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Abstract
Concurrency libraries can facilitate the development of multi-
threaded programs by providing concurrent implementations of
familiar data types such as queues or sets. There exist many opti-
mized algorithms that can achieve superior performance on mul-
tiprocessors by allowing concurrent data accesses without using
locks. Unfortunately, such algorithms can harbor subtle concur-
rency bugs. Moreover, they require memory ordering fences to
function correctly on relaxed memory models.

To address these difficulties, we propose a verification approach
that can exhaustively check all concurrent executions of a given test
program on a relaxed memory model and can verify that they are
observationally equivalent to a sequential execution. OurCheck-
Fence prototype automatically translates the C implementation
code and the test program into a SAT formula, hands the latter
to a standard SAT solver, and constructs counterexample traces
if there exist incorrect executions. ApplyingCheckFenceto five
previously published algorithms, we were able to (1) find several
bugs (some not previously known), and (2) determine how to place
memory ordering fences for relaxed memory models.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification — Formal Methods, Model
Checking; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs — Mechanical
Verification

General Terms Verification

Keywords Concurrent Data Structures, Multi-Threading, Shared-
Memory Multiprocessors, Memory Models, Lock-Free Synchro-
nization, Sequential Consistency, Software Model Checking

1. Introduction
Shared-memory multiprocessors and multi-core chips are now
ubiquitous. Nevertheless, programming such systems remains a
challenge [44]. Concurrency libraries such as the java.util.concurrent
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Figure 1. Black-box view of theCheckFencetool.

package JSR-166 [27] or the Intel Threading Building Blocks [22]
support the development of safe and efficient multi-threaded pro-
grams by providingconcurrent data types, that is, concurrent im-
plementations of familiar data abstractions such as queues, sets, or
maps.

Client programs with threads that execute concurrently on a
multiprocessor can benefit from implementations that are opti-
mized for concurrency. Many sophisticated algorithms that use
lock-free synchronization have been proposed for this purpose [17,
18, 31, 33, 34, 43]. Such implementations are not race-free in the
classic sense because they allow concurrent access to shared mem-
ory locations without using locks for mutual exclusion.

Algorithms with lock-free synchronization are notoriously hard
to verify, as witnessed by many formal verification efforts [6, 14,
46, 50] and by bugs found in published algorithms [10, 32]. Many
more interleavings need to be considered than for implementations
that follow a strict locking discipline. Moreover, the deliberate use
of races prohibits the use of classic race-avoiding design method-
ologies and race-detecting tools [1, 12, 19, 24, 36, 39, 41, 49].

To make matters worse, most commonly used multiprocessor
architectures userelaxed memory ordering models[2]. For exam-
ple, a processor may reorder loads and stores by the same thread
if they target different addresses, or it may buffer stores in a lo-
cal queue. Whereas fully lock-based programs are insensitive to
the memory model (because the lock and unlock operations are de-
signed to guarantee the necessary memory ordering), implemen-
tations that use lock-free synchronization require explicitmemory
ordering fencesto function correctly on relaxed memory models.
Fences counteract the ordering relaxations by selectively enforcing
memory order between preceding and succeeding instructions. A
lack of fences leads to incorrect behavior, whereas an overzealous
use of fences impacts performance. Nevertheless, fence placements
are rarely published along with the algorithm.

To help designers and implementors develop correct and effi-
cient programs for relaxed models, we present a method that can
statically check the consistency of a data type implementation for a



given bounded test program and memory model (Fig. 1). Given the
implementation code, a small test program representing the client
program, and a choice of memory model, ourCheckFenceproto-
type verifies for all concurrent executions of the test that the ob-
served results are consistent with the expected semantics of the data
type. If the check fails, a counterexample trace is presented to the
user who can then analyze and fix the problem.

We build upon and further automate the general technique de-
scribed in our prior case study [4]. At the heart of this method is
an encoding that represents the executions of the test program as
solutions to a propositional formula. To obtain this formula, we
first compile the code for each thread into a bounded sequence of
instructions. Then we separately encode the thread-local program
semantics (in the style of CBMC [5]) and the memory model (in
axiomatic form). Once the encoding is complete, we can use a stan-
dard SAT solver to solve for erroneous executions.

Our method proceeds in two steps. First, we perform aspecifi-
cation mining: we automatically create a specification for the given
test by enumerating the set of correct observations. Anobservation
is a combination of argument and return values, and it iscorrect if
it is consistent with some atomic interleaving of the operations. For
example, for the test in Fig. 1,(A = 0, B = 1, X = 0, Y = 1) is
a correct observation, whereas(A = 0, B = 1, X = 0, Y = 0) is
not.

After mining the specification, we then check all executions of
the test on the chosen memory model to see that the observed values
are contained in the specification. This step is calledinclusion
check. If the inclusion check fails, we produce a counterexample
trace. The trace presents the details of the execution to the user,
who can then analyze and fix the problem.

We implemented this method in a prototype calledCheckFence
and applied it to five previously published algorithms, writing test
programs and C code that closely follows the published pseu-
docode. We were thus able to

1. Reproduce two known bugs in a concurrent deque algorithm
known as “snark” [8, 10, 26].

2. Uncover a not-previously-known bug in a lazy list-based set im-
plementation. The published pseudocode [18] fails to initialize
a field, which was missed by a prior formal verification using
the PVS interactive proof system [6].

3. Show numerous failures on architectures with relaxed memory
models (the original algorithms assume sequentially consistent
architectures), and fix them by inserting appropriate memory
ordering fences.

2. Problem Formulation
In this section, we describe the parameters of the verification prob-
lem (test programs, correctness condition, and memory models)
more concretely.

