer may use the same set of commands for
local or distributed interactions—e.g., to inspect and project parts of a file, regardless of whether that file is
stored in HDFS or the local system. Furthermore, developers using DISH can reap the scalability benefits of
distribution in analyzing or testing scripts by automatically scaling out load to multiple computers.
Fault tolerance: DISH does not tolerate failures such as worker aborts or network partitions (§8.1). In such
cases users are expected to rerun their scripts as shell users normally do in the non-distributed case. Achieving
fault tolerance in the context of general shell scripts is in fact particularly challenging due to the prevalence
of black-box components that may perform arbitrary side-effects. A fault-tolerant version of DISH should be

138

able to track all these side-effects and re-execute them appropriately when a script fails. This is in contrast
to constrained cluster computing frameworks such as MapReduce and Spark that have precise information
about the inputs and outputs of purely functional program components enabling simplified re-execution of
dependency graphs (lineage) in the presence of failures. DISH’s design however combined with incremental
script execution [45] creates an opportunity for addressing this challenge with a hybrid approach: employ
conventional fault tolerance approaches for script fragments with annotation information, and instrument the
rest of the script to capture and replay its side-effects appropriately in cases of failure.

139

CHAPTER 9

Out-of-order speculative execution for the shell

Material from this chapter was previously published as “Georgios Liargkovas, Konstantinos Kallas, Michael
Greenberg, and Nikos Vasilakis. Executing Shell Scripts in the Wrong Order, Correctly. In Proceedings of
the 19th Workshop on Hot Topics in Operating Systems, HOTOS ’23, page 103–109, New York, NY, USA,
2023. Association for Computing Machinery.” [110]. Georgios Liargkovas, an undergraduate student at the
time, was the first author of this paper and the lead developer of the hs system prototype; all of the authors
contributed to coming up with the idea of speculative execution for shell scripts, and I worked closely with
Georgios on the technical development of the system prototype and its evaluation.

9.1. Introduction
This chapter focuses on enabling a powerful optimization for shell programs: out-of-order program execu-

tion [16]. A program’s execution order need not be determined by syntax, i.e., the order in which blocks
or instructions are written, but rather by semantics, i.e., the true dependencies between different blocks or
instructions. It is only safe to rearrange a program in ways that respect these dependencies; to be worthwhile,
a rearrangement must also (1) accelerate execution, e.g., by executing fragments for which input data is al-
ready available, and (2) better utilize the underlying resources available to the program. We identify dynamic
interposition, tracing, and containment as key ingredients for this kind of optimization support. Tracing and
containment yield another advantage over prior work described in this dissertation: we can appropriately
trace, contain, and selectively merge a command’s effects without any foreknowledge of its semantics—that
is, without need for command specifications!

To explain the potential of out-of-order execution for shell scripts, we ground the discussion with a concrete
instance of a shell script that suffers from a common disorder: overly sequential execution.
A patient script: Consider the core of a real bioinformatics script for mapping genomic sequence data
to a reference genome (Fig. 9.1), a typical task in, e.g., cancer genomics [124]. The script first indexes
the reference genome (a); it then aligns each set of samples based on the genome (b), combines the results
(c), removes duplicates (d), and plots a coverage histogram (e). Running this script for a 152MB reference

140

1 SAMPLES="100 101 102 103"

2 REF="hg19.fa"

3 GROUPS="1 2"

4 # (a) Index

5 bwa index "$REF"

6 for sm in $SAMPLES

7 do

8 # (b) Align sample

9 for gr in $GROUPS

10 do

11 bwa aln "$REF" "$sm.$gr.fastq" > "$sm.$gr.sai"

12 done

13 # (c) Combine sample pairs

14 bwa sampe "$sm.1.sai" "$sm.2.sai" |

15 samtools view -Shu - > "$sm.bam"

16 # (d) Remove polymerase chain reaction-induced dups

17 samtools rmdup "$sm.bam" "$sm.nodup.bam"

18 # (e) Plot coverage histogram

19 samtools mpileup "$sm.nodup.bam" |

20 cut -f4 | python plot.py "$sm.coverage.pdf"

21 # Delete temporary files

22 rm -f "$sm.1.sai" "$sm.2.sai"

23 done

Fig. 9.1: A bioinformatics script slightly adapted from Köster and Rahmann [101] that maps sequence reads to a
reference genome.

genome and 3.3GB input samples takes about 30 minutes on a 3GHz 16-core machine on Cloudlab [51].
The script invokes a variety of commands: specialized genomics executables (bwa, samtools), core utilities
(cut, rm), and custom scripts in interpreted languages (python plot.py). It combines these commands
using various shell features (parameters, for, >, |). Several of those invocations are completely independent,
and could be safely executed in any order. Every command depends on the initial indexing (a), but each
outer loop iteration works on a different sample and is independent of the others. Within each sample, each
group’s alignment can be done independently. Sadly, the execution order of these invocations on any modern

shell interpreter will depend entirely on the script’s syntax—i.e., the order in which the developer wrote the
commands—leaving significant opportunities for optimization unexploited.
A treatment: We will optimize shell scripts by reordering and interleaving their commands, letting the se-
mantic dependencies guide execution instead of syntactic ordering. We will execute independent commands
out of order and in parallel, enforcing order only between commands whose execution depends on each other.

Easier said than done! Decoupling execution order and syntax order poses daunting challenges. First, the
shell is hostile to analysis, so it is hard to predict which commands will run at all, never mind their order:

141

execute

cmd
results

env
updates

Scheduler

Preprocessor

Runtime
hooks

Shell
script

Script with
holes

bwa index "$REF"

bwa aln "$REF" …
bwa aln "$REF" …
bwa sampe …

Partial
Program

Order…

…

Virtualization

Command

… …

Tracing

Shell

Shell

Shell
speculate

Command

Tracing

Fig. 9.2: A high-level overview of hs, a speculative out-of-order shell-script executor. The preprocessor and runtime
hooks extend PASH-JIT (Chapter 7) and tracing extends Riker [45].

commands are interleaved with complex and highly dynamic control flow—e.g., if statements, command
substitutions, and parameters determined by previous commands. The shell’s dynamism contrasts sharply
with traditional compiler optimizations working on object code, while intermediate values can usually be
inferred in object code, it is impossible to infer the state of the file system at different points in the execution
of a shell script. Second, an invoked command’s semantics is coarse, complex, and unbounded—if not
completely opaque. It is impossible to statically determine their interdependencies. The shell, again, presents
serious challenges compared to the finite and well-defined set of instructions in object code, with generally
clear dependencies and effects.
A prescription: While compiler reordering optimizations are traditionally static and pessimistic, our ap-
proach for the shell must be dynamic and opportunistic. A dynamic approach circumvents the intractability
of ahead-of-time order extraction: our techniques learn about the execution order dependencies incremen-
tally, building up understanding as the script runs. An opportunistic approach means we need not spec-

142

bwa index $REF

bwa … >100.2.sai

bwa … >100.1.sai

bwa sampe 100…

bwa … >101.1.sai

samtools rmdup …

rm −f 100…

bwa index $REF

bwa … >100.2.sai

bwa … >100.1.sai

bwa sampe 100…

bwa … >101.1.sai

samtools rmdup …

rm −f 100…

bwa index $REF

bwa … >100.2.sai

bwa … >100.1.sai

bwa sampe 100…

bwa … >101.1.sai

samtools rmdup …

rm −f 100…

bwa index $REF

bwa … >100.2.sai

bwa … >100.1.sai

bwa sampe 100…

bwa … >101.1.sai

samtools rmdup …

rm −f 100…

bwa index $REF

bwa … >100.2.sai

bwa … >100.1.sai

bwa sampe 100…

bwa … >101.1.sai

samtools rmdup …

rm −f 100…

Committed (C) Speculated (S)Not Executed (NE) Execution Frontier
Dependency Anti-Dependency

