
1

Compositional Learning and Verification
of Neural Network Controllers

RADOSLAV IVANOV∗, KISHOR JOTHIMURUGAN∗, STEVE HSU, SHAANVAIDYA, RAJEEV
ALUR, and OSBERT BASTANI, University of Pennsylvania, USA

Recent advances in deep learning have enabled data-driven controller design for autonomous systems. However,

verifying safety of such controllers, which are often hard-to-analyze neural networks, remains a challenge.

Inspired by compositional strategies for program verification, we propose a framework for compositional

learning and verification of neural network controllers. Our approach is to decompose the task (e.g., car

navigation) into a sequence of subtasks (e.g., segments of the track), each corresponding to a different mode of

the system (e.g., go straight or turn). Then, we learn a separate controller for each mode, and verify correctness

by proving that (i) each controller is correct within its mode, and (ii) transitions between modes are correct.

This compositional strategy not only improves scalability of both learning and verification, but also enables

our approach to verify correctness for arbitrary compositions of the subtasks. To handle partial observability

(e.g., LiDAR), we additionally learn and verify a mode predictor that predicts which controller to use. Finally,

our framework also incorporates an algorithm that, given a set of controllers, automatically synthesizes the

pre- and postconditions required by our verification procedure. We validate our approach in a case study

on a simulation model of the F1/10 autonomous car, a system that poses challenges for existing verification

tools due to both its reliance on LiDAR observations, as well as the need to prove safety for complex track

geometries. We leverage our framework to learn and verify a controller that safely completes any track

consisting of an arbitrary sequence of five kinds of track segments.

CCS Concepts: •Computer systems organization→ Embedded and cyber-physical systems; Real-time

systems; • Computing methodologies→ Reinforcement learning.

Additional Key Words and Phrases: neural networks, verification, compositional reasoning

ACM Reference Format:
Radoslav Ivanov, Kishor Jothimurugan, Steve Hsu, Shaan Vaidya, Rajeev Alur, and Osbert Bastani. 2021.

Compositional Learning and Verification of Neural Network Controllers. ACM Trans. Embedd. Comput. Syst. 1,
1, Article 1 (January 2021), 25 pages. https://doi.org/10.1145/3477023

1 INTRODUCTION
Deep reinforcement learning is a promising approach to solving challenging control problems, such

as control from perception [46], multi-agent planning problems [43], autonomous driving while

interacting with humans [15], or planning through contact such as walking [17] or grasping [10].

The basic premise is to learn a neural network (NN) controller directly mapping observations

to actions. However, ensuring safety in these settings is challenging due to the complexity in

∗
Both authors contributed equally to this research.

Authors’ address: Radoslav Ivanov; Kishor Jothimurugan; Steve Hsu; Shaan Vaidya; Rajeev Alur; Osbert Bastani, University

of Pennsylvania, USA.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Embedded Software (EMSOFT), 2021.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1539-9087/2021/1-ART1 $15.00

https://doi.org/10.1145/3477023

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3477023
https://doi.org/10.1145/3477023

1:2 Ivanov, et al.

formally reasoning about NN models. For instance, small perturbations in their inputs can lead to

unexpected changes in their output [66] and this can adversely affect control performance [42].

Thus, it is critical to formally verify the safety of the NN controller to guarantee safety under a

wide range of inputs and operating conditions. Even learning NN controllers for complex tasks

remains challenging [41, 45, 51], since existing approaches do not scale beyond tasks with short

planning horizons.

As a consequence, there has been a great deal of interest in safe reinforcement learning [4, 12, 18]

and verifying that the learned NN controller satisfies a given safety property [38, 42]. We focus

on closed-loop safety, where the goal is to ensure that the controller, composed with a model of

the robot dynamics and its environment, is safe over the entire planning horizon—e.g., that an

autonomous car does not run into an obstacle, or a walking robot does not fall over. We consider

the setting where the NN controller is learned in simulation, and the goal is to verify the learned

controller.

Hybrid automaton

Safety specification &
Initial conditions

Deep RL NN controllers
for all modes (𝜋! , 𝜋")

Supervised
learning

Mode predictor
(𝜇)

LearningSpecification

Synthesis
Pre and post
conditions

Verification
conditions

Verification
using Verisig

Verification

𝑃 	𝑆	{𝑄}	𝑞! 	𝑞"

Controller
(𝜋)

obs

	𝜋! 	𝜋"

𝜇 = 0 𝜇 = 1

Fig. 1. An overview of our compositional learning and verification framework.

A key challenge in achieving this goal is proving safety for the full closed-loop system. One

approach is to unroll the safety property over a finite horizon [38]. However, this approach becomes

intractable as the planning horizon becomes large. In particular, existing verification algorithms

rely on overapproximating the dynamics [16], and the approximation error accumulates over

the horizon. Thus, very precise abstractions are required to verify safety for long horizons. An

alternative approach is to establish the existence of an inductive invariant such as a Lyapunov

function [18, 67] or a control barrier function [5, 57]. This strategy reduces the problem to a

verification problem over a single step, since it suffices to prove that a candidate invariant is

inductive and that it implies safety. However, establishing such an invariant can be intractable

for high-dimensional state spaces, especially when using neural network controllers with many

parameters.

These challenges are further exacerbated for real-world robotics systems, which are typically

only partially observable (e.g., the inputs to the NN are LiDAR scans), and the geometry of the

environment is a priori unknown (e.g., the robot is acting in a building with an unknown layout of

hallways).

To address these challenges, we propose a framework for compositional learning and verification

of NN controllers
1
(Figure 1). Our framework is inspired by classical techniques such as Hoare

logic [34] for compositional program verification. The idea is to verify a program by decomposing

it into modular components, devising verification conditions (VCs) for all components that suffice

to prove safety, and then proving that each VC holds for its respective component.

1
Although the proposed framework can be used with any verification tool, we use Verisig [38] for closed-loop verification.

Since Verisig supports fully-connected NNs with sigmoid/tanh activations, we focus on this class of NNs as well.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:3

In particular, our framework leverages this strategy to both learn an NN controller to solve a

given control task and verify the learned controller. First, we decompose the task into a sequence

of sub-tasks, where each sub-task is associated with a precondition (e.g., the region of the state

space where the robot starts) and a postcondition (e.g., the region where the robot ends up). This

decomposition is designed to satisfy two properties:

• Mode safety and progress: For any single sub-task, using the NN controller from any

state satisfying the precondition should safely transition the system to a state satisfying the

postcondition within some bounded number of steps.

• Switching safety: The postcondition of one sub-task should imply the precondition of the

next.

As long as these two properties are satisfied, the NN controller is guaranteed to be safe for the entire

planning horizon. Furthermore, these two properties are sufficient to guarantee a particular liveness

property which states that any finite sequence of sub-tasks will be completed eventually. Intuitively,

our strategy combines verification over a finite horizon (i.e., mode safety) with establishing inductive

invariants (i.e., switching safety), except that the inductive invariants are established at the level of

sub-tasks rather than individual steps in the system. Formally, we model the system as a hybrid

automaton [5, 7, 53]—i.e., a model of the system is a set of modes of operation, with differential

equations specifying the state dynamics of each mode; in our approach, the discrete transitions

encode switching from one sub-task to the next. Many practical control tasks can be decomposed

in such a way—e.g., navigation problems can be decomposed into sequences of sub-goals.

Given a hybrid automaton, our framework performs the following steps:

• Compositional learning: First, it learns a separate NN controller for each mode, using

shaped rewards to encourage it to satisfy mode safety and progress. An added advantage of

this approach is that we can use simpler NNs that are easier to both train and verify.

• Pre/postcondition synthesis: Next, it synthesizes candidate pre/postconditions (i.e., a can-
didate pair of pre- and postconditions for each mode) that satisfy switching safety and are

consistent with a set of traces obtained by simulating the system with the learned controllers.

• Compositional verification: Finally, it uses hybrid systems verification tools [16, 38] to

independently check mode safety and progress for each mode.

The second step builds on recent work on invariant synthesis [31]. In particular, our synthesis

algorithm uses testing to identify implication examples that connect the different (pre/postcondition)
sets, and then tries to synthesize candidate pre/postconditions consistent with these examples.

One challenge is that in partially observed environments, the controller may not know when one

sub-task has been completed and/or what the next sub-task is. To address this issue, we additionally

train a mode predictor, which is a separate NN that predicts whether the postcondition for the

current sub-task holds in the current state and if so, predicts the next sub-task. This mode predictor

is incorporated into the overall controller. To ensure correctness, the safety and progress conditions

are verified with respect to the full compositional controller (including the mode predictor). For

instance, consider a robot navigating in a building with an unknown layout; then, it may not know

if the next segment is to go straight, turn left, or turn right. Our approach naturally handles this

setting since it proves safety for arbitrary compositions of the sub-tasks as long as the switching

safety property is satisfied. Thus, the sequence of sub-tasks can be chosen dynamically based on

observations of the environment—e.g., if a robot comes to a left turn at the end of a hallway, then

the mode predictor would determine that the next sub-task is to make that left turn. Therefore, our

framework enables us to learn and verify a controller that generalizes to multiple tasks composed

of the same set of sub-tasks.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Ivanov, et al.

(a) Straight (b) Right (c) Left (d) Sharp Right (e) Sharp Left

Fig. 2. Different types of track segments.

(a) (b) (c)

Fig. 3. Example tracks decomposed into segments.

We evaluate our approach on a challenging benchmark—namely, a simulation model of the F1/10

autonomous racing system [1], where the goal is for an NN-controlled car to complete a track

without crashing into the walls. Verifying safety for this system has received recent attention [38];

however, these approaches do not scale to verifying safety beyond short time horizons on a single,

predefined track, due to two main reasons. First, the controller must rely on high-dimensional

LiDAR observations of the environment, which poses challenges for scalability. Second, we ideally

want to ensure safety for a wide variety of complex track geometries. As a consequence, this system

is beyond the reach of existing state-of-the-art verification techniques.

We demonstrate that our framework can successfully learn and verify an NN controller for this

system, by decomposing tracks into sequences of individual segments. In particular, we consider

sub-tasks that include going straight or executing four different kinds of turns, and verify safety

for any sequence of such sub-tasks. We also provide evidence that training a monolithic controller

for an example track is significantly harder than our compositional learning approach.