2.1 Test Programs

To exercise the implementation code, we usetest programs. A
test program specifies a finite sequence of operation calls for each
thread. It may choose to leave the argument values unspecified,
which conveniently allows us to cover many scenarios with a single
test. It may also specify initialization code to be performed prior to
the concurrent execution of the threads.

2.2 Correctness Condition

The basic idea of our method is to compare the set of concurrent
executions with the set of serial executions. Given a test programT
that makes invocations to the operations of some abstract data type,
and an implementationI, we define

• ET,I,Serial is the set of serial executions. Serial executions are
executions by a single processor that interleaves the threads and
treats the operations as atomic, that is, does not switch threads
within operations.

• ET,I,Y is the set of multiprocessor executions for memory
model Y . The modelY may use relaxed memory ordering
rules.

We define these sets more formally below in Section 2.3.1 and
proceed first to a description of how they relate to our correctness
condition. For a given executione we define theobservation vector
obs(e) to consist of the argument and return values to the operations
that occur ine. For test programT and implementationI, we define
theobservation setas

ST,I = {obs(e) | e ∈ ET,I,Serial}
The observation setS captures the intended behavior of the data

type, and serves as a specification in the following sense. For test
T and observation setS, we say that the implementationI satisfies
S on memory modelY if and only if

∀e ∈ ET,I,Y : obs(e) ∈ S

Because the argument and return values are all that the client
program observes, implementations that satisfy the specification
are guaranteed to appear to the client program as if they executed
the operations atomically.

Note that we need not necessarily use the same implementation
when extracting the specificationS and when performing the in-
clusion check. In practice, it is often sensible to write a reference
implementation (which need not be concurrent and is thus simple)
to construct the observation set.

2.3 Memory Models

We currently support two hardware-level memory models. One
is the classicsequential consistency[25], which requires that the
loads and stores issued by the individual threads are interleaved
in some global, total order. Sequential consistency is easiest to
understand; however, it is not guaranteed by most multiprocessors
[2].

The other model isRelaxed [4]. It allows the hardware to relax
the ordering and atomicity of memory accesses. Specifically, it
permits (1) reorderings of loads and stores to different addresses,
(2) buffering of stores in local queues, (3) forwarding of buffered
stores to local loads, (4) reordering of loads to the same address,
and (5) reordering of control- or data-dependent instructions.

2.3.1 Set of Executions

For a testT with n threads, an implementationI, and a memory
modelY , we define the set of executionsET,I,Y to consist of all
execution tracese = (w1, . . . , wn) such that (1) eachwi is a finite
sequence of basic machine instructions (loads, stores, assignments,
and fences) within which all instructions are annotated with the
execution values, (2) each instruction sequencewi corresponds
to a sequential execution (under standard semantics) of the code
for threadi as specified byT, I, and (3) the tracee satisfies the
conditions of the memory modelY as defined in the next section.

2.3.2 Memory Model Axioms

We now present the core of our axiomatic formulations for sequen-
tial consistency andRelaxed. First, we need some common nota-
tion. Let A be a set of addresses, andV be a set of values. For a
given execution tracee = (w1, . . . , wn), let Xe = Le ∪ Se be the
set of memory accesses in the trace, withLe being the set of loads
andSe being the set of stores. For an accessx ∈ Xe, let a(x) ∈ A
be the address of the accessed location, andv(x) ∈ V be the value



loaded or stored. For an addressa ∈ A, let i(a) ∈ V be the initial
value of the memory locationa. Let <p be the program order, that
is, a partial order onXe such thatx <p y wheneverx precedesy
within some sequencewi.

Sequential Consistency.An execution tracee is sequentially con-
sistent if there exists a total order<M overXe (the memory order)
subject to the following conditions. For each loadl ∈ Le, let S(l)
be the set of stores that are “visible” tol:

S(l) = {s ∈ Se | a(s) = a(l) ∧ (s <M l)}
Then the following axioms must be satisfied:

1. if x <p y, thenx <M y

2. if l ∈ Le andS(l) = ∅, thenv(l) = i(a)

3. if l ∈ Le ands ∈ S(l) andv(l) 6= v(s), then there exists a
stores′ ∈ S(l) such thats <M s′.

Relaxed. An execution tracee is allowed by the memory model
Relaxed if there exists a total order<M over Xe (the memory
order) subject to the following conditions. For each loadl ∈ Le, let
S(l) be the set of stores that are “visible” tol:

S(l) = {s ∈ Se | a(s) = a(l) ∧ ((s <M l) ∨ (s <p l))}
Then the following axioms must be satisfied:

1. if x <p y, a(x) = a(y), andy ∈ Se, thenx <M y

2. if l ∈ Le andS(l) = ∅, thenv(l) = i(a)

3. if l ∈ Le ands ∈ S(l) andv(l) 6= v(s), then there exists a
stores′ ∈ S(l) such thats <M s′.

The modelRelaxed differs from sequential consistency in two
places. For one, axiom 1 has been weakened to allow the memory
order to be different from the program order. Secondly, the set
S(l) has been modified to allow forwarding of values from stores
sitting in a local store queue to subsequent loads by the same
processor:S(l) may contain stores that precede a load in program
order (s <p l) but are performed globally only after the load is
performed (l <M s).

Seriality. We can conveniently formalize serial executions (exe-
cutions that interleave the operations atomically) by defining serial-
ity as a special kind of “memory model” as follows. GivenT, I and
an execution tracee, define an equivalence relation∼ overXe such
thatx ∼ y wheneverx, y are part of the same operation. Then, we
saye is serial if and only if (1) it is sequentially consistent, and (2)
if x ∼ x′ andy ∼ y′, then(x <M y) ⇔ (x′ <M y′).