Fig. 9.3: Step-by-step scheduling and orchestration of Köster and Rahmann’s [101] script, simplified (Fig. 9.1).

ify or even understand command behavior: our techniques optimistically execute commands in an isolated
environment—identifying and rolling back conflicting side-effects as they arise.12

We implement our approach in a prototype we call hs—so called because it’s the shell (sh), but out-of-
order. hs has three parts (Fig. 9.2): a script preprocessor, a scheduler, and runtime hooks. The preprocessor

extracts commands and their partial program order, leaving holes in the preprocessed script where these
commands were originally. Each of these holes is instrumented with runtime hooks that communicate with
the scheduler; the partial order captures the syntactically determined execution order of different commands
and is then handed off to the scheduler for execution. The scheduler executes commands opportunistically
out-of-order, rolling back when dependencies have been violated. It uses (1) tracing to discover command
dependencies and detect dependency violations, and (2) containment to shield against interference and allow
rollbacks. The runtime hooks are invoked while executing the preprocessed script and communicate with
the scheduler; their job is to hide out-of-order execution so that our reorderings are semantically transparent,
i.e., the script runs the same. They achieve that by propagating environment updates to the scheduler so that
it has a fresh and correct view of the execution environment, potentially triggering some reexecution, and
modify the shell state according to the effects of each command that was executed by the scheduler.
A relief of symptoms: On a 3GHz 16-core machine on Cloudlab [51], the ordinary syntax-guided exe-
cution order executes the script in about 30 minutes; the speculative out-of-order execution guided by the
script’s semantics completes in 7 minutes and 35 seconds (3.9× speedup).

12We say ‘opportunistic’ rather than ‘optimistic’, as we modulate our optimism: we will only speculate commands which we can
see have some hope of succeeding.

143

9.2. System overview
We now apply hs on the bioinformatics script (Fig. 9.1), sketching its design as we go (Fig. 9.2). hs combines
preprocessing, tracing, speculation, and containment.
Preprocessing: First, the shell script is sent through a preprocessor that extracts all commands in the script.
The prototype preprocessor of hs builds on and extends the just-in-time component of PaSh [95]. The
preprocessor is the only syntax-driven component of our approach, parsing the shell script and replacing all
command nodes in the abstract syntax tree (AST) with holes managed by the runtime hooks during execution.
These command nodes are then added to the execution set—all of the commands that need to be executed—
and sent to the scheduler. The execution set also encodes the syntactic program order, i.e., the order in
which commands were originally (syntactically) written. This is a partial (rather than total) order, as some
commands are not syntactically ordered—e.g., two different branches of an if statement. The partial order is
an under-approximation of the control flow graph, as it doesn’t model control builtins like break, reflection
builtins like source, or function calls.

For the bionformatics script lines 5, 11, 14-15, 17, and 19-20 (Fig. 9.1) would all be replaced with holes, with
each hole corresponding to a command in the execution set (Fig. 9.3). After preprocessing, commands in the
execution set may contain all sorts of unresolved fragments—e.g., unexpanded strings, unresolved variables,
and unevaluated command substitutions—similar to $REF (line 11). These are script fragments that cannot
be evaluated statically, as their values might change during execution.
Runtime hooks: The runtime hooks are invoked during the execution of the preprocessed script. When
execution reaches a hole, the hooks block and wait until the scheduler has completed the execution of the
command for that hole. The hooks receive the command’s exit status and observe its effects on the file-
system and the shell state (like variable updates or shell state reconfigurations (e.g., cd or set -e). The
hooks must propagate all of this update information to the scheduler, as it will affect commands downstream
in the partial order. In Fig. 9.1’s script, the hooks propagate assignments to variables such as $REF, $sm, and
$gr to the scheduler; other commands observe the latest state.
Scheduler: The scheduler is responsible for running commands in the execution set according to the pro-
gram’s partial order. Commands can be in one of four states: not executed (NE), speculated (S), committed/-

144

taken (C), and committed/not taken (CN). Committed commands form a closed prefix in the partial order: if
a command is committed, all prior commands are committed, too.

A command’s state determines how the scheduler treats it (Fig. 9.4). At each step, the scheduler selects a
minimal (NE) command in the partial order and executes it, tracing its reads and writes; the runtime hooks
ensure the command runs in the latest configuration (filesystem, environment variables, etc.). The scheduler
speculatively executes a number of upcoming commands, optimistically assuming that the configuration will
not change in ways that affect their execution. To speculatively execute commands safely, the scheduler must
be able to trace, contain, and merge (or rollback) their results—to achieve this, we execute commands in a
virtualized environment (see below).

Once the first command in the partial order program finishes executing, it is directly marked as committed/-
taken (C). Its results are passed to the runtime hooks, which record its write-set—i.e., the files that it wrote
to—to later check for any dependencies with the read- and write-sets of speculated commands. When a com-
mand c that isn’t first in the partial order terminates, we check its read-set against the write-set of all preceding
commands that were not yet committed when we started speculating c. For example, when speculatively ex-
ecuting the fifth command samtools rmdup in the second step of scheduling (Fig. 9.3, second column), the
scheduler checks the write-sets of both invocations of bwa aln and the invocation of bwa sampe (dashed
arrows). If there is no dependency (the read-set of the command is independent from all preceding write-
sets), we mark the command speculated (S); if there is a dependency, we leave the command not executed
(NE), considering it for execution in the next round of scheduling.

If the scheduler selects a command that is already speculated (S), then we can try to commit: the scheduler
makes sure that the results of speculation are valid—i.e., that no extra-command dependency changes were
observed since speculation. If no dependencies emerged, the scheduler commits the changes, updating the
file system and shell state, and marking the command committed/taken (C). If a speculateed command ends
up not being executed (e.g., a branch that was not taken), we mark the command as commited/not taken (CN)
to preserve the closed prefix invariant.

145

NE

 C

 S

CN

Speculatively Execute
No Dependencies

Dependency
Found

Speculatively Execute
Dependencies Exist

Commit Results
When In Frontier

Execute

Not taken branch

Fig. 9.4: Transition system for command state in the scheduling algorithm.

Tracing: In order to discover the read- and write-sets of executed commands, we trace filesystem-affecting
system calls. Whenever a command performs a read (or write) call, the tracer records it in the command’s
read (or write) set. We build on Riker’s [45] system call tracing, which already has some optimizations to
lower overhead: tracing only relevant system calls, and intercepting calls to libc via LD_PRELOAD.
Virtualization: Our approach requires that the scheduler can control whether (and when) to apply the
effects of speculatively executed commands, making them persist in the broader operating environment. We
use a combination of custom namespaces [1] and OverlayFS [36]: we can execute commands speculatively
in a restricted environment that isolates side-effects between executions.