In summary, our contributions are:

• A framework for compositional verification of NN controllers for hybrid systems (Section 3).

• An algorithm for automatically inferring pre/postconditions given a controller 𝜋 , as well as a

compositional learning algorithm for training 𝜋 .

• An extensive evaluation
2
via a case study based on a model of the F1/10 autonomous car

(Sections 5 & 6).

2 OVERVIEW
In this section, we give a brief overview of our approach using the F1/10 autonomous racing system

as a motivating example.

F1/10 car. The objective is to safely navigate the autonomous F1/10 car along a racing track to

complete a lap as quickly as possible. The safety property states that the car should not crash into

the track walls. Ignoring modes for now, the state space is X ⊆ R4
(a state 𝑥 ∈ X denotes the 2D

position, speed, and angle of the car), the action space is U ⊆ R2
(an action 𝑢 ∈ U consists of

acceleration and steering angle), and the dynamics are the bicycle dynamics [58].

We assume the track is decomposed into a sequence of segments, where each segment is either a

straight track, a left/right turn, or a sharp left/right turn as shown in Figure 2; these are the five

2
Our implementation is available at https://github.com/keyshor/autonomous_car_verification.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/keyshor/autonomous_car_verification

Compositional Learning and Verification of NN Controllers 1:5

(a) A LiDAR scan.

pre

po
st

Safe region
Unsafe region
Next mode

5𝑚

5𝑚

(b) Different regions in the segment.

Fig. 4. A sharp right turn.

modes of the system. Our goal is not to learn and verify a controller for a given specific track, but

rather to learn and verify a controller that works for all tracks constructed by composing these

segments. Some example tracks are shown in Figure 3.

The F1/10 car observes its environment with a LiDAR sensor, which uses laser rays to determine

the distance to the nearest obstacle along different directions. In particular, it produces an obser-

vation 𝑜 ∈ O ⊆ R𝑚 , where each 𝑜𝑖 ∈ R corresponds to an angle𝜓 ∈ [−135, 135] and denotes the

distance from the car position to the nearest wall in the direction 𝜗 +𝜓 , where 𝜗 is the angle the

car is currently facing. An example of a scan is shown in Figure 4a; each green point is the obstacle

observed by one of the𝑚 = 1081 LiDAR rays.

Control problem. Our goal is to learn a controller 𝜋 : O → U that maps LiDAR observations to

actions. Designing a safe controller for the F1/10 car is challenging due to the high-dimensional

observation space. One approach is to train a neural network (NN) controller 𝜋 using reinforcement

learning, and then verify post-hoc that 𝜋 is safe. This technique has been used to verify that the car

can safely navigate a right turn [39]. However, existing verification approaches [22, 38, 68] do not

scale to more complex tasks such as the tracks in Figure 3—even when the track is known ahead of

time—due to the long planning horizon.

Compositional verification (fully observed). For now, let us assume that the controller 𝜋 is given

and that the state is fully observed, and describe how we verify that 𝜋 is safe. We also assume

that we are given a pre-region and a post-region for each mode, which are subsets of the state

space such that the car always starts in the pre-region of the mode and ends in its post-region.

Intuitively, membership in the pre-region (resp., post-region) corresponds to the precondition (resp.,

postcondition) for that mode. An example of the pre- and post-regions for the sharp right turn

mode is shown in Figure 4b. These regions are chosen so that the system immediately and safely

transitions from the post-region of any mode 𝑞 to the pre-region of some subsequent mode 𝑞′ (i.e.,
switching safety). If we know the sequence of track segments, then the choice of 𝑞′ is unique. In
our case, since we do not know the sequence of track segments a priori, we prove switching safety

for every pair of modes 𝑞, 𝑞′, which, together with mode safety and progress guarantees that the

car safely completes any track consisting of an arbitrary sequence of these five kinds of segments.

Finally, to prove mode safety and progress, it suffices to verify that 𝜋 safely navigates the car from

the pre-region of each mode to the corresponding post-region without crashing.

Compositional verification (partially observed). Verification is more challenging when the state is

partially observed—e.g., 𝜋 only has access to LiDAR observations. We assume 𝜋 is decomposed

into a mode predictor 𝜇 together with a controller 𝜋𝑞 for each mode 𝑞. Then, 𝜋 uses 𝜋𝑞 , where 𝑞 is

the predicted mode at the current step.

Importantly, we do not assume that the mode predictor is correct; thus, 𝜋 may use the incorrect

controller. For example, in the case of the sharp right turn, if the LiDAR range is smaller than the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Ivanov, et al.

distance of the corner from the entry region, there will be regions where the mode predictor cannot

distinguish the sharp turn segment from a straight segment using just LiDAR observations (see

Figure 4b). Thus, we need to prove that the full controller 𝜋 is correct, even if 𝜇 is wrong. This

involves simultaneously reasoning about the controllers 𝜋𝑞
′′
for all modes 𝑞′′, along with the mode

predictor 𝜇.

Compositional learning. We use deep reinforcement learning to train one neural network con-

troller 𝜋𝑞 for each mode 𝑞 to drive the car from the pre-region to the post-region. Since the

controller can only observe the LiDAR observations, we also train a mode predictor that predicts

the current mode from the observations. We can do so using supervised learning from observations

encountered while training 𝜋𝑞 .

Importantly, we find that our compositional approach benefits not only verification but also

learning. In particular, we can train simpler neural networks with fewer parameters, and training

is less likely to get stuck at local maxima that are characteristic of long planning horizons.

Candidate pre/post-region synthesis. Finally, manually specifying the pre- and post-regions for

each mode can be challenging. We propose an algorithm for automatically inferring these regions.

Our algorithm, based on invariant inference [26, 31, 60], alternates between synthesizing candidate
pre/post-regions that are consistent with all the example traces generated so far, and generating

new example traces using 𝜋 .

In particular, the synthesis algorithm uses the example traces to identify both unsafe examples 𝑧
from which 𝜋 is known to be unsafe, and implication examples 𝑧 → 𝑧 ′, which say that 𝑧 ′ is reachable
from 𝑧 using 𝜋 . Then, it represents the pre- and post-regions as boxes in R𝑛 , and infers a set of

boxes that are consistent with the identified examples. Finally, it uses the inferred pre/post-regions

to try and verify that 𝜋 is safe.

3 COMPOSITIONAL VERIFICATION
In this section, we describe our framework for compositional verification of controllers. Our model

of the system is based on hybrid automata [7, 8, 53] tailored to our setting. We define safety and

liveness in our context and show that we can reduce safety and liveness to a set of verification

conditions (VCs) that are local to the modes of the hybrid automaton and can be checked using

existing verification tools.

3.1 Problem Formulation
Dynamics. We consider a hybrid dynamical system with states 𝑧 ∈ Z and actionsU ⊆ R𝑘 . We

assume the state space has structureZ = Q ×X, where Q is a finite set ofmodes and X ⊆ R𝑛 is the

continuous component of the state space. We denote the states in mode 𝑞 byZ𝑞 = {𝑞} ×X. Within

a mode 𝑞 ∈ Q, the dynamics are given by a function 𝑓 : Z ×U → R𝑛 ; in particular, the system

evolves according to the differential equation ¤𝑥 (𝑡) = 𝑓 (𝑧 (𝑡), 𝑢 (𝑡)) (with respect to time 𝑡). When

there is no ambiguity, we simply write ¤𝑥 = 𝑓 (𝑧,𝑢). The mode transitions are given by a relation

T ⊆ Z ×Z, where an edge 𝑧 → 𝑧 ′ ∈ T means the system can transition from state 𝑧 to state 𝑧 ′.
We letZ𝐹 = {𝑧 ∈ Z | ∃𝑧 ′ ∈ Z s.t. 𝑧 → 𝑧 ′ ∈ T } denote the set of states where mode transitions

can occur. The mode transitions are assumed to be urgent—i.e., a mode transition occurs as soon as

the system reaches some 𝑧 ∈ Z𝐹 ; we assume thatZ𝐹 is closed so this property is well-defined.

Intuitively, the corresponding discrete time dynamics are given by 𝑧+ = 𝑧 ′ if 𝑧 → 𝑧 ′ ∈ T
and 𝑧+ = (𝑞, 𝑥 + 𝑓 (𝑧,𝑢) · Δ𝑡) otherwise. Note that the mode transitions are nondeterministic,

since the condition 𝑧 → 𝑧 ′ ∈ T may be satisfied by multiple 𝑧 ′ ∈ Z. This nondeterminism is

needed to capture settings where the sequence of sub-tasks is a priori unknown. In our F1/10

example, at a state 𝑧 about to exit the current mode, transitions 𝑧 → (𝑞′, 𝑥 ′) exist for all modes

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:7

𝑞′ ∈ {straight, left turn, ...}. Finally, our goal is to control the system based on observations 𝑜 ∈
O ⊆ R𝑚 ; in particular, an observation function ℎ : Z → O maps states to observations. If the

system is fully observable, O can be taken to beZ with ℎ(𝑧) = 𝑧 for all 𝑧 ∈ Z.

We formally represent the dynamical system as a hybrid automaton which is defined as:

Definition 3.1. A hybrid automaton A is a tuple A = (Q,X,U,T ,O, 𝑓 , ℎ).

Control. A controller is a function 𝜋 : O → U, where 𝑢 = 𝜋 (ℎ(𝑧)) specifies the action to use in

state 𝑧. We use 𝑓 (𝑧, 𝜋, 𝑡) ∈ Z to denote the state reached at time 𝑡 ∈ R≥0 by evolving the system

according to ¤𝑥 = 𝑓 (𝑧, 𝜋 (ℎ(𝑧))). Furthermore, let 𝐹 (𝑧, 𝜋, 𝑡) ⊆ Z denote the set of states visited until

time 𝑡—i.e., 𝐹 (𝑧, 𝜋, 𝑡) = {𝑓 (𝑧, 𝜋, 𝑡 ′) | 0 ≤ 𝑡 ′ ≤ 𝑡}.
We decompose 𝜋 into controllers 𝜋𝑞 : O → U designed to be used in mode 𝑞 ∈ Q, and a mode

predictor 𝜇 : O → Q that predicts the current mode. Then, we have 𝜋 (𝑜) = 𝜋𝑞 (𝑜) where 𝑞 = 𝜇 (𝑜).
We do not assume that the mode predictor is always correct—i.e., we may have 𝜇 (𝑜) = 𝑞 even

though the current mode is 𝑞′ ≠ 𝑞, in which case 𝜋 would use the wrong controller.