2.3.3 Comparison to Other Memory Models

Memory models can be compared in terms of the execution traces
they allow. We call a modelY strongerthan another modelY ′ if
every execution trace that is allowed by modelY is also allowed by
Y ′. For example, seriality is stronger than sequential consistency,
and sequential consistency is stronger thanRelaxed.

The purpose ofRelaxed is to provide a common, conserva-
tive approximation of several memory models (Sun SPARC v9
TSO/PSO/RMO [48], Alpha [7], and IBM 370/390/zArchitecture
[23]). All of these models are stronger thanRelaxed, which implies
that once code runs correctly onRelaxed, it will run correctly on
the former.

However,Relaxed is not strictly weaker than the official Pow-
erPC [13], IA-64 [21] and IA-32 [20] models because it globally
orders all stores (the execution in Fig. 2 illustrates this point). Even
so, Relaxed still captures the most important relaxations of those
models and is useful to determine where to place fences. This lim-
itation is not fundamental to our methodology, and we are actively

Initially, x = y = 0
thread 1 thread 2 thread 3 thread 4
store x, 1 store y, 1 load x, 1 load y, 1

load-load fence load-load fence
load y, 0 load x, 0

Figure 2. An execution trace that is not possible onRelaxed, but
not ruled out on PPC, IA-32, and IA-64. On the latter, we represent
the load-load fence as follows: (PPC) lwsync, (IA-32) lfence, (IA-
64) replace load that precedes the fence with load-acquire.

working on formalizing a weaker version ofRelaxed to close the
gap.

3. Solution
We now describe how we implemented and applied our method.
See Fig. 3 for a schematic view of the internal structure of the tool.

3.1 The Front-End

CheckFencehas a front-end that compiles the C code into an in-
termediate representation. This intermediate representation uses a
custom language calledload-store language(LSL) which precisely
defines the possible instruction sequences of stores, loads, fences,
and synchronization instructions for each thread.

The front-end is based on the CIL framework [37] which parses
C and provides us with a cleaned-up and somewhat simplified ab-
stract syntax tree. From there, compilation into LSL is relatively
straightforward for most programs.CheckFencetranslates concur-
rent data type implementations of realistic detail precisely and au-
tomatically, but it may refute some programs if they contain un-
supported features. We discuss some of the choices we made in the
following paragraphs. See Fig. 4 for the abstract syntax of LSL.

C multiprocessor semantics.The C language does not specify a
memory model (standardization efforts for C/C++ are still under
way). Therefore, executing memory-model sensitive C code on a
multiprocessor can have unpredictable effects [3]. On the machine
language level, however, the memory model is officially defined
by the hardware architecture. It is therefore possible to write C
code for relaxed models by exerting direct control over the C
compilation process to prevent optimizations that would alter the
program semantics. The details of how to do this (for example,
volatile declarations, compiler pragmas, or command line options)
are compiler-dependent and beyond the scope of this work. Here,
we simply assume a “vanilla” compilation without optimizations,
and we apply the hardware-level memory model to the resulting
machine-level program.

Values and types. We found that the types present at C source
level can not be relied upon (due to the presence of casts). There-
fore, we chose to keep LSL untyped; however, we do track the type

CIL−based
Front−End

Back−End

(observation set)
SpecificationLoop

Bounds

C code

Test

Trace

SAT
solver

Figure 3. Schematic view of the components.



(number) n ∈ N
(value) v ::= undefined | n | [ n ]

(register) r
(primitive op) f

(procedure name) p
(block tag) t
(statement) s ::=
(constant) r = v

(primitive op) | r = f(r)
(store) | ∗r = r
(load) | r = ∗r

(fenceX) | fenceX
(atomic block) | atomic{ s }

(procedure call) | p(r)(r)
(labeled block) | t : { s }

(leave block) | if (r) breakt
(repeat block) | if (r) continuet

(assertion) | assert(r)
(assumption) | assume(r)

Figure 4. The abstract syntax of LSL

struct {
long a;
int b[3];

} x;
int y;

Pointer C value LSL value
&(x) 0x000 [ 0 ]
&(x.a) 0x000 [ 0 0 ]
&(x.b) 0x008 [ 0 1 ]
&(x.b[0]) 0x008 [ 0 1 0 ]
&(x.b[1]) 0x00C [ 0 1 1 ]
&(x.b[2]) 0x010 [ 0 1 2 ]
&(y) 0x014 [ 1 ]

Figure 5. Representing C pointers in LSL.

of values at runtime, by distinguishing between undefined, integer,
and pointer values. The back-end also recovers some static type in-
formation directly from the untyped code by performing a range
analysis (see Section 3.4). The runtime types help to automatically
detect bugs. For example, we detect if a program uses an undefined
value in a computation or a condition.

Pointer values. We represent pointer values as a sequence of
natural numbers [n1 . . . nk] where(k ≥ 1), representing the base
addressn1 and sequence of offsetsn2, . . . , nk. The offsets may be
field or array offsets, providing a unified way of handling arrays
and structs. See Fig. 5 for an example of how C pointers can be
represented in this manner. The advantage of keeping the offsets
separate from the base address is that we can avoid addition or
multiplication when encoding pointer operations in the back-end.
Moreover, our range analysis (Section 3.4) can often determine that
large portions of the sequence are statically fixed.

Control flow. To facilitate a minimalistic unrolling of loops in
the back end, we retain the nested block structure of the source
program. Conditionals are represented by conditional breaks and
continues which can exit or repeat an enclosing block identified by
its tag.