We use unshare to create new namespaces for speculatively executing commands, disallowing any types of
side effects—e.g., accessing the network or sending signals—except from writing to a file or reading from a
file in the file system. The IPC, mount, network, PID, and user namespaces are unshared. We use OverlayFS
to capture any modifications to the underlying system in a separate copy for each speculated command,
deciding later whether to merge or drop these changes. OverlayFS provides a layered representation of the
filesystem, allowing operation on one workspace copy while keeping another copy clean. OverlayFS has
three different layers: merged, lower, and upper. The merged layer presents the union of the lower and upper
layers: it is the lower layer with the upper layer’s changes applied. The lower layer is the ‘base’ filesystem—
for us, it’s the original filesystem, and every overlay shares the same lower layer. The upper layer, unique to
each overlay instance, holds the updates to the lower layer. When we speculate commands, they can only see
the merged layer: they seem to be affecting the whole system, but their changes are caught and stored in the

146

upper layer; files are lazily copied from the lower to the upper layer as writes occur.

Upper
�le1 �le2 �le3 Merged

�le2 �le3
�le2 Lower�le1

If a file exists in both layers, the merged layer can only access the instance of
the upper layer, concealing the lower layer—e.g., if file1 and file2 pre-exist,
running echo "foo" > file2 and echo "foo" > file3 results in the merged layer shown on the right.
Committing a speculated command copies the contents of the upper layer to the base file system, overwriting
and deleting files when necessary. When we detect a dependency, we discard the upper layer of the speculated
command and will re-run it in a fresh overlay. We also capture the stdout/err of speculated commands and
release it once they become committed. When a command reads or writes to pipes, we must be careful to
capture and replay the pipes appropriately should we need to re-speculate the command.
Fail-fast speculative execution: Containment allows hs to speculatively execute commands while col-
lecting their effects and selectively applying them to the underlying system. But some effects must actually
happen for a command to execute successfully. For example, a speculated (and thus contained) curl would
return a failed response, as the recv operation over the network would be contained—no actual network
communication would be taking place. It’s not enough to merely contain effects: we must detect when
containment changes behavior and treat the command differently.

Runtime interception can detect side effects in IPC namespaces (e.g., signals) and network namespaces (e.g.,
send). When the runtime hooks detect such an effect, they (1) kill the speculated command, tearing down
relevant containment setup and reclaiming its computational resources, and (2) inform the scheduler to not
speculate this command again, since its success depends on non-virtualizable side-effects.
Worst-case performance: A critical requirement for any out-of-order execution optimization is that its
worst-case performance does not significantly diverge from the original straightline syntactic-order execu-
tion. The worst-case performance in our setting corresponds to all speculations having failed, always discov-
ering dependencies and discarding speculation results. The scheduler design satisfies this requirement since
in each round the first non-committed command (the frontier) is not speculated but rather executed normally,
i.e., with minimal tracing and without virtualization. Even if all speculation of next commands fails, the
frontier command will always execute normally and therefore execution time will correspond to the baseline
execution time with the minimal overhead (from tracing and the communication between the executor and

147

scheduler). For the bioinformatics script (Fig. 9.1), artificially introducing failures into all speculation yields
a 38 minutes execution time (26% slowdown).
Applicability: The techniques used in hs are not limited to data processing scripts (Fig. 9.1); it can be
applied to any script that (1) spends significant execution time and resources on external commands, and
(2) contains non-trivial dependencies between these commands. Many shell application domains that satisfy
these requirements: data processing, build scripts, continuous integration and deployment (CI/CD), scientific
computation, orchestration, maintenance, and configuration.
Limitations: Our approach assumes that commands are not malicious. While unshare offers more pro-
tection than chroot, our speculation and virtualization support are not intended to defend against security
threats present in scripts. Additionally, we assume that commands do not change their behavior based on
their relative execution times or absolute PIDs—as these values will not be the same as in the original exe-
cutions for speculated commands (due to unsharing of the process namespace). For example, if a command
accesses the PID of the previously executed command with $!, our speculation engine will not provide the
exact same value as in the sequential execution. Our virtualization barrier is only as good as the OS makes
it: if, say, reading from a filesystem is observable (e.g., it causes reads to an S3 bucket, which causes billing),
then our virtualization will be observable.

9.3. Discussion
Our proposed system for out-of-order speculative execution promises to improve shell script performance.
But beyond these immediate dividends, our work is also a foundation on which to build.
Virtualization as a primitive: We use containment and virtualization to optimize the execution of com-
positions of arbitrary black-box commands that could perform any side-effect on their surrounding system;
instead of knowing what a command does a priori, we simply run it and observe what it did. Easy and fric-
tionless virtualization could have many other uses for developers—it ought to be a primitive in their toolkit.
We envision a higher-order command—call it try—where try cmd contains cmd and records its effect, let-
ting users decide whether to merge its effects onto the underlying system. A motivating example: virtualize
complex and potentially buggy (but not malicious) third-party scripts before committing their results. To-
day’s containerization systems, like Docker [123], set up a different environment, making it hard to merge

148

changes to the underlying system—but try virtualizes the existing system.13

Optimal scheduling and performance tradeoffs: Out-of-order speculative execution trades compute for
latency; speculating more commands means lower latency but also more CPU and memory usage through
failed speculations. Any fixed tradeoff will be wrong some of the time. A better tradeoff would use a con-
figurable, gradual scheduling algorithm that makes bets commensurate with its budget: at low system load,
make bigger bets and speculate further out; at high system load, make more conservative bets and speculate
less—or not at all.
Harnessing heterogeneous resources: Our simple scheduler speculatively executes all of a script’s com-
mands on the same machine, betting that it has unutilized computational resources (e.g., additional cores)
that could be used to speed up the computation. To ensure correct execution, speculated commands are
already virtualized and isolated from the main execution environment. With our commands so neatly con-
tained... why stay on the same machine? We could run commands in a variety of ‘modern’ environments:
serverless functions, cloud compute, a distributed cluster. Keeping the local and remote compute synchro-
nized demands a sometimes-eager sometimes-lazy file system synchronization mechanism: the bottleneck
becomes synchronizing changes to file system state. Some relevant files could be transferred up front (e.g.,
binaries, obvious inputs) while the rest could be lazily transferred on demand.
Script maintainability and debuggability: The succinctness of shell scripts facilitates quick prototyp-
ing and experimentation, but makes it hard to maintain scripts for longer periods of time. Our proposed
approach records several details of a script: execution information and dependencies between commands.
Given such detailed information, we could rewrite the input script to expose the true command dependen-
cies. If done with care, rewritten scripts could be more maintainable and debuggable: explicit dependencies
provide documentation and can be used by the developer to localize an error. At the same time, a rewritten
script should better utilize the underlying resources with less overhead from speculation, tracing, or virtual-
ization. Or, rather than yielding a script, we could produce a Makefile or some other explicit representation
of dependencies.
More shell optimization: Given the feasibility of our command scheduling and out-of-order execution and
the past success of parallelization and distribution... what other optimizations can we apply to the shell? One

13https://github.com/binpash/try is a prototype.