Trajectories. Next, we describe the space of trajectories that may be generated by a given controller

𝜋 . Since the dynamics are continuous-time, the trajectory is a curve in the state space parameterized

by time 𝑡 ∈ R≥0. However, formally reasoning about this representation is difficult. Instead, we

represent a trajectory as an infinite sequence 𝜌 = (𝑧0

𝑡0−→ 𝑧1

𝑡1−→ · · ·), where 𝑡𝑖 ∈ R≥0 for all 𝑖 ∈ N.
In particular, an edge 𝑧𝑖

𝑡𝑖−→ 𝑧𝑖+1 in 𝜌 says that the system transitions from 𝑧𝑖 to 𝑧𝑖+1 in time 𝑡𝑖 . For

clarity, we omit the 𝑡𝑖 ’s from 𝜌 when it is not needed. There are two kinds of transitions 𝑧𝑖 → 𝑧𝑖+1
that can occur:

• Continuous transition: This kind of transition occurs when 𝑧𝑖 ∉ Z𝐹 . Then, the system

evolves according to the continuous dynamics 𝑓—i.e., 𝑧𝑖+1 = 𝑓 (𝑧𝑖 , 𝜋, 𝑡𝑖), where 𝑡𝑖 > 0. We

assume that no mode transition is triggered—i.e., 𝑓 (𝑧𝑖 , 𝜋, 𝑡) ∉ Z𝐹 for all 𝑡 ∈ [0, 𝑡𝑖). We denote

such a transition by 𝑧𝑖 →𝑓 𝑧𝑖+1.
• Mode transition: This kind of transition occurs when 𝑧𝑖 ∈ Z𝐹 . Then, the system instan-

taneously transitions to some 𝑧𝑖+1 such that 𝑧𝑖 → 𝑧𝑖+1 ∈ T—i.e., 𝑡𝑖 = 0. We denote such a

transition by 𝑧𝑖 →T 𝑧𝑖+1.
We assume all trajectories are non-Zeno—i.e.,

∑∞
𝑖=0
𝑡𝑖 = ∞. It is only necessary to consider Zeno

trajectories if subsequent mode transitions can occur after arbitrarily small amounts of time, which

cannot happen if the system requires a minimum amount of time before triggering the next mode

transition. In our F1/10 example, the car must traverse an entire segment to trigger another mode

transition, which cannot happen arbitrarily quickly since velocity is bounded from above.

Correctness properties. We consider a safety property specified as a regionZsafe ⊆ Z in which

we expect the system to stay. In addition, we assume given a set of initial statesZ0 ⊆ Zsafe from

which we want to ensure safety.

Definition 3.2. A controller 𝜋 is safe for a hybrid automaton A if for any trajectory 𝜌 starting

from 𝑧0 ∈ Z0, for all 𝑖 ∈ N, we have 𝑓 (𝑧𝑖 , 𝜋, 𝑡) ∈ Zsafe for all 𝑡 ∈ [0, 𝑡𝑖].

That is, the system should be safe for the duration of any trajectory generated using 𝜋 from an

initial state. Next, liveness says the system should switch modes infinitely often.

Definition 3.3. A controller 𝜋 is live for a hybrid automaton A if for any trajectory 𝜌 starting

from 𝑧0 ∈ Z0, we have 𝑧𝑖 →T 𝑧𝑖+1 for infinitely many 𝑖 ∈ N.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Ivanov, et al.

3.2 Verification Conditions
Our verification algorithm reduces the problem of verifying safety and liveness to a set of verification

conditions (VCs).

Pre- and post-regions. Following our compositional approach, our VCs decompose the problem

into properties of individual modes or pairs of modes. For each mode 𝑞, we assume given a pre-
region X𝑞

pre
⊆ X and a post-region X𝑞

post
⊆ X. In addition, we define Z𝑞

pre
= {𝑞} × X𝑞

pre
and

Z𝑞

post
= {𝑞} × X𝑞

post
. Intuitively, the precondition (resp., postcondition) for 𝑞 is membership in

its pre-region (resp., post-region). We require that pre- and post-regions satisfy the following

conditions, which we call compatibility conditions (CCs) since they are not checked by the verifier,

but are directly enforced when we generate the pre/post regions.

Definition 3.4 (CC 1). We haveZ0 ⊆
⋃

𝑞∈QZ
𝑞
pre

.

That is, every initial state is contained in a pre-region.

Definition 3.5 (CC 2). We have

⋃
𝑞∈QZ

𝑞

post
⊆ Z𝐹 .

That is, every state in the post-region triggers a mode transition; intuitively, the post-region

should only include states that “exit” the mode. Now, we have two kinds of VCs:

• Mode safety and progress: For each mode 𝑞 ∈ Q, the system safely transitions fromZ𝑞
pre

toZ𝑞

post
.

• Switching safety: For each pair of modes𝑞, 𝑞′ ∈ Q with amode transition (𝑞, 𝑥) → (𝑞′, 𝑥 ′) ∈
T , the system safely transitions fromZ𝑞

post
toZ𝑞′

pre
.

First, our VC for mode safety and progress is:

Definition 3.6 (VC 1). For any 𝑧 ∈ Z𝑞
pre

, there exists 𝑡 ∈ R>0 such that 𝑓 (𝑧, 𝜋, 𝑡) ∈ Z𝑞

post
,

𝐹 (𝑧, 𝜋, 𝑡) ⊆ Zsafe, and 𝑓 (𝑧, 𝜋, 𝑡 ′) ∉ Z𝐹 for all 𝑡 ′ ∈ [0, 𝑡).

That is, 𝜋 safely transitions the system from any state in the pre-region of mode 𝑞 to the post-

region of 𝑞. The last condition is needed to ensure that the system does not trigger a mode transition

𝑧 → 𝑧 ′ ∈ T at some state 𝑧 ∉ Z𝑞

post
. That is, 𝑓 (𝑧, 𝜋, 𝑡) is the first state reached that triggers a mode

transition (such a state exists since we have assumedZ𝐹 is closed).

Remark 3.7. Although VC 1 is local to a mode 𝑞 ∈ Q, it is a property of the full controller 𝜋 which
includes the mode predictor 𝜇 and controllers 𝜋𝑞

′
for all 𝑞′ ∈ Q.

Next, our VC for switching safety is:

Definition 3.8 (VC 2). For all 𝑧 ∈ Z𝑞

post
and all 𝑧 → 𝑧 ′ ∈ T , we have 𝑧 ′ ∈ Z𝑞′

pre
for some 𝑞′ ∈ Q.

That is, for every state 𝑧 in a post-region and every mode transition 𝑧 → 𝑧 ′, the target state 𝑧 ′ is
contained in the pre-region of another mode 𝑞′.

Together, CCs 1 & 2 and VCs 1 & 2 imply that 𝜋 is safe and live forA. First, CC1 ensures that the

initial states satisfy the precondition of some mode 𝑞. Then, VC 1 says that the precondition of mode

𝑞 implies the postcondition of mode 𝑞. Next, VC 2 and CC 2 together say that the postcondition of

mode 𝑞 implies the precondition of another mode 𝑞′.

Theorem 3.9. Given controller 𝜋 for hybrid automatonA, if CCs 1 & 2 and VCs 1 & 2 hold, then 𝜋
is safe and live for A.

We give a proof in Appendix A, and describe how we use verification tools [16, 38] to verify the

VCs in Appendix B.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:9

Algorithm 1 Compositional learning and synthesis. Inputs: Hybrid automaton A and initial

candidate pre/post-regions 𝐵0. Output: A verified controller 𝜋 or FAIL. Hyperparameters: Number

of synthesis iterations 𝐾 ∈ N.
1: procedure LearnController(A, 𝐵0)

2: 𝜋 ← Learn(A, 𝐵0)
3: 𝐵𝜋 ← Synthesize(A, 𝜋, 𝐵0)
4: if 𝐵𝜋 = ∅ then return FAIL
5: if Verify(A, 𝜋, 𝐵𝜋) then return 𝜋
6: return FAIL
7: procedure Synthesize(A, 𝜋, 𝐵)
8: 𝐸 ← ∅
9: for 𝑖 ∈ {1, . . . , 𝐾} do
10: 𝐸 ← 𝐸 ∪ Test(A, 𝜋, 𝐵)
11: 𝐵 ← Infer(𝐸)
12: if 𝐵 = ∅ then return ∅
13: return 𝐵

4 COMPOSITIONAL LEARNING AND SYNTHESIS
Our overall framework is summarized in Algorithm 1. Suppose we are given initial pre/post-regions
𝐵0—i.e., a pre- and a post-region for every mode 𝑞 ∈ Q. Then, the method consists of the following

steps:

• Learning: Train a controller 𝜋 that tries to drive the system from every state in the pre-region

of each mode 𝑞 to the post-region of 𝑞, where we use the pre/post regions in 𝐵0.

• Pre/post-region synthesis: Synthesize new candidate pre/post-regions 𝐵𝜋 for 𝜋 .

• Verification: Use the algorithm in Section 3 with 𝐵𝜋 to try and prove that 𝜋 is safe and live.

A natural choice for the initial pre/post-regions is to takeZ𝑞
pre

= Z0 ∩Z𝑞
andZ𝑞

post
= Z𝐹 ∩Z𝑞

for all 𝑞 ∈ Q. The above procedure can fail because of two reasons: either synthesis fails (i.e., no

set of pre/post-regions consistent with the generated examples exists) or verification fails. In either

case, we retry the above steps with modified rewards for learning and/or a different choice of initial

pre/post-regions. In our experiments, we retried our procedure (Algorithm 1) a few (3-4) times with

different reward functions until we were able to verify the learned controller.

The subroutine for synthesizing a candidate set of pre/post-regions alternates between the

following two steps:

• Testing: Generate new examples using testing.