Fences. Fences are special machine instructions that guarantee
some ordering among the memory accesses that precede and follow
it. We currently support four kinds of memory ordering fences:
load-load, load-store, store-load and store-store (as used by the
Sparc RMO memory model [48]). AnX-Y fence guarantees that
all accesses of typeX that appear before the fence will be ordered
before all accesses of typeY that appear after the fence. Fences
can guarantee some ordering among the memory accesses without
enforcing full sequential consistency.

bool cas(unsigned *loc,
unsigned old, unsigned new) {

atomic {
if (*loc == old) {

*loc = new;
return true;

} else {
return false;

}
}

}

Figure 6. Pseudocode for the compare-and-swap (CAS) operation.

typedef enum { free, held } lock_t;

void lock(lock_t *lock) {
lock_t val;
do {

atomic {
val = *lock;
*lock = held;

}
} while (val != free);
fence("load-load");
fence("load-store");

}

void unlock(lock_t *lock) {
fence("load-store");
fence("store-store");
atomic {

assert(*lock == held);
*lock = free;

}
}

Figure 7. Pseudocode for the lock and unlock operations.

Synchronization. We currently model all synchronization in LSL
using atomic blocks. The instructions within an atomic block are
guaranteed to execute in program order, and they are never inter-
leaved with instructions in other threads. See Fig. 6 for a pseu-
docode example of how we model the compare-and-swap instruc-
tions using an atomic block. Our lock and unlock operations are
based on code from the SPARC v9 architecture manual [48] and
use a spin loop, an atomic load-store primitive, and partial mem-
ory ordering fences (Fig. 7). To avoid an unbounded unrolling of
the spin loop, we use a custom reduction for side-effect free spin
loops.

C features. The C language has many features, not all of which
are supported by ourCheckFenceprototype. We are adding fea-
tures as needed to handle the implementations we wish to study.
Already supported are pointers, structs, arrays, full integer arith-
metic, limited pointer arithmetic, nested loops, limited gotos, and
packed structures.1

3.2 The Back-End

The back-end first transforms the test programT and implementa-
tion I by inlining the operation calls and unrolling the loops (more
on this in Section 3.3). As a result, the code for each thread is
a simple sequence of machine-level instructions comprising only
loads, stores, register assignments, fences, and forward branches.
We now encode the possible executions as a propositional formula
ΦT,I,Y (Z) over boolean variablesZ such that each solution ofΦ
corresponds to an executione ∈ ET,I,Y (more on this in Sec-

1 Many implementations pack structures into a single machine word with
the intent of accessing the entire structure atomically (for example, using a
compare-and-swap operation).



tion 3.2.1). Once we haveΦ thus encoded, we can perform the spec-
ification mining and inclusion check using a standard SAT solver
as follows.

Specification mining. To construct the observation setST,I we
use the following iterative procedure. First, we provide the formula
ΦT,I,Serial(Z) as an input to the SAT solver. Next, we run the solver
which will return a solution forZ, corresponding to some serial ex-
ecutione ∈ ET,I,Serial. Let o1 be the observation of this execution.
Now, we add additional constraints to the solver to exclude execu-
tions that have the observationo1 and run the solver again. If there
is another solution, it gives us a new observationo2. By continuing
this process (adding constraints to rule out observations we already
saw) until the SAT solver determines insatisfiability (say, afterk
steps), we obtain the observation setST,I = {o1, o2, . . . , ok}.

Our practical experience suggests that although the set of serial
executionsET,I,Serial can be quite large (due to nondeterministic
memory layout and interleavings), the observation setST,I con-
tains no more than a few thousand elements for the testcases we
used. Therefore, the iterative procedure described above is suffi-
ciently fast, especially when used with a SAT solver that supports
incremental solving.

Inclusion check. For a given testT , implementationI, memory
model Y , and finite observation setS, we check the inclusion
obs(ET,I,Y ) ⊂ S by asking the SAT solver to find a solution for
the variablesZ subject to the constraints

ΦT,I,Y (Z) ∧
^
o∈S

obs(Z) 6= o

If the SAT solver finds a satisfying assignment, then the corre-
sponding execution is a counterexample because its observation is
not equal to any observation inS. On the other hand, if the SAT
instance is unsatisfiable, the inclusion check passes.

3.2.1 Encoding Concurrent Executions

After inlining I in T and unrolling the loops, the code resembles a
machine-level program consisting only of loads, stores, register as-
signments, fences, and forward branches. Following the definition
of ET,I,Y in Section 2.3.1, we can now encode the possible execu-
tion tracese = (w1, . . . , wn) by introducing variables to represent
the execution values and writing constraints over these variables
to capture the conditions (2) and (3). To encode the thread-local
semantics (condition 2), we use a formula∆T,I,k for each thread
k. To encode the memory model (condition 3), we use a formula
ΘT,I,Y .

The thread-local formulae. To obtain∆T,I,k, we follow a tech-
nique similar to the CBMC tool [5]; specifically, we use a reg-
ister SSA (single static assignment) form that guarantees that for
each program point and for each register there is statically known,
unique instruction that assigned it last.

For each threadk, we introduce a set of variablesVk containing
one variable for each instruction, representing the LSL value pro-
duced by that instruction. Next, we introduce a setCk of boolean
variables containing one variable for each forward branch, repre-
senting whether the branch is taken or not. We now create con-
straints for each assignment to express the relationship between
the consumed and produced values, and for each branch to express
how the branch condition depends on the value of some register.
By taking the conjunction of all these constraints we get a formula
∆T,I,k(Vk, Ck) that captures the possible executions of the thread
in an unspecified environment (that is, for unspecified values re-
turned by the loads).