149

https://github.com/binpash/try

possibility is fusion [43], an optimization from functional programming analogous to loop fusion: we can
combine whole command invocations to reduce redundant parsing/unparsing communication overheads be-
tween them, enabling whole program optimizations across different commands. Such an approach might be
particularly effective on single-binary suites of software utilities, like busybox. The space of compiler opti-
mizations is vast, and we suspect that our work could help support a variety of other impactful optimizations,
like constant folding, common subexpression elimination, or deforestation [178, 58].
9.4. Related Work
Automated parallelization for the shell: Recent work on shell-script parallelization and distribution [173,
95, 131, 144] (some of which is described in the previous chapters of this dissertation) has delivered sig-
nificant performance benefits by exploiting lightweight command specifications. The approach proposed
by hs, however, does not require any command specifications—we infer the necessary command-execution
information at runtime.
Explicit dependency encoding: Workflow and build systems [160, 101, 4, 59] explicitly express depen-
dency graphs by manually encoding all input and output dependencies of each step. Encoding dependencies
statically and ahead-of-time yields better program schedules, but (1) requires users to provide all dependen-
cies or suffer from stale or incorrect results, and (2) cannot express the high dynamism prevalent in shell
scripts. Our approach addresses both these challenges.
Speculative execution: Speculation and rollback are not new ideas, with an extensive history not just in
architecture but also at the application level, e.g., for system configuration [162] or security checks [134].
In some of these proposals speculation is enabled by modifying the application (e.g., Undo [35]), while
others support arbitrary black-box applications [162, 133, 134]. Thread-level speculation is a widely studied
technique for extracting parallelism from applications at runtime by speculatively executing parts of them
in different threads and rolling them back if dependencies are violated [170, 54]. We build on these ideas,
coupling more tightly with the shell’s language and semantics: instead of considering the whole script as
a black-box application, separating it into very fine-grained tasks, and tracking all interprocess boundaries
and low-level application state; we use the script semantics to separate it into logical application components
(command invocations). Our approach lets us track less information (file system modifications and shell
state), reducing overhead and simplifying our implementation.

150

CHAPTER 10

Conclusion

This dissertation describes the development of the first systems to automatically optimize shell scrips. In
addition to the systems, this dissertation also introduces three key components that underlie the systems and
enable their development: (1) a command specification framework that allows reasoning about scripts with
black-box commands, (2) an order-aware dataflow model that is the foundation of a shell-to-shell compiler,
and (3) a just-in-time architecture that enables optimizing scripts with arbitrarily dynamic behavior. Two
key characteristics of the work described in this dissertation is that it does not require any modifications
to the user scripts or the underlying interpreter, and that it is accompanied by strong practical and formal
correctness guarantees, i.e., that the optimized scripts have the same beahvior as the originals. Finally, all
of the work described in this dissertation is open-source, hosted under the Linux Foundation as the PaSh
project, and can be found at https://github.com/binpash.

10.1. Future Work
A lot of the work described in this dissertation can act as the foundation for additional systems, tooling, and
support for the shell. Two interesting directions for future work include: supporting the deployment of shell
scripts to cloud resources for additional scalability and for processing cloud-native data; and developing
tooling that checks that a shell script behaves as expected before it is executed. The second direction is
particularly important both to protect from benign bugs, but also from malicious ones, since shell command
injections are ranked as the 5th most dangerous type of weakness in 2023 according to the CWE database14.
The contributions described in this dissertation can kickstart the development of such tools, e.g., a cloud-
native shell can use the just-in-time architecture as its foundation to be able to support arbitrary scripts with
correctness guarantees.

10.2. Outlook
We often tend to think that higher level and more declarative languages are easier targets for optimizations
and for building systems to achieve performance benefits. One bigger conclusion of this dissertation is that

14https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html.

151

https://github.com/binpash
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

even if a language has characteristics that are hostile to optimizations, e.g., high dynamism and black-box
subcomponents, it still has a beautiful and elegant core that cleanly describes relevant workloads and is
amenable to optimizations. The work described in this dissertation identifies one such fragment for the shell,
one that describes dataflow computations, that captures the bulk of the computation that happens in the shell.
By clearly delineating this fragment and optimizing it, while carefully maintaining behavioral equivalence
for the rest of the language, this work manages to automatically get significant performance benefits for
arbitrary shell scripts.

Furthermore, the scope of the work described in this dissertation is not limited to the language of the shell.
There exist several other component composition workloads, such as scripts written Python and Perl, or
applications written using workflow languages, that have similar characteristics and constraints, where my
work could be applicable. The main common characteristic of these workloads is that they are all bimodal;
the core language, e.g., shell, Python, etc., is used to compose or glue together several components that can
be written in arbitrary languages and can thus be considered black-boxes. Additionally, most of the compu-
tation happens using the black-box components so there is significant benefit to be acquired by optimizing
them instead of the core language. Finally, for these workloads it is very hard to reimplement the language
interpreter from scratch, because that would require significant effort and jeopardize compliance with the
legacy behavior. The three main building blocks introduced in this dissertation, i.e., the specification frame-
work, the just-in-time architecture, and the order-aware dataflow model, can be lifted to arbitrary workloads
for which these constraints hold, enabling performance and other types of benefits there too.

152

BIBLIOGRAPHY

[1] namespaces(7) – linux manual page. https://man7.org/linux/man-pages/man7/namespaces.7.html.

[2] gRPC. https://grpc.io/, 2018. Accessed: 2019-04-16.

[3] Dash (Debian Almquist shell). https://git.kernel.org/pub/scm/utils/dash/dash.git/, 2021.

[4] Bazel Dynamic Execution. https://bazel.build/remote/dynamic, 2022. [Online; accessed Feb 1, 2022].

[5] Google Cloud Build. https://cloud.google.com/build/docs/overview, 2022. [Online; accessed Feb 1,
2022].

[6] ksh (korn shell). http://www.kornshell.com/, 2023.

[7] Kubernetes. https://kubernetes.io/, 2023.

[8] mksh (MirBSD Korn Shell). http://www.mirbsd.org/mksh.htm, 2023.

[9] Oil Shell. https://www.oilshell.org/, 2023.

[10] Systemd: System and Service Manager. https://systemd.io/, 2023.

[11] The Ninja Build System. https://ninja-build.org/, 2023.

[12] Yash (Yet Another Shell). https://magicant.github.io/yash/, 2023.

[13] zsh (Z shell). https://www.zsh.org/, 2023.

[14] eBPF (extended Berkeley Packet Filter). https://ebpf.io/, 2024.

[15] PaSh Project. https://github.com/binpash, 2024.

[16] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Techniques, and Tools,
volume 2. Addison-Wesley Reading, 2007.

[17] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. Consistency Analysis in
Bloom: a CALM and Collected Approach. In CIDR, pages 249–260, 2011.

[18] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and David I August. Perspective: A
Sensible Approach to Speculative Automatic Parallelization. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
pages 351–367, 2020.

153

https://bazel.build/remote/dynamic
https://cloud.google.com/build/docs/overview
https://ninja-build.org/

[19] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query Language: Semantic
Foundations and Query Execution. The VLDB Journal, 15(2):121–142, 2006.

[20] K. Arvind, E. David Culler, Robert Iannucci, Vinod Kathail, Keshav Pingali, and Robert Thomas.
The Tagged Token Dataflow Architecture. Technical report, MIT Laboratory for Computer Science,
1984.

[21] K. Arvind and Rishiyur S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow Archi-
tecture. IEEE Trans. Comput., 39(3):300–318, March 1990.

[22] The Austin Group. POSIX.1 2017: The Open Group Base Specifications Issue 7 (IEEE Std 1003.1-
2008), 2018.

[23] John Aycock. A Brief History of Just-In-Time. ACM Computing Surveys (CSUR), 35(2):97–113,
2003.

[24] Amnon Barak and Oren La’adan. The MOSIX Multicomputer Operating System for High Perfor-
mance Cluster Computing. Future Generation Computer Systems, 13(4):361–372, 1998.

[25] Jonathan C Beard, Peng Li, and Roger D Chamberlain. RaftLib: a C++ Template Library for High
Performance Stream Parallel Processing. The International Journal of High Performance Computing
Applications, 31(5):391–404, 2017.