• Inference: Infer a candidate set of pre/post-regions 𝐵 based on examples 𝐸 generated so far.

The examples 𝐸 include both implication examples 𝑧 → 𝑧 ′ ∈ Z2
such that 𝑧 ′ is reachable from 𝑧

using 𝜋 , and unsafe examples 𝑧 ∈ Z that reach an unsafe state using 𝜋 .

Below, we describe our pre/post-region inference algorithm (Section 4.1) and our testing algorithm

(Section 4.2), as well as our compositional learning algorithm (Section 4.3).

4.1 Pre/Post-Region Inference
Problem formulation. We describe our algorithm for inferring pre- and post-regions given a set

of examples. First, we represent the regions using boxes–i.e., products of intervals.

Definition 4.1. A box 𝑏 ∈ B in R𝑛 is defined by 𝑏 =
∏𝑛

𝑖=1
[𝑥𝑖 , 𝑦𝑖] ⊆ R𝑛 , where 𝑥𝑖 ≤ 𝑦𝑖 for all

𝑖 ∈ {1, ..., 𝑛}.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Ivanov, et al.

We synthesize a set of boxes 𝐵 = {𝑏𝛼 | 𝛼 ∈ {pre, post}×𝑄} denoting the pre- and post-regions of
all themodes. For now,we assume given lower and upper bounds𝑏⊥𝛼 , 𝑏

⊤
𝛼 for all𝛼 ∈ 𝐴 = {pre, post}×𝑄 .

As discussed below, these bounds are used to enforce CCs 1 & 2. Then, our goal is to find boxes 𝑏𝛼
for all 𝛼 ∈ 𝐴 satisfying 𝑏⊥𝛼 ⊆ 𝑏𝛼 ⊆ 𝑏⊤𝛼 , such that taking X𝑞

pre
= 𝑏 (pre,𝑞) and X𝑞

post
= 𝑏 (post,𝑞) , VCs 1 &

2 are satisfied. We denote the set of lower and upper bounds by 𝐵⊥ and 𝐵⊤ respectively.

First, we describe the kinds of examples that are available. Examples are states (or pairs of states)

that encode a necessary condition for the VCs to hold—i.e., if the invariant does not satisfy an

example, then it cannot possibly satisfy the VCs, but the converse is not true. First, we have states

from which using 𝜋 is unsafe.

Definition 4.2. An unsafe example is a pair (𝛼, 𝑥) where 𝛼 = (pre, 𝑞) ∈ 𝐴 and 𝑥 ∈ X such that

there exists 𝑡 ∈ R≥0 with 𝑓 ((𝑞, 𝑥), 𝜋, 𝑡) ∉ Zsafe and 𝑓 ((𝑞, 𝑥), 𝜋, 𝑡 ′) ∉ Z𝐹 for all 𝑡 ′ ∈ [0, 𝑡).

Next, we have examples that correspond to pairs of states 𝑧 and 𝑧 ′ where 𝑧 ′ is reachable from 𝑧.

Definition 4.3. An implication example is a pair (𝛼, 𝑥) → (𝛼, 𝑥 ′) with 𝛼, 𝛼 ′ ∈ 𝐴 and 𝑥, 𝑥 ′ ∈ X such

that either (i) 𝛼 = (post, 𝑞) and 𝛼 ′ = (pre, 𝑞′), with (𝑞, 𝑥) → (𝑞′, 𝑥 ′) ∈ T , or (ii) 𝛼 = (pre, 𝑞) and
𝛼 ′ = (post, 𝑞), and there exists 𝑡 ∈ R≥0 with (𝑞, 𝑥 ′) = 𝑓 ((𝑞, 𝑥), 𝜋, 𝑡) ∈ Z𝐹 , 𝐹 ((𝑞, 𝑥), 𝜋, 𝑡) ⊆ Zsafe

and 𝑓 ((𝑞, 𝑥), 𝜋, 𝑡 ′) ∉ Z𝐹 for all 𝑡 ′ ∈ [0, 𝑡).

Given these two kinds of examples, our goal is to synthesize a candidate set of boxes that is

consistent with them—i.e., it excludes examples that are inconsistent with our VCs.

Definition 4.4. Given lower and upper bounds𝐵⊥, 𝐵⊤, unsafe examples𝐶 and implication examples

𝐼 , a candidate set of boxes 𝐵 is consistent if the following hold:

• For all (𝛼, 𝑥) ∈ 𝐶 , we have 𝑥 ∉ 𝑏𝛼 .

• For all (𝛼, 𝑥) → (𝛼 ′, 𝑥 ′) ∈ 𝐼 , 𝑥 ∈ 𝑏𝛼 ⇒ 𝑥 ′ ∈ 𝑏𝛼′ .
• For all 𝛼 ∈ 𝐴, we have 𝑏⊥𝛼 ⊆ 𝑏𝛼 ⊆ 𝑏⊤𝛼 .

Furthermore, 𝐵 is minimal if for any candidate set of boxes �̃� satisfying these conditions, 𝑏𝛼 ⊆ ˜𝑏𝛼
for all 𝛼 ∈ 𝐴.

Given bounds 𝐵⊥, 𝐵⊤, unsafe examples 𝐶 , and implication examples 𝐼 , the Infer subroutine used
in Algorithm 1 returns a minimal consistent candidate set of boxes (if one exists, returning ∅
otherwise).

Algorithm. Next, we describe our algorithm for synthesizing minimal set of boxes given a set

of examples. This algorithm is outlined in Algorithm 2. Our approach is to reduce the synthesis

problem to the following:

Definition 4.5 (Consistent Box). Given positive examples 𝑋 + ⊆ R𝑛 , negative examples 𝑋− ⊆ R𝑛
and boxes 𝑏⊥, 𝑏⊤, the (minimal) consistent box is

𝑏∗ = arg min

𝑏∈B

𝑛∏
𝑖=1

(𝑦𝑖 − 𝑥𝑖) subj. to 𝑋 + ⊆ 𝑏, 𝑏 ∩ 𝑋− = ∅, 𝑏⊥ ⊆ 𝑏 ⊆ 𝑏⊤ .

That is, the goal is to find the smallest box that includes 𝑋 + and excludes 𝑋−. This problem can

be solved efficiently—in particular, let 𝑏 =
∏𝑛

𝑖=1
[𝑥𝑖 , 𝑦𝑖], where 𝑥𝑖 = min{𝑥 ′𝑖 | 𝑥 ′ ∈ 𝑋 +} ∪ {𝑥⊥𝑖 } and

𝑦𝑖 = max{𝑥 ′𝑖 | 𝑥 ′ ∈ 𝑋 +} ∪ {𝑦⊥𝑖 } where 𝑏⊥ =
∏𝑛

𝑖=1
[𝑥⊥𝑖 , 𝑦⊥𝑖]. Then, return 𝑏 if 𝑏 ∩𝑋− = ∅ and 𝑏 ⊆ 𝑏⊤;

otherwise, we return ∅ (i.e., no such box exists).

Our synthesis algorithm initializes positive examples 𝑋 +𝛼 = ∅, and negative examples 𝑋−𝛼 to

be the unsafe examples, for each 𝛼 ∈ 𝐴. Then, at each iteration, it independently synthesizes a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:11

Algorithm 2 Pre/post-region inference. Inputs: Implication & unsafe examples 𝐸.Output: Candidate
pre/post-regions 𝐵. Hyperparamters: 𝐵⊥, 𝐵⊤

1: procedure Infer(𝐸)
2: 𝐼 ,𝐶 ← 𝐸

3: for 𝛼 ∈ 𝐴 do
4: 𝑋 +𝛼 ← ∅
5: 𝑋−𝛼 ← {𝑥 | (𝛼, 𝑥) ∈ 𝐶}
6: while true do
7: for 𝛼 ∈ 𝐴 do
8: 𝑏𝛼 ← ConsistentBox

(
𝑋 +𝛼 , 𝑋

−
𝛼 , 𝑏
⊥
𝛼 , 𝑏
⊤
𝛼

)
9: if 𝑏𝛼 = ∅ then return ∅
10: 𝜓 ← true

11: for (𝛼, 𝑥) → (𝛼 ′, 𝑥 ′) ∈ 𝐼 do
12: if 𝑥 ∈ 𝑏𝛼 and 𝑥 ′ ∉ 𝑏𝛼′ then
13: 𝑋 +

𝛼′ ← 𝑋 +
𝛼′ ∪ {𝑥 ′}

14: 𝜓 ← false

15: if 𝜓 then return {𝑏𝛼 | 𝛼 ∈ 𝐴}

consistent box 𝑏𝛼 to be the minimal consistent box
3
for positive examples 𝑋 +𝛼 , negative examples

𝑋−𝛼 , and boxes 𝑏
⊥
𝛼 , 𝑏
⊤
𝛼 . Next, it handles implication examples in 𝐼 by expanding the sets 𝑋 +𝛼 for 𝛼 ∈ 𝐴.

In particular, it checks if any of the implication examples (𝛼, 𝑥) → (𝛼 ′, 𝑥 ′) ∈ 𝐼 violate the current
candidate invariant—i.e., 𝑥 ∈ 𝑏𝛼 but 𝑥 ′ ∉ 𝑏𝛼′ . If so, it requires that 𝑥 ′ ∈ 𝑏𝛼′ by adding 𝑥 ′ to 𝑋 +

𝛼′ . It

continues the iterative process until either all examples in 𝐼 are satisfied, in which case it returns

the current candidate boxes 𝐵, or the consistent box subroutine fails, in which case it returns ∅.
Suppose there exists a set of minimal consistent boxes {𝑏∗𝛼 | 𝛼 ∈ 𝐴}. Then, our algorithm

maintains the invariant that the current candidate boxes {𝑏𝛼 | 𝛼 ∈ 𝐴} are contained in the

minimal consistent boxes—i.e., 𝑏𝛼 ⊆ 𝑏∗𝛼 for all 𝛼 ∈ 𝐴. Therefore, when dealing with an inconsistent

implication example (𝛼, 𝑥) → (𝛼 ′, 𝑥 ′) ∈ 𝐼 with 𝑥 ∈ 𝑏𝛼 , we can infer that 𝑥 ′ ∈ 𝑏∗
𝛼′ and hence it

correctly adds 𝑥 ′ to 𝑋 +
𝛼′ , forcing 𝑏𝛼′ in the next iteration to include 𝑥 ′. Since we deal with any

implication example at most once and we deal with at least one implication example in every

iteration (except the last iteration), we have:

Theorem 4.6. Algorithm 2 terminates after at most |𝐼 | iterations and computes a set of minimal
consistent boxes if one exists and returns ∅ otherwise.