The memory model formula. We construct a formulaΘT,I,Y

to represent the memory model. In our case,Θ is simply the

conjunction of the memory model axioms forY (Section 2.3.2).
If we represent the memory order<M by a variableM (ranging
over all total orders ofX), we thus get a formulaΘT,I,Y (M, V, C)
whereV =

S
k Vk andC =

S
k Ck. This formula depends on the

variables inV because the axioms make reference to the addresses
and values used by instructions. It depends on the variables inC
because the axioms apply to executed memory accesses only (an
access that is skipped over by a branch is not part of the setXe).

The combined formula. We combine the thread-local and com-
munication formulae as follows

ΦT,I,Y (M, V, C) ≡ ΘT,I,Y (M, V, C) ∧
^
k

∆T,I,k(Vk, Ck)

Finally, we need to transformΦ down to the level of the SAT
solver, which requires conjunctive normal formΦT,I,Y (Z) for
some set of boolean variablesZ. We thus need to replace all
quantifiers by finite conjunctions or disjunctions and breakM and
V down to boolean variables. During this process we introduce
auxiliary variables, as follows.

1. To encode the memory orderM , we introduce auxiliary vari-
ables{Mxy | x, y ∈ X} such thatMxy representsx <M y.
To express antisymmetry, we representMxy andMyx by the
same SAT variable (adjusting the sign of literals). To express
transitivity, we add explicit clauses.

2. To encode the value variablesV , we use bitvectors. To get a
conservative estimate on the required width, we perform a range
analysis (Section 3.4).

3. For each pair of valuesv1, v2 ∈ V , we introduce auxiliary
variables to represent the equalitiesv1 = v2. We use separate
clauses to break the equalities down to the bit level (which we
need only do for equality literals that appear in the formula).

4. We use for eachl ∈ L an auxiliary variableInitl that represents
whetherS(l) = ∅, and for eachs ∈ S andl ∈ L an auxiliary
variableFlowsl that represents whethers is the maximal store
in S(l).

The resulting CNF encoding is polynomial: the number of SAT
variables and clauses is quadratic and cubic in the size of the
unrolled test program, respectively.

3.3 Loop Bounds

For the implementations and tests we studied, all loops are stati-
cally bounded. However, this bound is not necessarily known in ad-
vance. We therefore unroll loopslazily as follows. For the first run,
we unroll each loop exactly once. We then run our regular check-
ing, but restrict it to executions that stay within the bounds. If an
error is found, a counterexample is produced (the loop bounds are
irrelevant in that case). If no error is found, we run our tool again,
solving specifically for executions that exceed the loop bounds. If
none is found, we know the bounds to be sufficient. If one is found,
we increment the bounds for the affected loop instances and repeat
the procedure.

3.4 Range Analysis

To reduce the number of boolean variables, we perform a range
analysis before encodingΦ. Specifically, we use a simple light-
weight flow-insensitive analysis to calculate for each SSA register
r and each memory locationm setsSr, Sm that conservatively
approximate the values thatr or m may contain during a valid
execution. We can sketch the basic idea as follows. First, initialize
Sr andSm to be the empty set. Then, keep propagating values as
follows until a fixpoint is reached:



ms2 Two-lock queue [33] Queue is represented as a linked list, with two independent locks for the head and tail.

msn Nonblocking queue [33] Similar, but uses compare-and-swap for synchronization instead of locks (Fig. 9).

lazylist Lazy list-based set [6, 18] Set is represented as a sorted linked list. Per-node locks are used during insertion and
deletion, but the list supports a lock-free membership test.

harris Nonblocking set [16] Set is represented as a sorted linked list. Compare-and-swap is used instead of locks.

snark Nonblocking deque [8, 10] Deque is represented as linked list. Uses double-compare-and-swap.

Table 1. The implementations we studied. We use the mnemonics on the left for quick reference.

• constant assignments of the formr = c propagate the valuec
to the setSr.

• assignments of the formr = f(r1, . . . , rk) propagate values
from the setsSr1 , . . . , Srk to the setSr (applying the function).

• stores of the form∗r′ = r propagate values from the setSr to
the sets{Sm | m ∈ Sr′}.

• loads of the formr = ∗r′ propagate values from the sets
{Sm | m ∈ Sr′} to the setSr.

This analysis is sound for executions that do not have circular
value dependencies. To ensure termination, we need an additional
mechanism. First, we count the number of assignments in the
test that have unbounded range. That number is finite because
we are operating on the unrolled, finite test program. During the
propagation of values, we tag each value with the number of such
functions it has traversed. If that number ever exceeds the total
number of such functions in the test, we can discard the value.

We use the setsSr for four purposes: (1) to determine a bitwidth
that is sufficient to encode all integer values that can possibly occur
in an execution, (2) to determine a maximal depth of pointers, (3)
to fix individual bits of the bitvector representation (such as leading
zeros), and (4) to rule out as many aliasing relationships as possible,
thus reducing the size of the memory model formula.

4. Results
We studied the five implementations shown in Table 1. All of them
make deliberate use of data races. Although the original publi-
cations contain detailed pseudocode, they do not indicate where
to place memory ordering fences. Thus, we set out to (1) verify
whether the algorithm functions correctly on a sequentially consis-
tent memory model, (2) find out what breaks on the relaxed model
and (3) add memory fences to the code as required.

First we wrote symbolic tests (Fig. 8). To keep the counterex-
amples small, we started with small and simple tests, say, two to
four threads with one operation each. All memory model-related
bugs were found on such small testcases. We then gradually added
larger tests until we reached the limits of the tool. Fig. 10 shows the
tests we ran for each implementation.