[26] Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu, and
Ralf Treinen. Analysing installation scenarios of debian packages. In Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference, TACAS 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland,
April 25–30, 2020, Proceedings, Part II, pages 235–253. Springer, 2020.

[27] Jon Bentley. Programming Pearls: A Spelling Checker. Commun. ACM, 28(5):456–462, May 1985.

[28] Jon Bentley, Don Knuth, and Doug McIlroy. Programming Pearls: A Literate Program. Commun.
ACM, 29(6):471–483, June 1986.

[29] Gérard Berry and Georges Gonthier. The esterel synchronous programming language: Design, se-
mantics, implementation. Sci. Comput. Program., 19(2):87–152, November 1992.

[30] Pawan Bhandari. Solutions to unixgame.io. https://git.io/Jf2dn, 2020. Accessed: 2020-04-14.

[31] Martin Biely, Pamela Delgado, Zarko Milosevic, and Andre Schiper. Distal: A Framework for Imple-
menting Fault-tolerant Distributed Algorithms. In Proceedings of the 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), DSN ’13, pages 1–8, Wash-
ington, DC, USA, 2013. IEEE Computer Society.

[32] Carl Friedrich Bolz. Meta-tracing just-in-time compilation for RPython. PhD thesis, Universitäts-und

154

Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2014.

[33] Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with odes. In Proceedings of
the 16th International Conference on Hybrid Systems: Computation and Control, HSCC ’13, pages
113–118, New York, NY, USA, 2013. Association for Computing Machinery.

[34] Stephen R Bourne. An introduction to the UNIX shell. Bell Laboratories. Computing Science, 1978.

[35] Aaron B Brown and David A Patterson. Undo for operators: Building an undoable e-mail store. In
USENIX Annual Technical Conference, General Track, pages 1–14, 2003.

[36] Neil Brown, Miklos Szeredi, Amir Goldstein, Vivek Goyal, Randy Dunlap, Linus Torvalds, Pavel
Tikhomirov, Kevin Locke, Sargun Dhillon, Chengguang Xu, and Deming Wang. The overlay filesys-
tem. The Linux Kernel documentation, 2022. Started in 2014.

[37] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat
Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware. ACM Trans. Graph.,
23(3):777–786, August 2004.

[38] Michael Burke and Ron Cytron. Interprocedural Dependence Analysis and Parallelization. In Pro-
ceedings of the 1986 SIGPLAN Symposium on Compiler Construction, SIGPLAN ’86, pages 162–175,
New York, NY, USA, 1986. ACM.

[39] Enrico Cappellini, Frido Welker, Luca Pandolfi, Jazmín Ramos-Madrigal, Diana Samodova, Patrick L
Rüther, Anna K Fotakis, David Lyon, J Víctor Moreno-Mayar, Maia Bukhsianidze, et al. Early Pleis-
tocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature, 574(7776):103–
107, 2019.

[40] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull.,
38:28–38, 2015.

[41] Armando Cerna. Pacaur building Script. https://github.com/armandocerna/dotfiles/blob/master/
scripts/pacaur.sh.

[42] Craig Chambers. Staged compilation. ACM SIGPLAN Notices, 37(3):1–8, 2002.

[43] Wei-Ngan Chin. Safe fusion of functional expressions ii: Further improvements. Journal of Func-
tional Programming, 4(4):515–555, 1994.

[44] Kenneth Ward Church. Unix™for poets. Notes of a course from the European Summer School on
Language and Speech Communication, Corpus Based Methods, 1994.

[45] Charlie Curtsinger and Daniel W Barowy. Riker: Always-Correct and Fast Incremental Builds from
Simple Specifications. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages 885–

155

https://github.com/armandocerna/dotfiles/blob/master/scripts/pacaur.sh
https://github.com/armandocerna/dotfiles/blob/master/scripts/pacaur.sh

898, 2022.

[46] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
Commun. ACM, 51(1):107–113, January 2008.

[47] Jack B. Dennis. First version of a data flow procedure language. In B. Robinet, editor, Programming
Symposium, pages 362–376, Berlin, Heidelberg, 1974. Springer Berlin Heidelberg.

[48] Sean Dorward, Rob Pike, David L Presotto, Dennis Ritchie, Howard Trickey, and Phil Winterbottom.
Inferno. In Proceedings IEEE COMPCON 97. Digest of Papers, pages 241–244. IEEE, 1997.

[49] Cezara Drăgoi, Thomas A Henzinger, and Damien Zufferey. PSync: a partially synchronous language
for fault-tolerant distributed algorithms. ACM SIGPLAN Notices, 51(1):400–415, 2016.

[50] Tom Duff. Rc—A shell for Plan 9 and Unix systems. AUUGN, 12(1):75, 1990.

[51] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh
Mishra. The Design and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 1–14, July 2019.

[52] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards Haskell in the Cloud. In Proceedings
of the 4th ACM Symposium on Haskell, Haskell ’11, pages 118–129, New York, NY, USA, 2011.
ACM.

[53] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac, Wolfram Schulte,
Newton Sanches, and Srikanth Kandula. CloudBuild: Microsoft’s Distributed and Caching Build
Service. In SEIP. IEEE - Institute of Electrical and Electronics Engineers, June 2016.

[54] Alvaro Estebanez, Diego R Llanos, and Arturo Gonzalez-Escribano. A survey on thread-level spec-
ulation techniques. ACM Computing Surveys (CSUR), 49(2):1–39, 2016.

[55] Facebook. Buck: A high-performance build tool. https://buck.build/, 2023.

[56] Azadeh Farzan and Victor Nicolet. Synthesis of divide and conquer parallelism for loops. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, pages 540–555, New York, NY, USA, 2017. Association for Computing Machinery.

[57] Azadeh Farzan and Victor Nicolet. Modular divide-and-conquer parallelization of nested loops. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, pages 610–624, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[58] Andrew Ferguson and Philip Wadler. When will deforestation stop. In Glasgow Workshop on Func-

156

https://buck.build/

tional Programming, 1988.

[59] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis, Matei
Zaharia, and Keith Winstein. From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers. In USENIX Annual Technical Conference, pages 475–488, 2019.

[60] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation of the Cilk-5 multi-
threaded language. ACM Sigplan Notices, 33(5):212–223, 1998.

[61] Simson Garfinkle, Daniel Weise, and Steven Strassmann. UNIX-Hater Handbook. IDG Books World-
wide, Inc., 1994.

[62] Jim Garlick. pdsh. https://github.com/chaos/pdsh, 2022. [Online; accessed September 15, 2022].

[63] Wolfgang Gentzsch. Sun grid engine: Towards creating a compute power grid. In Proceedings First
IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 35–36. IEEE, 2001.

[64] Inc. GitHub. The 2022 State of the Octoverse: Top languages over the years. https://octoverse.github.
com/2022/top-programming-languages, 2022. [Online; accessed July 3, 2023].

[65] Google. V8 JavaScript Engine. https://developers.google.com/v8/.

[66] Google. Protocol Buffers. https://developers.google.com/protocol-buffers, 2022. Accessed: 2022-
06-01.

[67] Michael I Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. ACM SIGPLAN Notices, 41(11):151–162, 2006.

[68] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Andrew A. Lamb,
Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and Saman Amarasinghe. A Stream
Compiler for Communication-Exposed Architectures. In Proceedings of the 10th International Con-
ference on Architectural Support for Programming Languages and Operating Systems, ASPLOS X,
page 291–303, New York, NY, USA, 2002. Association for Computing Machinery.