Choosing upper and lower bounds. Finally, we use the upper and lower bounds to handle CCs

1 & 2. First, CC 1 says that for every state (𝑞, 𝑥) ∈ Z0, we have 𝑥 ∈ 𝑏𝛼 where 𝛼 = (pre, 𝑞). Thus,
to ensure this condition holds, it suffices to choose 𝑏⊥𝛼 such that X𝑞

0
⊆ 𝑏⊥𝛼 for all 𝑞 ∈ Q. Similarly,

CC 2 says that for every 𝑥 ∈ 𝑏𝛼 with 𝛼 = (post, 𝑞), we have (𝑞, 𝑥) ∈ Z𝐹 ; thus, it suffices to choose

𝑏⊤𝛼 ⊆ X
𝑞

𝐹
for all 𝑞 ∈ Q.

4.2 Testing
Our testing subroutine takes as input candidate pre/post-regions 𝐵 and uses simulated trajectories

from random start states to try and discover examples that are inconsistent with our VCs. Our

testing algorithm is summarized in Algorithm 3.

3
Although 𝑋 +𝛼 is initialized to ∅, 𝑏𝛼 is not empty since it has to contain 𝑏⊥𝛼 .

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Ivanov, et al.

Algorithm 3 Testing to check verification conditions. Inputs: Hybrid automaton A, NN controller

𝜋 , and candidate pre/post-regions 𝐵. Output: Implication & unsafe examples 𝐸. Hyperparameters:
Horizon 𝑇 ∈ R>0, iterations 𝐾 ∈ N.

procedure Test(A, 𝜋, 𝐵)
𝐸 ← ∅
for 𝑖 ∈ {1, ..., 𝐾} do

𝛼 ← (𝛽, 𝑞) ∼ Uniform(𝐴)
𝑧 ← (𝑞, 𝑥) where 𝑥 ∼ P(𝑏𝛼)
if 𝛽 = pre then

𝜁 ← 𝐹 (𝑧, 𝜋,𝑇) (stop as soon as 𝜁 entersZ𝐹)

𝑧 ′← (𝑞, 𝑥 ′) = 𝑓 (𝑧, 𝜋,𝑇)
if 𝜁 ⊈ Zsafe then 𝐸.𝐶.Add((𝛼, 𝑥))
if 𝑧 ′ ∉ Z𝑞

post
then 𝐸.𝐼 .Add

(
(𝛼, 𝑥) → ((post, 𝑞), 𝑥 ′)

)
else

𝑧 ′← (𝑞′, 𝑥 ′) ∼ P({𝑧 ′ | 𝑧 → 𝑧 ′ ∈ T })
if 𝑧 ′ ∉ Z𝑞′

pre
then 𝐸.𝐼 .Add

(
(𝛼, 𝑥) → ((pre, 𝑞′), 𝑥 ′)

)
return 𝐸

Algorithm 4 Compositional learning to try and satisfy verification conditions. Inputs: Hybrid
automaton A, candidate pre/post-regions 𝐵. Output: Compositional controller 𝜋 .

procedure Learn(A, 𝐵)
for 𝑞 ∈ Q do

𝑝 (𝑥) = 𝑝𝑞 (𝑥) where 𝑥 ∼ P(𝑏 (pre,𝑞))
𝑟 (𝑥) = 𝑟𝑞 (𝑥, 𝑏 (post,𝑞))
𝜋𝑞 ← ReinforcementLearning(𝑓 𝑞, 𝑝 (𝑥), 𝑟 (𝑥))

𝑝 (𝑞, 𝑥) = 𝑝 (𝑞)𝑝 (𝑥) where 𝑞 ∼ Uniform(Q), 𝑥 ∼ P𝜋𝑞

𝜇 ← SupervisedLearning(𝑝 (𝑧), ℎ(𝑧))
return 𝜋

At a high level, it samples trajectories 𝜁 ⊆ Z starting from random states 𝑧 = (𝑞, 𝑥), where
𝛼 = (𝛽, 𝑞) ∼ Uniform(𝐴), and 𝑥 ∼ P(𝑏𝛼)—e.g., we can take P(𝑏𝛼) to be the uniform distribution

over 𝑏𝛼 . Then, it checks whether 𝜁 is an unsafe or an implication example that is inconsistent with

𝐵; if so, it adds 𝑧 to 𝐸.𝐶 and/or 𝑧 → 𝑧 ′ (𝑧 ′ is the last state in 𝜁) to 𝐸.𝐼 , respectively. Finally, it returns
the set of examples 𝐸 which is then used by our pre/post-region inference algorithm.

4.3 Controller & Mode Predictor Learning
We describe our approach for learning the compositional controller 𝜋 , which involves learning

the controller 𝜋𝑞 for each mode 𝑞 ∈ Q as well as learning the mode predictor 𝜇. Our approach is

summarized in Algorithm 4.

Controllers. First, we use reinforcement learning to learn the controllers 𝜋𝑞 for each mode 𝑞. We

parameterize 𝜋𝑞 = 𝜋
𝑞

𝜃
as a neural network 𝜋

𝑞

𝜃
: O → U mapping observations to actions. The

inputs to the reinforcement learning algorithm are the dynamics 𝑓 𝑞 for mode 𝑞, a distribution 𝑝 (𝑥)
over initial states 𝑥 , and a reward function 𝑟 : X → R. For the initial state distribution, we assume

given a distribution P(𝑏 (pre,𝑞)) over the pre-region of 𝑞—e.g., the uniform distribution. The reward

function should encourage the system to reach the next region. We can use any reinforcement

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:13

learning algorithm in conjunction with these inputs to learn 𝜋𝑞 . We use the twin delayed deep

deterministic policy gradient (TD3) algorithm [28], which is a more stable variant of the popular

deep deterministic policy gradient (DDPG) algorithm [48].

Mode predictor. Next, we learn the mode predictor using supervised learning. To do so, we need

to construct a training set consisting of input-output examples (𝑜, 𝑞) ∈ O × Q, where observation
𝑜 is the input and mode 𝑞 is the ground truth mode. To do so, we sample states 𝑧 = (𝑞, 𝑥), compute

the observations 𝑜 = ℎ(𝑧), and then construct the training examples (𝑜, 𝑞). For the distribution
𝑝 (𝑧) = 𝑝 (𝑞, 𝑥) over states 𝑧, we use the uniform distribution over 𝑞 and the distribution P𝜋𝑞 over 𝑥

visited by the controller 𝜋𝑞 . The reason we use this distribution over 𝑥 is that it is the distribution

of 𝑥 values that the mode predictor will encounter when running 𝜋 . Finally, we parameterize 𝜇

using a neural network 𝜇𝜃 : O × Q → [0, 1] (i.e., predict the probability 𝜇𝜃 (𝑞 | 𝑜) of mode 𝑞 ∈ Q
given observation 𝑜 ∈ O).

5 SYSTEMMODELING
We briefly describe the F1/10 car model used in our evaluation, and how we train the controllers

𝜋𝑞 and the mode predictor 𝜇.

Dynamics model. We use the model in [39]. We use vector notations ®𝑥 ∈ X and ®𝑢 ∈ U for clarity.

The car dynamics are given by a kinematic bicycle model with 4D state space ®𝑥 = (𝑥,𝑦, 𝜗, 𝑣) ∈ X ⊆
R4

, including 2D position (𝑥,𝑦), orientation 𝜗 , and velocity 𝑣 . The actions are ®𝑢 = (𝑎, 𝜙) ∈ U ⊆ R2
,

where 𝑎 denotes throttle and 𝜙 is the orientation of the front wheels. We assume throttle is constant

at 𝑎 = 16 (resulting in a top speed of 2.4m/s), whereas 𝜙 is set by the controller at a sampling rate

of 10Hz. The dynamics are governed by the following differential equations (with respect to time):

¤𝑥 = 𝑣 · cos(𝜗) ¤𝑣 = −𝑐𝑎 · 𝑣 + 𝑐𝑎 · 𝑐𝑚 · (𝑎 − 𝑐ℎ)

¤𝑦 = 𝑣 · sin(𝜗) ¤𝜗 =
𝑣

ℓ
· tan(𝜙)

(1)

where 𝑐𝑎 = 1.633 is the car’s acceleration constant, 𝑐𝑚 = 0.2 is its motor constant, 𝑐ℎ = 4 is its

hysteresis constant, and ℓ = 0.45 is the its length. We consider two different observation models.

State-feedback system. First, we consider a variant of the F1/10 car with state-feedback—i.e.,

O = Z and the controller 𝜋𝑞 : Z → U has access to the true state of the car; similarly, the mode

predictor 𝜇 : Z → Q outputs the true mode 𝜇 (𝑞, 𝑥) = 𝑞. This setting allows us to evaluate the

controllers in isolation of the mode detector.

LiDAR observation model. Next, we consider a LiDAR based observation model. A LiDAR scan

consists of a number of laser rays emanating at a range of degrees with respect to the car’s

orientation. For each ray, the car receives the distance to the nearest object reached by the ray,

or the maximum LiDAR range of 5m if no obstacle is in that range. The controller has access to

the LiDAR measurements only and cannot observe the position, orientation or the velocity of the

car. Similar to prior work [39], we focus on a LiDAR scan with 21 rays since the complexity of the

verification task increases exponentially with the number of rays. More details can be found in

Appendix C.

Tracks. We consider tracks consisting of a sequence of segments, each corresponding to one of

five modes: right and left 90-degree turns, right and left 120-degree turns, and straight segments.

Each segment is 1.5m wide and is of a fixed length. Straight segments can be of arbitrary lengths

but must be sufficiently long to allow for an inductive proof of our VCs; see Section 6. The segments

are lined up with the end of one segment meeting the start of the next one. We represent each

segment as having coordinates where the top-most corner is at the origin. Then, a mode transition

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Ivanov, et al.