4.1 Bugs Found

We found several bugs that are not related to relaxations in the
memory model. The snark algorithm has two known bugs [10, 26].
We found the first one quickly on test D0. The other one requires
a fairly deep execution. We found it with the test Dq, which took
about an hour.

We also found a not-previously-known bug in the lazy list-
based set: the pseudocode fails to properly initialize the ‘marked’
field when a new node is added to the list. This simple bug went
undetected by a formal correctness proof [6] because the PVS
source code did not match the pseudocode in the paper precisely
[28]. This confirms the importance of using actual code (rather than
pseudocode and manual modeling) for formal verification.

Queue tests: (e,d for enqueue, dequeue)

T0 = ( e| d ) Ti2 = e ( ed| de )
T1 = ( e| e | d | d ) Ti3 = e ( de| dde )
Tpc2 = ( ee| dd ) T53 = ( eeee| d | d )
Tpc3 = ( eee| ddd ) T54 = ( eee| e | d | d )
Tpc4 = ( eeee| dddd ) T55 = ( ee| e | e | d | d )
Tpc5 = ( eeeee| ddddd ) T56 = ( e| e | e | e | d | d )
Tpc6 = ( eeeeee| dddddd )

Set tests: (a, c, r for add, contains, remove)

Sac = ( a| c ) Sar = ( a| r )
Sacr = ( a| c | r ) Saacr = a ( a| c | r )
Sacr2 = aar ( a| c | r ) Saaarr = aaa ( r| rc )
S1 = (a’| a’ | c’ | c’ | r’ | r’) Sarr = ( a| r | r )

Deque tests: (al, ar, rl, rr for add/remove left/right)

D0 = (al rr | ar rl) Db = (rr rl | ar | al)
Da = al al (rr rr | rl rl)
Dm = (a′l a′l a′l | r′r r′r r′r | r′l | a′r)
Dq = (a′l | a′l | a′r | a′r | r′l | r′l | r′r | r′r )

Figure 8. The tests we used. We show the invocation sequence
for each thread in parentheses, separating the threads by a vertical
line. Some tests include an initialization sequence which appears
before the parentheses. If operations need an input argument, it is
chosen nondeterministically out of{0, 1}. Primed versions of the
operations are restricted forms that assume no retries (that is, retry
loops are restricted to a single iteration).

4.2 Missing Fences

As expected, our testcases revealed that all five implementations re-
quire extra memory fences to function correctly on relaxed memory
models.

To give a concrete example, we show the source code for the
non-blocking queue with appropriate fences in Fig. 9. To our
knowledge, this is the first published version of Michael and Scott’s
non-blocking queue that includes memory ordering fences. We ver-
ified that onRelaxed these fences are sufficient and necessary for
the tests in Fig. 10. Of course, our method may miss some fences
if the tests do not cover the scenarios for which they are needed.
An interesting observation is that the implementations we studied
required only load-load and store-store fences. On some architec-
tures (such as Sun TSO or IBM zSeries), these fences are automatic
and the algorithm therefore works without inserting any fences on
these architectures.

4.3 Description of Typical Failures

Incomplete initialization. A common failure occurs with code
sequences that (1) allocate a new node, (2) set its fields to some
value and (3) link it into the list. On relaxed memory models, the
stores to the fields (in step 2) may be delayed past the pointer store



1 typedef struct node {
2 struct node *next;
3 value_t value;
4 } node_t;
5 typedef struct queue {
6 node_t *head;
7 node_t *tail;
8 } queue_t;
9

10 extern void assert(bool expr);
11 extern void fence(char *type);
12 extern int cas(void *loc,
13 unsigned old, unsigned new);
14 extern node_t *new_node();
15 extern void delete_node(node_t *node);
16

17 void init_queue(queue_t *queue)
18 {
19 node_t *node = new_node();
20 node->next = 0;
21 queue->head = queue->tail = node;
22 }
23 void enqueue(queue_t *queue, value_t value)
24 {
25 node_t *node, *tail, *next;
26 node = new_node();
27 node->value = value;
28 node->next = 0;
29 fence("store-store") ;
30 while (true) {
31 tail = queue->tail;
32 fence("load-load") ;
33 next = tail->next;
34 fence("load-load") ;
35 if (tail == queue->tail)
36 if (next == 0) {
37 if (cas(&tail->next,
38 (unsigned) next, (unsigned) node))
39 break;
40 } else
41 cas(&queue->tail,
42 (unsigned) tail, (unsigned) next);
43 }
44 fence("store-store") ;
45 cas(&queue->tail,
46 (unsigned) tail, (unsigned) node);
47 }
48 bool dequeue(queue_t *queue, value_t *pvalue)
49 {
50 node_t *head, *tail, *next;
51 while (true) {
52 head = queue->head;
53 fence("load-load");
54 tail = queue->tail;
55 fence("load-load");
56 next = head->next;
57 fence("load-load");
58 if (head == queue->head) {
59 if (head == tail) {
60 if (next == 0)
61 return false;
62 cas(&queue->tail,
63 (unsigned) tail, (unsigned) next);
64 } else {
65 *pvalue = next->value;
66 if (cas(&queue->head,
67 (unsigned) head, (unsigned) next))
68 break;
69 }
70 }
71 }
72 delete_node(head);
73 return true;
74 }

Figure 9. C code for the non-blocking queue [33], with fences
added. It is slightly simplified: the original code stores a counter
along with each pointer, which we omit because it is not required
in all contexts. No such modifications were made to the other
algorithms.

(in step 3). If so, operations by other threads can read the node
fields before they contain the correct values, with fatal results. All
five implementations showed this behavior. The fix is the same in
all cases: adding a store-store fence between steps (2) and (3). For
example, the store-store barrier on line 29 of Fig. 9 was added for
this reason.