[69] Michael Greenberg. The POSIX shell is an interactive DSL for concurrency. https://cs.pomona.edu/
~michael/papers/dsldi2018.pdf, 2018.

[70] Michael Greenberg. libdash. https://github.com/mgree/libdash, 2019. [Online; accessed December
6, 2021].

[71] Michael Greenberg and Austin J. Blatt. Executable Formal Semantics for the POSIX Shell:
Smoosh: the Symbolic, Mechanized, Observable, Operational Shell. Proc. ACM Program. Lang.,
4(POPL):43:1–43:30, January 2020.

[72] Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. Unix Shell Programming: The next

157

https://github.com/chaos/pdsh
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://developers.google.com/v8/
https://cs.pomona.edu/~michael/papers/dsldi2018.pdf
https://cs.pomona.edu/~michael/papers/dsldi2018.pdf
https://github.com/mgree/libdash

50 Years. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’21, page
104–111, New York, NY, USA, 2021. Association for Computing Machinery.

[73] The Open Group. POSIX. https://pubs.opengroup.org/onlinepubs/9699919799/, 2018. [Online; ac-
cessed November 22, 2019].

[74] Hadoop. Hadoop Streaming. https://hadoop.apache.org/docs/r1.2.1/streaming.html, 2022. [Online;
accessed September 15, 2022].

[75] Mary W Hall, Jennifer M Anderson, Saman P. Amarasinghe, Brian R Murphy, Shih-Wei Liao,
Edouard Bugnion, and Monica S Lam. Maximizing multiprocessor performance with the SUIF com-
piler. Computer, 29(12):84–89, 1996.

[76] Shivam Handa, Konstantinos Kallas, Nikos Vasilakis, and Martin C. Rinard. An Order-Aware
Dataflow Model for Parallel Unix Pipelines. Proc. ACM Program. Lang., 5(ICFP), August 2021.

[77] Mitchell Hashimoto. Vagrant: up and running: create and manage virtualized development environ-
ments. " O’Reilly Media, Inc.", 2013.

[78] Helmut Herold. Linux-Unix-Shells: Bourne-Shell, Korn-Shell, C-Shell, bash, tcsh. Pearson Deutsch-
land GmbH, 1999.

[79] Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu. The Vesta approach to software configuration
management. Compaq. Systems Research Center [SRC], 2001.

[80] Jason Hickey and Aleksey Nogin. OMake: Designing a Scalable Build Process. In Luciano Baresi
and Reiko Heckel, editors, Fundamental Approaches to Software Engineering, pages 63–78, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[81] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm. A Catalog of Stream
Processing Optimizations. ACM Computing Surveys (CSUR), 46(4):46:1–46:34, March 2014.

[82] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on software engineering,
23(5):279–295, 1997.

[83] Berwyn Hoyt, Bryan Hoyt, and Ben Hoyt. Fabricate: The better build tool.
https://github.com/SimonAlfie/fabricate, 2009.

[84] Lluis Batlle i Rossell. tsp(1) Linux User’s Manual. https://vicerveza.homeunix.net/ viric/soft/ts/,
2016.

[85] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, pages 59–72, 2007.

158

https://pubs.opengroup.org/onlinepubs/9699919799/
https://hadoop.apache.org/docs/r1.2.1/streaming.html

[86] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and Toshio Nakatani. A
study of devirtualization techniques for a Java Just-In-Time compiler. In Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications, pages
294–310, 2000.

[87] Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu, and Ralf Treinen. Spec-
ification of UNIX utilities. PhD thesis, ANR, 2019.

[88] Nicolas Jeannerod, Claude Marché, and Ralf Treinen. A formally verified interpreter for a shell-like
programming language. In Verified Software. Theories, Tools, and Experiments: 9th International
Conference, VSTTE 2017, Heidelberg, Germany, July 22-23, 2017, Revised Selected Papers 9, pages
1–18. Springer, 2017.

[89] Nick P Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I August. Speculative separation
for privatization and reductions. ACM SIGPLAN Notices, 47(6):359–370, 2012.

[90] Wesley M Johnston, JR Paul Hanna, and Richard J Millar. Advances in dataflow programming lan-
guages. ACM computing surveys (CSUR), 36(1):1–34, 2004.

[91] Neil D Jones. An introduction to partial evaluation. ACM Computing Surveys (CSUR), 28(3):480–503,
1996.

[92] Dan Jurafsky. Unix for Poets. https://web.stanford.edu/class/cs124/lec/124-2018-UnixForPoets.pdf,
2017.

[93] Gilles Kahn. The semantics of a simple language for parallel programming. Information Processing,
74:471–475, 1974.

[94] Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. Information
Processing, 77:993–998, 1977.

[95] Konstantinos Kallas, Tammam Mustafa, Jan Bielak, Dimitris Karnikis, Thurston H.Y. Dang, Michael
Greenberg, and Nikos Vasilakis. Practically Correct, Just-in-Time Shell Script Parallelization. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pages 769–785,
Carlsbad, CA, July 2022. USENIX Association.

[96] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. DiffStream: Differential Out-
put Testing for Stream Processing Programs. Proceedings of the ACM on Programming Languages,
4(OOPSLA):1–29, 2020.

[97] Konstantinos Kallas and Konstantinos Sagonas. HiPErJiT: A Profile-Driven Just-in-Time Compiler
for Erlang. In Proceedings of the 30th Symposium on Implementation and Application of Functional
Languages, pages 25–36, 2018.

[98] Richard M. Karp and Raymond E. Miller. Properties of a model for parallel computations: Determi-

159

nacy, termination, queueing. SIAM Journal on Applied Mathematics, 14(6):1390–1411, 1966.

[99] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M. Vahdat. Mace:
Language Support for Building Distributed Systems. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’07, pages 179–188, New
York, NY, USA, 2007. ACM.

[100] Hanjun Kim, Nick P Johnson, Jae W Lee, Scott A Mahlke, and David I August. Automatic speculative
doall for clusters. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization, pages 94–103, 2012.

[101] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow engine. Bioin-
formatics, 28(19):2520–2522, 2012.

[102] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L Paul
Chew. Optimistic parallelism requires abstractions. ACM SIGPLAN Notices, 42(6):211–222, 2007.

[103] Nokia Bell Labs. The Unix Game—Solve puzzles using Unix pipes. https://unixgame.io/unix50,
2019. Accessed: 2020-03-05.

[104] Paul Le Guernic, Albert Benveniste, Patricia Bournai, and Thierry Gautier. Signal–a data flow-
oriented language for signal processing. IEEE transactions on acoustics, speech, and signal pro-
cessing, 34(2):362–374, 1986.

[105] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

[106] Edward A Lee and Thomas M Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773–
801, 1995.

[107] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput., 36(1):24–35, January 1987.

[108] Haoyuan Li. Alluxio: A virtual distributed file system. University of California, Berkeley, 2018.

[109] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Semantics and evaluation
techniques for window aggregates in data streams. In Proceedings of the 2005 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’05, pages 311–322, New York, NY, USA,
2005. Association for Computing Machinery.

[110] Georgios Liargkovas, Konstantinos Kallas, Michael Greenberg, and Nikos Vasilakis. Executing Shell
Scripts in the Wrong Order, Correctly. In Proceedings of the 19th Workshop on Hot Topics in Oper-
ating Systems, HOTOS ’23, page 103–109, New York, NY, USA, 2023. Association for Computing
Machinery.