3 4 5 6 7 8 9 10
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
sharp left begin
sharp left interior
straight begin
straight interior

Fig. 5. Regions for training the mode predictor

𝑧 → 𝑧 ′ ∈ T is an (instantaneous) affine change of coordinates
4
to bring the car into this coordinate

system. Furthermore, there is a mode transition from any state at the end of any segment to a state

at the start of every segment, thereby modeling all possible tracks in a single hybrid automaton.

Safety. The safety property is that the car should not run into any of the walls. We model the car

as a square of size 𝛾 = 0.15𝑚 and the walls as line segments. Then, the car should not intersect the

wall—i.e., X𝑞

safe
= {®𝑥 ∈ X | ∀𝑤 ∈ walls[𝑞] . ∥(𝑥,𝑦) − (𝑤𝑥 ,𝑤𝑦)∥∞ ≥ 𝛾}.

Controller. For the state-feedback system, each controller has 5 inputs: the 𝑥 and 𝑦 distances to

each of the two corners in the turn and the car’s orientation relative to the segment. For LiDAR-

feedback, each controller has 21 inputs corresponding to the LiDAR rays. We use reinforcement

learning to train the controllers 𝜋𝑞 . We represent the policy as an NN 𝜋𝑞 = 𝜋
𝑞

𝜃
with two fully

connected layers with tanh activations and 16 neurons per layer for the state-feedback system and

64 neurons per layer for the LiDAR system. We use a uniform distribution on the pre-region as

the initial state distribution. We use a reward function that aims to achieve two goals: (i) stay in

the safe region, (ii) stay in regions where we can compose the different verification results. The

second goal is necessary for our compositional approach to work, since we need the car to visit

the post-region when started in the pre-region. To achieve this goal, we train controllers that stay

in the middle of each segment after turns, with the exception of the sharp turns, where it seems

challenging to train controllers to stay in the middle. More details can be found in Appendix D.

Mode predictor. We decompose the mode predictor into two parts: (i) a new mode predictor
𝜇𝑝 : O → Q and (ii) an exit detector 𝜇𝑞 : O → {0, 1}, one for each mode 𝑞. Intuitively, 𝜇𝑝 is used to

determine the mode 𝑞 the system is about to enter; once 𝑞 is determined, the corresponding 𝜇𝑞 is

run until it predicts that system has exited mode 𝑞 (at which point 𝜇𝑝 is run again). Since standard

control systems are sampled periodically, let 𝑜𝑘 denote the observation at sampling step 𝑘 . Then,

the output of the overall mode predictor at step 𝑘 , 𝑞𝑘 , is defined as follows:

𝑞𝑘 = 𝑞𝑘−1 if 𝜇𝑞𝑘−1 (𝑜𝑘) = 0

𝑞𝑘 = 𝜇𝑝 (𝑜𝑘) if 𝜇𝑞𝑘−1 (𝑜𝑘) = 1,
(2)

where 𝑞0 = 𝜇𝑝 (𝑜0). This decomposition simplifies mode predictor training since each individual

NN is trained either only on data from one mode (in the case of 𝜇𝑞) or on data from the pre-regions

of all the modes (in the case of 𝜇𝑝). Specifically, we divide each track segment into two regions: one

consisting of the 50cm at the beginning of the segment, and the other of the rest of the segment;

examples are shown in Figure 5. Each exit detector 𝜇𝑞 is trained to predict 0 (i.e., “not exited”) on

LiDAR scans taken in its own mode 𝑞 (both in the beginning region and the remainder region) and 1

(i.e., “exited”) on scans from the beginning region of other modes 𝑞′ ≠ 𝑞. The new mode detector 𝜇𝑝

4
The post-region of one segment is contained within the pre-region of the next segment (after change of coordinates) since

mode transitions are instantaneous and do not involve movement of the car.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:15

(a) State-feedback system. (b) LiDAR-feedback system.

Fig. 6. Training evolution for state- and LiDAR-feedback controllers. The “Compositional" controller curve
shows the combined number of training steps for controllers trained on each individual turn, whereas the
“Monolithic" controllers are trained on the track from Figure 3c. All NNs have two fully connected layers,
with the number of neurons per layer indicated in the legend. Results are averaged over five runs per setup.

is trained to predict the mode in which the LiDAR scan was taken, with half the training examples

from beginning regions of each mode and half from remaining regions. This strategy allows the

mode predictor to recover from incorrect predictions by 𝜇𝑝—i.e., if 𝑞𝑘 = 𝜇𝑝 (𝑜𝑘) is an error, then 𝜇𝑞𝑘

should predict that 𝑞𝑘 is wrong at the next step (i.e., 𝜇𝑞𝑘 (𝑜𝑘+1) should be 1) and ask 𝜇𝑝 to update its

prediction. All NNs have two fully connected layers with tanh activations and 32 neurons per layer.

More details can be found in Appendix E.

Verification. We use the Verisig tool [38] for verification. Verisig verifies neural networks with

smooth activation functions (e.g., sigmoid, tanh) by transforming the networks into hybrid systems.

The neural network hybrid system is then composed with the dynamics model, thereby converting

the closed-loop problem into a hybrid system verification problem that is solved by Flow
∗
[16].

6 EXPERIMENTAL RESULTS
We evaluate our framework on the F1/10 car, aiming to address the following research questions:

• Can our compositional learning strategy improve the scalability of reinforcement learning?

• Can our compositional verification algorithm be used to prove that the learned controller

safe and live for arbitrary sequences of track segments?

6.1 Benefits of Compositional Learning
For both state-feedback and LiDAR systems, we trained two controllers: one for the 90-degree right

turn and one for the 120-degree right turn. Since left and right turns are symmetric, we use the

right-turn controller for a left turn by reflecting the observations and negating the control input.

We also use the 90-degree controller in straight segments, since it is able to steer the car close to

the middle.

To illustrate the benefit of compositional learning, we trained a single NN controller for the

full track in Figure 3c. We used increasingly larger NNs (with 32, 64, 128 neurons per layer for

state-feedback and 64, 128 and 256 neurons per layer for observation-feedback); however, none

safely completed a lap in the entire track. Figures 6a & 6b show the performance of these controllers

along with the performance of the compositional controller (the individual controllers combined

with a pre-trained mode predictor) on the full track, as a function of the number of training steps. As

expected, training is fast and stable for our compositional controller, whereas the monolithic ones

are unable to converge to a stable policy. While it may be possible to train a monolithic controller

using a larger NN or a different reward function, our results provide evidence that the compositional

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Ivanov, et al.

(a) (b) (c)

Fig. 7. Example trajectories with LiDAR-feedback using the compositional controller. The color of each
position indicates the mode predictor output.

approach is simpler and requires less expert domain knowledge, both in reinforcement learning

and in the specific system.

Our compositional controller performs well (and can be verified, as shown in the verification

experiments below) on all tracks constructed using the five kinds of segments. Figure 7 shows the

simulated trajectories of the compositional controller on the tracks in Figure 3. While the mode

predictor sometimes predicts the wrong mode when far from the turn, it eventually switches to the

correct one selecting the appropriate controller for the remainder of the turn.

6.2 Pre/Post-Region Synthesis
Our synthesis algorithm is used to compute pre/post-regions for all the modes. We abuse notation

and use 𝑦 to denote the 𝑦-distance (in meters) from the start of the segment and 𝑥 to denote the

distance from the left wall. The synthesized pre-region is the same for all the modes because we

have implication examples from the post-region of every mode to the pre-region of each mode.

The pre-region computed for the LiDAR-feedback system is given by 𝑥 ∈ [0.75, 0.83], 𝑦 ∈ [0, 0.24],
𝜗 ∈ [𝜋

2
− 0.0042, 𝜋

2
+ 0.002], and 𝑣 ∈ [2.4, 2.4]. The post-regions are the corresponding boxes at the

end of each segment. For example, the post-region computed for the 90-degree right turn is given

by 𝑥 ∈ [8, 8.24], 𝑦 ∈ [5.67, 5.75], 𝜗 ∈ [−0.0042, 0.002] and 𝑣 ∈ [2.4, 2.4].

6.3 Verification Results
We focus on verification results for the LiDAR-feedback system; state-feedback is similar (see

Appendix G). Note that verifying safety for the LiDAR-feedback system is challenging due to

multiple discrete computations. First, the controller 𝜋 has a discrete internal state due to use of

the mode predictor, which creates additional modes in the hybrid automaton given to Flow
∗
. In

addition, if a given LiDAR ray can reach multiple walls in a given reachable set of states, then

each case needs to be encoded as a different mode of the hybrid automaton. During verification, a

reachable set can get split into multiple reachable sets due to case analysis, generating multiple

branches each of which is a verification instance of its own. The number of such branches can

be exponential in the number of modes since branching occurs dynamically as time progresses.

Thus, it is essential to keep the uncertainty as small as possible as reachable sets are propagated

through time. However, closed-loop verification tools such as Verisig rely on overapproximating

the system’s reachable set, and this approximation error can grow quickly over time. A standard

strategy is to partition the initial set and verify each subset separately. This process can also suffer

from exponential blowup, but it alleviates the compounding uncertainty issue. Another benefit of

this partitioning is that we can parallelize verification.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:17

Mode # instances # branches

Verification time (hours)

Composed system NN only

90-degree right 1000 8.22 5.80 0.31

90-degree left 1000 6.77 7.08 0.35

120-degree right 1000 12.17 12.22 0.580

120-degree left 1000 14.62 11.41 0.531

90-degree right
∗

20 2.30 2.18 0.110

90-degree left
∗

20 1.95 2.38 0.110

120-degree right
∗

20 3.45 2.97 0.150

120-degree left
∗

20 2.15 2.87 0.130

straight initial 20 1.35 0.93 0.043

straight inductive 1 1.00 0.04 0.002

Table 1. Verification results for LiDAR observations. Verification times and number of branches are averaged
across all the instances for that mode. The cases labeled ∗ do not handle discrete sampling of the controller.
“Composed system” is the (average) time for fully verifying a single instance, and “NN only” is the time spent
propagating reachable sets through the NNs during closed loop verification.