Reordering of value-dependent instructions.Some weak archi-
tectures (such as Alpha [7]) allow loads to be reordered even if
they are value dependent. For example, the common code sequence
(1) read a pointerp to some structure and (2) read a fieldp->f is
(somewhat surprisingly) susceptible to out-of-order execution: the
processor may perform the load ofp->f before the load ofp by
speculating on the value ofp and then confirming it afterward [30].
We found this behavior to cause problems in all five implementa-
tions. To avoid it, we add a load-load fence between the two in-
structions. For example, the load-load fence on line 32 in Fig. 9
was inserted for this reason.

Reordering of CAS operations. We model the compare-and-
swap operation without any implied fences (Fig. 6). As a result,
two CAS instructions to different addresses may be reordered. We
observed this behavior only for the nonblocking queue, where it
causes problems in the dequeue operation (Fig. 9) if the tail is ad-
vanced (line 45) before the node is linked into the list (line 37). To
fix this problem, we added a store-store fence on line 44.

Reordering of load sequences.The nonblocking queue uses sim-
ple load sequences to achieve some synchronization effects. For
example,queue->tail is loaded a first time on line 31; next,
tail->next is loaded (line 33); then,queue->tail is loaded
a second time (line 35) and the value is compared to the previ-
ously loaded value. If the values are the same, the implementa-
tion infers that the values that were loaded forqueue->tail and
tail->next are consistent (that is, can be considered to have been
loaded atomically). A similar load sequence is used in the enqueue
operation (lines 52 and 58). For this mechanism to work, we found
that the loads in the sequence must not be reordered, and we added
a number of load-load fences to achieve this effect (lines 32, 34, 53,
55, 57). The other implementations did not exhibit this behavior.

4.4 Quantitative Results

The performance results confirm that our observation set method
provides an efficient way to check bounded executions of concur-
rent C programs (with up to about 200 memory accesses). Further-
more, they indicate that for our encoding, the choice of the memory
model has no significant impact on the tool execution time.

Inclusion check statistics. To illustrate the character of the in-
clusion checks, we show statistics and graphs in Fig. 10. As de-
scribed in Section 3.2.1,CheckFenceencodes the inclusion prob-
lem as a CNF formula which is then refuted by the zChaff SAT
solver [35] (version 2004/11/15). To keep the trends visible, we do
not include the time required for the lazy loop unrolling because it
varies greatly between individual tests and implementations.

Specification mining statistics. We show information about the
specification mining in Fig. 11a. Most observation sets were quite
small (less than 200 elements). The time spent for the specification
mining averaged about a third of the total runtime (Fig. 11b).
However, in practice, much less time is spent for observation set
enumeration because (1) observation sets need not be recomputed
after each change to the implementation, and (2) we can often
compute observation sets much more efficiently by using a small,
fast reference implementation (as shown by the data points for
“refset”).



Test Unrolled code Encoding CNF formula Zchaff Total
Name instrs loads stores time [s] vars clauses [MB] time [s] time [s]
T0 142 13 20 0.1 433 5,077 <1 <0.1 0.1
T1 256 25 33 0.6 1,266 40,454 4 0.2 0.8
T53 346 33 47 2.0 2,445 125,831 12 1.9 3.9
T54 346 33 47 1.8 2,378 125,745 12 5.1 6.9
T55 346 33 47 1.6 2,331 125,788 12 7.2 8.7
T56 346 33 47 1.6 2,304 123,660 12 3.3 4.9
Ti2 301 29 40 0.8 1,409 42,418 4 0.2 1.0
Ti3 370 37 46 1.7 2,116 90,066 12 0.7 2.4
Tpc2 256 25 33 0.7 1,294 41,553 4 0.1 0.8
Tpc3 370 37 46 2.4 2,591 142,742 15 1.6 4.0
Tpc4 484 49 59 7.4 4,324 342,446 47 12.0 19.4
Tpc5 598 61 72 16.4 6,493 677,390 94 91.6 108.0
Tpc6 712 73 85 35.0 9,098 1,178,842 186 367.0 402.0
T0 214 22 14 0.2 1,004 12,151 1 <0.1 0.2
T1 1000 115 55 22.0 14,848 1,597,115 189 314.0 336.0
T53 966 107 57 22.0 14,536 1,426,104 188 105.0 127.0
Ti2 843 93 48 8.5 10,407 709,416 94 7.2 15.7
Ti3 1086 122 60 25.6 16,344 1,633,713 190 35.4 61.0
Tpc2 454 48 27 1.4 3,496 126,013 12 0.7 2.0
Tpc3 694 74 40 5.4 7,638 468,274 48 6.5 11.9
Tpc4 934 100 53 16.4 12,979 1,165,993 186 74.0 90.4
Tpc5 1174 126 66 42.0 19,679 2,347,472 372 455.0 497.0
Tpc6 1414 152 79 130.0 27,747 4,133,783 610 1930.0 2060.0
Sac 254 29 23 0.5 1,396 24,658 2 <0.1 0.5
Sar 435 56 39 4.0 4,521 210,799 24 0.8 4.8
Sacr 505 65 39 5.2 5,435 280,223 47 0.7 5.9
Saa 543 69 48 8.7 7,120 424,579 80 2.1 10.8
Saacr 747 97 58 11.7 9,233 504,304 81 3.5 15.2
Sacr2 1071 141 81 16.3 14,364 555,692 93 11.6 27.9
Sarr 842 114 67 103.0 15,941 1,731,774 318 47.3 150.3
S1 821 107 56 18.2 13,610 1,201,727 186 66.4 84.6
Saaarr 1183 158 93 93.6 23,474 1,945,051 321 86.4 180.0
Sac 406 34 14 0.4 1,882 25,456 2 <0.1 0.5
Sar 575 51 18 1.4 3,670 85,824 12 0.1 1.6
Saa 896 77 28 5.2 8,629 333,128 48 1.0 6.3
Sacr 1349 125 32 28.0 16,411 1,157,264 187 6.9 34.9
Da 760 77 51 4.1 5,229 230,292 24 0.8 4.9
D0 810 89 65 19.9 9,254 1,075,792 121 9.3 29.2
Db 980 107 75 47.4 12,278 1,815,494 191 49.6 97.0
Dm 748 77 57 8.1 8,086 698,752 62 28.7 36.8
Dq 748 77 57 7.0 8,015 710,252 62 123.0 130.0