160

[111] Amy W. Lim and Monica S. Lam. Maximizing Parallelism and Minimizing Synchronization with
Affine Transforms. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’97, pages 201–214, New York, NY, USA, 1997. ACM.

[112] Konstantinos Mamouras. Semantic foundations for deterministic dataflow and stream processing. In
European Symposium on Programming, pages 394–427. Springer, Cham, 2020.

[113] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives, and Sanjeev Khanna.
StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming
Data. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’17, pages 693–708, New York, NY, USA, 2017. ACM.

[114] Konstantinos Mamouras, Caleb Stanford, Rajeev Alur, Zachary G. Ives, and Val Tannen. Data-Trace
Types for Distributed Stream Processing Systems. In Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2019, pages 670–685, New
York, NY, USA, 2019. ACM.

[115] Florence Maraninchi and Yann RéMond. Argos: An automaton-based synchronous language. Com-
put. Lang., 27(1–3):61–92, April 2001.

[116] Bill McCloskey. Memoize. https://github.com/kgaughan/memoize.py, 2008.

[117] Chris McDonald and Trevor I Dix. Support for graphs of processes in a command interpreter. Soft-
ware: Practice and Experience, 18(10):1011–1016, 1988.

[118] Malcolm D McIlroy, Elliot N Pinson, and Berkley A Tague. UNIX Time-Sharing System: Foreword.
Bell System Technical Journal, 57(6):1899–1904, 1978.

[119] Peter M McIlroy, Keith Bostic, and M Douglas McIlroy. Engineering radix sort. Computing systems,
6(1):5–27, 1993.

[120] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! But at what COST? 15:241–299,
2015.

[121] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. ACM Sigplan Notices,
44(6):166–176, 2009.

[122] Christopher Meiklejohn and Peter Van Roy. Lasp: a language for distributed, eventually consistent
computations with CRDTs. In Proceedings of the First Workshop on Principles and Practice of Con-
sistency for Distributed Data, page 7. ACM, 2015.

[123] Dirk Merkel et al. Docker: lightweight linux containers for consistent development and deployment.
Linux j, 239(2):2, 2014.

161

[124] Matthew Meyerson, Stacey Gabriel, and Gad Getz. Advances in understanding cancer genomes
through second-generation sequencing. Nature Reviews Genetics, 11(10):685–696, 2010.

[125] Jürgen Cito Michael Schröder. An Empirical Investigation of Command-Line Customization. arXiv
preprint arXiv:2012.10206, 2020.

[126] Neil Mitchell. Shake before building: Replacing make with haskell. ACM SIGPLAN Notices,
47(9):55–66, 2012.

[127] Adrian Mizzi, Joshua Ellul, and Gordon Pace. D’artagnan: An embedded dsl framework for dis-
tributed embedded systems. In Proceedings of the Real World Domain Specific Languages Workshop
2018, pages 1–9, 2018.

[128] Sape J Mullender, Guido Van Rossum, AS Tanenbaum, Robbert Van Renesse, and Hans Van Staveren.
Amoeba: A distributed operating system for the 1990s. Computer, 23(5):44–53, 1990.

[129] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi.
Naiad: A Timely Dataflow System. In Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, SOSP ’13, pages 439–455, New York, NY, USA, 2013. ACM.

[130] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. CIEL: A Universal Execution Engine for Distributed Data-flow Computing. In Pro-
ceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI’11,
pages 113–126, Berkeley, CA, USA, 2011. USENIX Association.

[131] Tammam Mustafa, Konstantinos Kallas, Pratyush Das, and Nikos Vasilakis. DiSh: Dynamic Shell-
Script distribution. In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 341–356, Boston, MA, April 2023. USENIX Association.

[132] National Oceanic and Atmospheric Administration. National Climatic Data Center. https://www.
ncdc.noaa.gov/, 2017.

[133] Edmund B Nightingale, Peter M Chen, and Jason Flinn. Speculative execution in a distributed file
system. ACM SIGOPS operating systems review, 39(5):191–205, 2005.

[134] Edmund B Nightingale, Daniel Peek, Peter M Chen, and Jason Flinn. Parallelizing security checks on
commodity hardware. ACM SIGARCH Computer Architecture News, 36(1):308–318, 2008.

[135] Guilherme Ottoni. HHVM JIT: A Profile-guided, Region-based Compiler for PHP and Hack. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 151–165, 2018.

[136] John K Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N. Nelson, and Brent B. Welch.
The Sprite network operating system. Computer, 21(2):23–36, 1988.

162

https://www.ncdc.noaa.gov/
https://www.ncdc.noaa.gov/

[137] David A Padua, Rudolf Eigenmann, Jay Hoeflinger, Paul Petersen, Peng Tu, Stephen Weatherford,
and Keith Faigin. Polaris: A new-generation parallelizing compiler for MPPs. In In CSRD Rept. No.
1306. Univ. of Illinois at Urbana-Champaign, 1993.

[138] Shoumik Palkar and Matei Zaharia. Optimizing Data-intensive Computations in Existing Libraries
with Split Annotations. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pages 291–305, New York, NY, USA, 2019. ACM.

[139] Davide Pasetto and Albert Akhriev. A comparative study of parallel sort algorithms. In Proceedings
of the ACM international conference companion on Object oriented programming systems languages
and applications companion, pages 203–204, 2011.

[140] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, et al. Plan 9 from Bell Labs. In Proceedings
of the summer 1990 UKUUG Conference, pages 1–9, 1990.

[141] Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by selective inlining. In Proceed-
ings of the ACM SIGPLAN 1998 conference on Programming language design and implementation,
pages 291–300, 1998.

[142] Pixelbeat. Answer to: Sort –parallel isn’t parallelizing. https://superuser.com/a/938634, 2015. Ac-
cessed: 2020-04-14.

[143] Jon Puritz. BIO594: Using genomic techniques to examine the evolution of populations.
https://git.io/JY6J7, 2019. Accessed: 2020-10-05.

[144] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia. POSH: A Data-Aware Shell. In
2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 617–631, 2020.

[145] Chet Ramey. Bash reference manual. Network Theory Limited, 15, 1998.

[146] Richard F Rashid and George G Robertson. Accent: A communication oriented network operating
system kernel, volume 15. ACM, 1981.

[147] Christophe Ratel, Nicolas Halbwachs, and Pascal Raymond. Programming and verifying critical sys-
tems by means of the synchronous data-flow language lustre. pages 112–119, 1991.

[148] Yann Régis-Gianas, Nicolas Jeannerod, and Ralf Treinen. Morbig: A Static Parser for POSIX Shell.
In Software Language Engineering (SLE), Boston, United States, November 2018.

[149] Martin C Rinard and Pedro C Diniz. Commutativity analysis: A new analysis technique for paralleliz-
ing compilers. ACM Transactions on Programming Languages and Systems (TOPLAS), 19(6):942–
991, 1997.

[150] Dennis M. Ritchie and Ken Thompson. The UNIX Time-sharing System. SIGOPS Oper. Syst. Rev.,
7(4):27–, January 1973.

163

[151] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel Gien, Marc Guillemont,
Frédéric Herrmann, Claude Kaiser, Sylvain Langlois, Pierre Léonard, et al. Overview of the Chorus
distributed operating system. In Workshop on Micro-Kernels and Other Kernel Architectures, pages
39–70. Seattle WA (USA), 1992.