An additional verification challenge is that for a real system, we need to sample the controller at

discrete points in time. Thus, we cannot switch modes at the exact point in time after the mode

transition happens. We can account for this error by enlarging the pre-region—e.g., for a controller

sampled at 0.1s intervals, we need to enlarge the pre-region by 0.25m in the 𝑦-direction. We report

results both with and without this modification, in order to illustrate the challenge introduced by

an extra dimension of uncertainty.

Verification of turns. The results are summarized in Table 1. We use slightly larger pre/post-

regions than those computed by the synthesis algorithm to account for overapproximation errors

introduced in verification. We split the initial set by increments of 0.005 along the 𝑥-dimension and

0.005 along the 𝑦-dimension, resulting in 1000 verification instances per turn. We verify them in

parallel on an 80-core machine running at 1.2GHz. Although the left and right turns are symmetric,

we need to verify them separately since the full compositional controller may not be symmetric.

As shown in Table 1, most instances took a few hours to verify on average, depending mostly on

the number of branches (of reachable sets) through the hybrid automaton. Note that verification

requires significantly less computation for the case when no 𝑦 uncertainty due to the discrete

control sampling is considered. Note also that the 120-degree turn verification is much more

challenging because of the larger open space in the turn, resulting in more branching due to LiDAR

rays reaching different walls. Furthermore, the controller needs to take a more drastic action to

make the turn, which makes the reachable set computation harder since the NN is sensitive to

small changes to its input, which amplifies approximation errors. In particular, there were some

instances with more that 70 branches, taking more than 60 hours to finish.

Verification of straight segments. The straight segment verification is different since straights can

be of arbitrary length (above some minimum). Thus, we need an inductive argument to perform

verification. Ideally, we would establish an inductive invariant Xinv such that if the car starts in

Xinv at step 𝑘 , then it remains in Xinv until step 𝑘 + 1 while making progress along the track (i.e., in

the 𝑦-direction).

For a typical choice of such a region, the car might leave but then return after multiple steps. For

example, if 𝜗 = 𝜋
2
− 0.005 and 𝑥 = 0.85, then the car is facing to the right and will reach a value of

𝑥 greater than 0.85 as soon as it moves; however, our NN controller eventually steers the car back

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Ivanov, et al.

to a smaller 𝑥 value. We find it is significantly easier to identify a recurrent set such that the system

returns to this set periodically. Let
5 ˜Xpost = {(𝑥, 𝜗, 𝑣) | ∃𝑦 . (𝑥,𝑦, 𝜗, 𝑣) ∈ Xpost}. Then, we compute

a subset
˜Xrec ⊆ ˜Xpost, and prove (i) the car reaches

˜Xrec from Xpre in 𝑖 steps, and (ii) if the car starts

in
˜Xrec, then it returns to

˜Xrec in 𝑗 steps for some 𝑗 ∈ N; during this time, it always stays in
˜Xpost

and makes progress in the 𝑦-direction. Intuitively, (i) is the base case and (ii) is the inductive case

of a safety proof by induction. We do not need to consider 𝑦-uncertainty for this case; thus, the

number of instances is just 20. We give more details in Appendix F.

7 RELATEDWORK
Verified machine learning.Multiple approaches have recently been proposed for analyzing ma-

chine learning systems. A key focus has been verifying robustness of NNs [11, 33, 66]—e.g., by

casting the problem into a satisfiability modulo theory (SMT) program [23, 36, 42], a mixed-integer

linear program (MILP) [21], a semi-definite program (SDP) [25], a relaxed linear program [72],

or a reachability problem [9, 32, 71]. Alternatively, abstraction techniques have been developed

by computing Lipschitz constant bounds [25]. Furthermore, there has also been recent interest

in verifying other properties of machine learning systems such as fairness [3, 13, 29], or seman-

tic properties of computer vision via rare event simulation, including applications to safety for

self-driving cars [19, 27, 40, 54].

Verifying control & hybrid systems. There has been significant interest in verifying controllers for

hybrid systems. Traditional techniques rely on inferring invariant such as Lyapunov functions [18,

67] or control barrier functions [5, 57]. More recent techniques have been proposed for checking

safety and reachability properties in hybrid systems [16, 44]. Compositional reasoning principles

for hybrid systems have also been developed [6, 49], but their focus is mainly on decomposing

the problem of reasoning about concurrent composition of hybrid automata into reasoning about

individual components. Finally, there has also beenwork on compositional control synthesis through

control verification [67]; however, these techniques are designed for state-feedback systems.

Verifying control & hybrid systems with NN components. The methods in the previous paragraph

are not directly applicable to systems with NN components due to scalability issues. The first class

of approaches that address this problem are compositional verification methods [52, 56]. These

techniques employ assume-guarantee reasoning such that if the NN component satisfies a given

input-output (IO) property (as verified using a NN verification tool [42]), then the closed-loop

system is safe as well. The challenge with these methods is that in general, it is challenging to reduce

a closed-loop property into an IO property for the NN (essentially, this problem is equivalent to

synthesizing a loop invariant). Thus, these methods only apply when such a reduction is available.

Alternatively, researchers have developed methods to directly reason about the closed-loop

system by adapting control & hybrid system reachability methods. In particular, several techniques

have been developed to analyze closed-loop systems with NN controllers [22, 35, 38, 65, 68]. These

works combine the above-mentioned ideas from NN verification with standard hybrid automata

verification tools [16, 44]—e.g., by transforming the NN into an equivalent hybrid system [38],

approximating it with a polynomial with error bounds [22], or using other set representations such

as star sets [68]. Additionally, it is possible to approximate the NN with a simpler controller such as

a program [69] or a decision tree [12] that is easier to analyze. In some settings, these policies can

achieve performance comparable to that of NN controllers [37]; however, these kinds of models

typically do not work well with LiDAR observations. Our approach makes use of closed-loop

verification tools (namely, Verisig [38]) as building blocks in the compositional argument.

5
We only consider 𝑥 , 𝜗 , and 𝑣 since 𝑦 does not affect the observations.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:19

Safe reinforcement learning and control. In addition to post-hoc verification, there exist methods

to develop safe-by-design controllers. In particular, it is possible to develop a trajectory-following

controller through developing a contraction metric [63] but this method only provides probabilistic

guarantees. Furthermore, researchers have combined reinforcement learning and safe control in

simplex-like architectures, where a safe controller overrides the NN controller when a control

action is deemed unsafe [30, 47, 70, 73]. Such an architecture can be naturally augmented with a

hierarchical controller, so as to enable more complex control tasks [30]. This work is the closest to

ours in the sense that a hierarchical controller is developed with safety guarantees; however, our

formulation not only allows us to verify safety for a given task, but it also allows us to compose

tasks through bounded liveness verification (since we use Verisig to verify that the system always

reaches the post-region when started from the pre-region). In addition, in the former approach [30]

the user also needs to provide a safe controller, which may be challenging in high-dimensional

tasks. Finally, there has also been work on safe exploration [2, 14, 50]; however, these techniques

typically only scale to finite or low-dimensional state spaces.

Hierarchical reinforcement learning. Several reinforcement learning approaches have been de-

veloped where the controller has a hierarchical structure, similar to the controller employed in

our paper [20, 30, 59, 64]. In these methods, a high-level controller/planner decides on the next

high-level action and selects a low-level controller to implement the specific actuator commands.

These methods are related in the sense that our framework requires a hierarchical controller in order

for the compositional verification argument to work. In contrast to our work, these approaches do

not typically verify the learned controller. At the same time, since our approach is agnostic to the

methodology used to train the controllers, it would be interesting to investigate whether using

these methods leads to easier verifiability or an alternative compositional argument.

Invariant synthesis. There has been work on automatically inferring program invariants from

tests [24, 26]. Recent work has leveraged ideas similar to counterexample-guided inductive syn-

thesis (CEGIS) [62], that alternate between synthesizing an invariant that satisfies the current

counterexamples and using testing and verification to identify new counterexamples [55, 60, 61]. A

particular challenge is handling implication examples [31], which connect different parts of the

invariant. We designed a novel pre/post-region synthesis algorithm based on these ideas.

8 CONCLUSION
We proposed a compositional framework for learning and verifying NN-based controllers. We

showed that our framework can be used to learn a controller for the F1/10 system that is provably

safe for arbitrary tracks consisting of sequences of five primitive segments. While we focused on

the F1/10 system as a challenge problem, we believe our approach is applicable to realistic systems

well beyond it.

Acknowledgements.We thank the anonymous reviewers for their helpful suggestions. This work

was partially supported by ONR award N00014-20-1-2115 and by DARPA Assured Autonomy

project under Contract No. FA8750-18-C-0090.

REFERENCES
[1] F1/10 Autonomous Racing Competition. http://f1tenth.org.

[2] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J. Tomlin. Reachability-based safe learning

with gaussian processes. In Conference on Decision and Control, pages 1424–1431. IEEE, 2014.
[3] A. Albarghouthi, L. D’Antoni, S. Drews, and A. V. Nori. Fairsquare: probabilistic verification of program fairness.

Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–30, 2017.
[4] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe reinforcement learning via shielding.

In AAAI, 2018.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Ivanov, et al.

[5] R. Alur. Formal verification of hybrid systems. In International Conference on Embedded Software, pages 273–278, 2011.
[6] R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In CONCUR ’97: Eighth International Conference

on Concurrency Theory, LNCS 1243, pages 74–88. Springer-Verlag, 1997.
[7] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic approach to the specification

and verification of hybrid systems. In Hybrid Systems, pages 209–229. Springer, Berlin, Heidelberg, 1992.
[8] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The

algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.
[9] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization and abstraction: A synergistic approach for analyzing

neural network robustness. In Programming Language Design and Implementation, pages 731–744, 2019.
[10] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell,

A. Ray, et al. Learning dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020.
[11] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi. Measuring neural net robustness

with constraints. In Advances in Neural Information Processing Systems, pages 2613–2621, 2016.
[12] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy extraction. In Advances in Neural

Information Processing Systems, 2018.
[13] O. Bastani, X. Zhang, and A. Solar-Lezama. Probabilistic verification of fairness properties via concentration. Proceedings

of the ACM on Programming Languages, 3(OOPSLA):1–27, 2019.
[14] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforcement learning with stability

guarantees. In Advances in Neural Information Processing Systems, pages 908–918, 2017.
[15] Z. Cao, E. Bıyık, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman, and D. Sadigh. Reinforcement learning based control

of imitative policies for near-accident driving. In Robotics: Science and Systems, 2020.
[16] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid systems. In International

Conference on Computer Aided Verification, pages 258–263. Springer, 2013.
[17] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based on passive-dynamic walkers. Science, 307

(5712):1082–1085, 2005.