sn
ar

k
m

s2
m

sn
la

zy
lis

t
ha

rri
s

0.001

0.01

0.1

1

10

100

1000

10000

0 100 200 300
memory accesses in unrolled code

zc
ha

ff 
re

fu
ta

tio
n 

tim
e 

[s
] 

ms2
msn
lazylist
harris
snark

0.1

1

10

100

1000

0 100 200 300
memory accesses in unrolled code

zc
ha

ff 
m

em
or

y 
[k

B]
ms2
msn
lazylist
harris
snark

Figure 10. (a) left: statistics about the inclusion checks. For a given implementation (listed in Table 1) and test (listed in Fig. 8), we show
(from left to right): the size of the unrolled code, the time required to create the SAT instance, the size of the SAT instance, the resources
required by the SAT solver to refute the SAT instance, and the overall time required. All measurements were taken on a 3 GHz Pentium 4
desktop PC with 1GB of RAM, using zchaff [35] version 2004/11/15.(b) right: charts show (on a logarithmic scale) how time and memory
requirements increase sharply with the number of memory accesses in the unrolled code. The data points represent the individual tests,
grouped by implementation.
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Figure 12. Speed comparison between our observation set method
and the commit point method [4]. Each data point corresponds to
an individual test. Both axes are logarithmic, diagonal lines show
constant ratios. The average speedup is2.61×.

Impact of range analysis. As described earlier, we perform a
range analysis prior to the encoding to obtain data bounds, alias
analysis, and range information. This information is used to im-
prove the encoding by reducing the number of boolean variables.
Fig. 11c shows the effect of the range analysis on runtime. On aver-
age, the performance improvement was about 42%. On larger test-
cases (where we are most concerned), the positive impact is more
pronounced (the tool finished up to 3× faster).

Choice of memory model. All tests use the memory model
Relaxed (see Sections 2.3 and 3.2.1). To find out if the choice
of memory model has an effect on the runtime, we separately eval-
uated the runtime for a sequentially consistent memory model. The
results indicate that on average, performance is about 4% faster for
sequential consistency, which is insignificant.

5. Related Work
Most prior work on verification of concurrent data types is based
on interactive proof construction and assumes a sequentially con-
sistent memory model [6, 14, 40, 46, 50]. To our knowledge, anal-
ogous proof strategies for relaxed memory models have not been
investigated.

Specialized algorithms to insert memory fences automatically
during compilation have been proposed early on [11, 42]. However,
these methods are based on a conservative program analysis, which
makes them less attractive for highly optimized implementations:
fences can have a considerable performance impact [45, 47] and
should be used sparingly.

Most previous work on model checking executions on re-
laxed memory models has focused on relatively small and hand-
translated code snippets (such as spinlocks or litmus tests). It can
be divided into two categories: explicit-state model checking com-
bined with operational memory models [9, 38], and constraint solv-
ing combined with axiomatic memory models [4, 15, 51].

We prefer the latter approach for two reasons: (1) axiomatic
models can more easily capture official specifications because the
latter use an axiomatic style, and (2) constraint-based encodings
can leverage the advances in SAT solving technology.

When compared to our earlier case study [4], the method pre-
sented in this paper differs as follows:

• We allow the operations of the implementation to be written
as C code (rather than requiring a manual translation). This
improves the degree of automation and the precision, at the
expense of a somewhat larger encoding.

• Our observation set method is more automatic and more gen-
eral, because it does not require commit point specifications.
Implementations such as the lazy list-based set [18] are not
known to have commit points [6, 46].

• Our observation method is faster. Fig. 12 shows a direct speed
comparison on a logarithmic scale; the diagonal lines show con-
stant speed ratios. On average, the speedup was about2.61×,
but it approached an order of magnitude on some tests.

6. Conclusions
Verifying concurrent data type implementations that make deliber-
ate use of data races and memory ordering fences is challenging
because of the many interleavings and counterintuitive instruction
reorderings that need to be considered. Conventional verification
tools for multithreaded programs are not sufficient because they
make assumptions on the programming style (race-free programs)
or the memory model (sequential consistency).

OurCheckFenceprototype fills this gap and provides a valuable
aid to algorithm designers and implementors because it (1) accepts
implementations written as C code, (2) supports relaxed memory
models, memory ordering fences, and lock-free synchronization
and (3) can verify that the implementation behaves correctly for
a given bounded test or will produce a counterexample trace if it
does not.

Future work includes (1) enhancements to the front-end to sup-
port more C features and data type implementations from the lit-
erature, and (2) the use of SMT solvers and customized decision
procedures to improve the efficiency of the back end. We are also
working on applying our method to memory models that are weaker
thanRelaxed (such as the PowerPC model [13]) or defined at the
language level (such as the new Java Memory Model [29]).
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