[152] Radu Rugina and Martin Rinard. Automatic parallelization of divide and conquer algorithms. In Pro-
ceedings of the Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’99, pages 72–83, New York, NY, USA, 1999. Association for Computing Machinery.

[153] Jan Sacha, Jeff Napper, Sape Mullender, and Jim McKie. Osprey: Operating system for predictable
clouds. In IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN 2012), pages 1–6. IEEE, 2012.

[154] Scott Schneider, Martin Hirzel, Buğra Gedik, and Kun-Lung Wu. Safe Data Parallelism for General
Streaming. IEEE Transactions on Computers, 64(2):504–517, Feb 2015.

[155] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-Williams,
Pierre Habouzit, and Viktor Vafeiadis. Acute: High-level Programming Language Design for Dis-
tributed Computation. In Proceedings of the Tenth ACM SIGPLAN International Conference on
Functional Programming, ICFP ’05, pages 15–26, New York, NY, USA, 2005. ACM.

[156] Jiasi Shen, Martin Rinard, and Nikos Vasilakis. Automatic Synthesis of Parallel Unix Commands and
Pipelines with KumQuat. CoRR abs/2012.15443 (2021). arXiv preprint arXiv:2012.15443, 2021.

[157] Calvin Smith and Aws Albarghouthi. Mapreduce program synthesis. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’16, pages 326–
340, New York, NY, USA, 2016. Association for Computing Machinery.

[158] Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt. Build scripts with perfect dependencies. Proc.
ACM Program. Lang., 4(OOPSLA), nov 2020.

[159] Diomidis Spinellis and Marios Fragkoulis. Extending Unix Pipelines to DAGs. IEEE Transactions
on Computers, 66(9):1547–1561, 2017.

[160] Richard M Stallman and Roland McGrath. GNU Make—A Program for Directing Recompilation.
https://www.gnu.org/software/make/manual/make.pdf, 1991.

[161] Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Merchant, Edwin Skidmore,
Daniel Stanzione, James Taylor, Steven Tuecke, George Turner, et al. Jetstream: a self-provisioned,
scalable science and engineering cloud environment. In Proceedings of the 2015 XSEDE Conference:
Scientific Advancements Enabled by Enhanced Cyberinfrastructure, pages 1–8, 2015.

[162] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. Autobash: Improving configuration management with
operating system causality analysis. ACM SIGOPS Operating Systems Review, 41(6):237–250, 2007.

164

https://www.gnu.org/software/make/manual/make.pdf

[163] Justin Talbot, Richard M. Yoo, and Christos Kozyrakis. Phoenix++: Modular MapReduce for Shared-
Memory Systems. In Proceedings of the Second International Workshop on MapReduce and Its
Applications, MapReduce ’11, page 9–16, New York, NY, USA, 2011. Association for Computing
Machinery.

[164] Ole Tange. GNU Parallel—The Command-Line Power Tool. ;login: The USENIX Magazine,
36(1):42–47, Feb 2011.

[165] Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for Linux, Mac OS X, and Unix Systems. No
Starch Press, 2004.

[166] Elixir Core Team. Elixir. https://elixir-lang.org/, 2023.

[167] Scott Thibault, Charles Consel, Julia L Lawall, Renaud Marlet, and Gilles Muller. Static and dy-
namic program compilation by interpreter specialization. Higher-Order and Symbolic Computation,
13(3):161–178, 2000.

[168] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language for streaming
applications. In Proceedings of the 11th International Conference on Compiler Construction, CC ’02,
pages 179–196, Berlin, Heidelberg, 2002. Springer-Verlag.

[169] Chen Tian, Min Feng, and Rajiv Gupta. Supporting speculative parallelization in the presence of
dynamic data structures. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 62–73, 2010.

[170] Josep Torrellas. Speculation, thread-level. In David Padua, editor, Encyclopedia of Parallel Comput-
ing, pages 1894–1900. Springer US, Boston, MA, 2011.

[171] Eleftheria Tsaliki and Diomidis Spinellis. The real statistics of buses in Athens. https://bit.ly/3s112R5,
2021.

[172] Junichi Uekawa. dsh. https://www.netfort.gr.jp/~dancer/software/dsh.html.en, 2022. [Online; ac-
cessed September 15, 2022].

[173] Nikos Vasilakis, Konstantinos Kallas, Konstantinos Mamouras, Achilles Benetopoulos, and Lazar
Cvetković. PaSh: Light-Touch Data-Parallel Shell Processing. In Proceedings of the Sixteenth Eu-
ropean Conference on Computer Systems, EuroSys ’21, page 49–66, New York, NY, USA, 2021.
Association for Computing Machinery.

[174] Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Sonchack, André DeHon, and Jonathan M. Smith.
Ignis: Scaling Distribution-oblivious Systems with Light-touch Distribution. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019,
pages 1010–1026, New York, NY, USA, 2019. ACM.

[175] Nikos Vasilakis, Ben Karel, and Jonathan M. Smith. From Lone Dwarfs to Giant Superclusters: Re-

165

https://elixir-lang.org/
https://bit.ly/3s112R5
https://www.netfort.gr.jp/~dancer/software/dsh.html.en

thinking Operating System Abstractions for the Cloud. In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems, HOTOS’15, pages 15–15, Berkeley, CA, USA, 2015. USENIX
Association.

[176] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos Kallas, Ben Karel, An-
dré DeHon, and Michael Pradel. Preventing Dynamic Library Compromise on Node.js via RWX-
Based Privilege Reduction. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 1821–1838, New York, NY, USA, 2021. Association for
Computing Machinery.

[177] Robert Virding, Claes Wikström, and Mike Williams. Concurrent Programming in ERLANG (2Nd
Ed.). Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

[178] Philip Wadler. Deforestation: Transforming programs to eliminate trees. In H. Ganzinger, editor,
ESOP ’88, pages 344–358, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[179] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The LOCUS distributed
operating system. ACM SIGOPS Operating Systems Review, 17(5):49–70, 1983.

[180] Edward Walker, Weijia Xu, and Vinoth Chandar. Composing and executing parallel data-flow graphs
with shell pipes. In Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science,
WORKS ’09, New York, NY, USA, 2009. Association for Computing Machinery.

[181] Ian Watson and John Gurd. A prototype data flow computer with token labelling. In 1979 International
Workshop on Managing Requirements Knowledge (MARK), pages 623–628. IEEE, 1979.

[182] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 4th edition, 2015.

[183] Keith Winstein and Hari Balakrishnan. Mosh: An interactive remote shell for mobile clients. In
USENIX Annual Technical Conference, volume 4, 2012.

[184] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility for resource man-
agement. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 44–60. Springer,
2003.

[185] Gina Yuan, Shoumik Palkar, Deepak Narayanan, and Matei Zaharia. Offload annotations: Bringing
heterogeneous computing to existing libraries and workloads. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 293–306, 2020.

[186] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012.
USENIX Association.

166

[187] Zhao Zhang, Daniel S. Katz, Timothy G. Armstrong, Justin M. Wozniak, and Ian Foster. Paral-
lelizing the execution of sequential scripts. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13, New York, NY, USA, 2013.
Association for Computing Machinery.

167

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Background
	Related work
	A formal model of a data processing fragment of the shell
	Specification framework
	PaSh: Automatic parallelization of shell dataflow regions
	PaSh-JIT: Just-in-time automatic parallelization of complete shell programs
	DiSh: Scaling out shell programs on a distributed cluster
	Out-of-order speculative execution for the shell
	Conclusion
	BIBLIOGRAPHY