[18] J. Daafouz, P. Riedinger, and C. Iung. Stability analysis and control synthesis for switched systems: a switched lyapunov

function approach. IEEE Transactions on Automatic Control, 47(11):1883–1887, 2002.
[19] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-Chanlatte, and S. A. Seshia. Verifai: A toolkit

for the formal design and analysis of artificial intelligence-based systems. In CAV, pages 432–442. Springer, 2019.
[20] J. Duan, S. E. Li, Y. Guan, Q. Sun, and B. Cheng. Hierarchical reinforcement learning for self-driving decision-making

without reliance on labelled driving data. IET Intelligent Transport Systems, 14(5):297–305, 2020.
[21] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. Output range analysis for deep feedforward neural networks. In

NASA Formal Methods Symposium, pages 121–138. Springer, 2018.

[22] S. Dutta, X. Chen, and S. Sankaranarayanan. Reachability analysis for neural feedback systems using regressive

polynomial rule inference. In HSCC, pages 157–168. ACM, 2019.

[23] R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In International Symposium on
Automated Technology for Verification and Analysis, pages 269–286. Springer, 2017.

[24] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon system for

dynamic detection of likely invariants. Science of Computer Programming, 69(1-3):35–45, 2007.
[25] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas. Efficient and accurate estimation of lipschitz constants

for deep neural networks. In Advances in Neural Information Processing Systems, pages 11427–11438, 2019.
[26] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for esc/java. In International Symposium of Formal

Methods Europe, pages 500–517. Springer, 2001.
[27] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A. Seshia. Scenic: a language for

scenario specification and scene generation. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 63–78, 2019.

[28] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018.

[29] S. Galhotra, Y. Brun, and A. Meliou. Fairness testing: testing software for discrimination. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pages 498–510, 2017.

[30] B. Gangopadhyay, H. Soora, and P. Dasgupta. Hierarchical program-triggered reinforcement learning agents for

automated driving. arXiv preprint arXiv:2103.13861, 2021.
[31] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: A robust framework for learning invariants. In International

Conference on Computer Aided Verification, 2014.
[32] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. AI2: Safety and robustness

certification of neural networks with abstract interpretation. In IEEE Symposium on Security and Privacy, 2018.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:21

[33] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference
on Learning Representations, 2015.

[34] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–580, 1969.

[35] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu. Reachnn: Reachability analysis of neural-network controlled systems.

ACM Transactions on Embedded Computing Systems (TECS), 18(5s):1–22, 2019.
[36] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks. In International

Conference on Computer Aided Verification, pages 3–29. Springer, 2017.
[37] J. P. Inala, O. Bastani, Z. Tavares, and A. Solar-Lezama. Synthesizing programmatic policies that inductively generalize.

In International Conference on Learning Representations, 2020.
[38] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying safety properties of hybrid systems with neural

network controllers. In International Conference on Hybrid Systems: Computation and Control, 2019.
[39] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Case study: Verifying the safety of an autonomous

racing car with a neural network controller. In International Conference on Hybrid Systems: Computation and Control,
2020.

[40] G. Izatt and R. Tedrake. Generative modeling of environments with scene grammars and variational inference. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 6891–6897. IEEE, 2020.

[41] K. Jothimurugan, R. Alur, and O. Bastani. A composable specification language for reinforcement learning tasks. In

Advances in Neural Information Processing Systems, pages 13041–13051, 2019.
[42] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient smt solver for verifying deep

neural networks. In International Conference on Computer Aided Verification, pages 97–117. Springer, 2017.
[43] A. Khan, E. Tolstaya, A. Ribeiro, and V. Kumar. Graph policy gradients for large scale robot control. In Conference on

Robot Learning, 2020.
[44] S. Kong, S. Gao, W. Chen, and E. Clarke. dreach: 𝛿-reachability analysis for hybrid systems. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 200–205. Springer, 2015.
[45] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement learning: Integrating

temporal abstraction and intrinsic motivation. In NeurIPS, pages 3675–3683, 2016.
[46] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. Journal of Machine

Learning Research, 2016.
[47] S. Li and O. Bastani. Robust model predictive shielding for safe reinforcement learning with stochastic dynamics. In

International Conference on Robotics and Automation, pages 7166–7172. IEEE, 2020.
[48] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep

reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
[49] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O automata. In Hybrid Systems III: Verification and

Control, LNCS 1066, pages 496–510, 1996.
[50] T. M. Moldovan and P. Abbeel. Safe exploration in markov decision processes. In International Conference on Machine

Learning, 2012.
[51] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning. In NeurIPS, 2018.
[52] N. Naik and P. Nuzzo. Robustness contracts for scalable verification of neural network-enabled cyber-physical systems.

In 2020 18th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), pages
1–12. IEEE, 2020.

[53] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description and analysis of hybrid systems. In

Hybrid Systems, pages 149–178. Springer, Berlin, Heidelberg, 1992.
[54] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi. Scalable end-to-end autonomous vehicle testing via

rare-event simulation. In Advances in Neural Information Processing Systems, pages 9827–9838, 2018.
[55] S. Padhi, R. Sharma, and T. Millstein. Data-driven precondition inference with learned features. In PLDI, 2016.
[56] C. S. Păsăreanu, D. Gopinath, and H. Yu. Compositional verification for autonomous systems with deep learning

components. In Safe, Autonomous and Intelligent Vehicles, pages 187–197. Springer, 2019.
[57] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier certificates. In International Workshop

on Hybrid Systems: Computation and Control, pages 477–492. Springer, 2004.
[58] R. Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

[59] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learning for autonomous driving.

Proc. of NIPS Workshop Learn. Inference Control Multi-Agent Syst, 2016.
[60] R. Sharma and A. Aiken. From invariant checking to invariant inference using randomized search. Formal Methods in

System Design, 48(3):235–256, 2016.
[61] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori. Verification as learning geometric concepts. In International

Static Analysis Symposium, pages 388–411. Springer, 2013.

[62] A. Solar-Lezama and R. Bodik. Program synthesis by sketching. Citeseer, 2008.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Ivanov, et al.

[63] D. Sun, S. Jha, and C. Fan. Learning certified control using contraction metric. Conference on Robot Learning, 2020.
[64] S.-H. Sun, T.-L. Wu, and J. J. Lim. Program guided agent. In International Conference on Learning Representations, 2019.
[65] X. Sun, H. Khedr, and Y. Shoukry. Formal verification of neural network controlled autonomous systems. In Proceedings

of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pages 147–156. ACM, 2019.

[66] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. In International Conference on Learning Representations, 2014.
[67] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts. Lqr-trees: Feedback motion planning via sums-of-squares

verification. The International Journal of Robotics Research, 29(8):1038–1052, 2010.
[68] H. Tran, F. Cai, D. M. Lopez, P. Musau, T. T. Johnson, and X. Koutsoukos. Safety verification of cyber-physical systems

with reinforcement learning control. ACM Transactions on Embedded Computing Systems, 18(5s):105, 2019.
[69] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically interpretable reinforcement learning. In

International Conference on Machine Learning, pages 5045–5054. PMLR, 2018.

[70] K. P. Wabersich and M. N. Zeilinger. Linear model predictive safety certification for learning-based control. In

Conference on Decision and Control (CDC), pages 7130–7135. IEEE, 2018.
[71] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety analysis of neural networks. In Advances in

Neural Information Processing Systems, pages 6367–6377, 2018.
[72] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning, and I. Dhillon. Towards fast computation of

certified robustness for relu networks. In International Conference on Machine Learning, pages 5273–5282, 2018.
[73] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan. An inductive synthesis framework for verifiable reinforcement

learning. In Programming Language Design and Implementation, pages 686–701, 2019.

A PROOF OF THEOREM 3.9
In this section, we give a proof of safety and liveness assuming VCs 1 and 2. Let 𝜋 be a compositional

controller such that VCs 1 and 2 hold. Let 𝜌 be a non-Zeno trajectory of the automaton generated

by 𝜋 ,

𝜌 = (𝑧0

𝑡0−→ 𝑧1

𝑡1−→ · · ·) .

Let us the denote the cumulative times using 𝑇𝑖 =
∑𝑖−1

𝑗=0
𝑡𝑖 . We define Zpre = ∪𝑞∈QZ𝑞

pre
and

Zpost = ∪𝑞∈QZ𝑞

post
. Note that VC 1 implies Zpre ⊆ Zsafe and WLOG we can also take Zpost =

Zpost ∩ Zsafe ⊆ Zsafe. Let 𝐼T denote the set of indices at which a mode transition occurs from a

state inZpost—i.e., 𝐼T = {𝑖 | 𝑧𝑖 →T 𝑧𝑖+1 and 𝑧𝑖 ∈ Zpost}. We first show that 𝐼T is infinite, thereby

proving liveness.

Lemma A.1. 𝐼T contains infinitely many indices.

Proof. We give a proof by contradiction. Suppose 𝐼T is finite. If 𝐼T = ∅, let 𝑧 = 𝑧0 ∈ Z0 ⊆ Zpre.

If 𝐼T is nonempty, let 𝑖max be the largest index in 𝐼T and 𝑧 = 𝑧𝑖max+1. We have 𝑧𝑖max
→T 𝑧𝑖max+1 and

from VC 2 we get that 𝑧 = 𝑧𝑖max+1 ∈ Zpre.

In either case, we have 𝑧 = 𝑧𝑖 ∈ Z𝑞
pre

for some 𝑞 ∈ Q and 𝑖 ≥ 0. From VC 1 we get that there

is a 𝑡 ∈ R≥0 such that 𝑓 (𝑧, 𝜋, 𝑡) ∈ Z𝑞

post
and for all 𝑡 ′ ∈ [0, 𝑡), 𝑓 (𝑧, 𝜋, 𝑡 ′) ∉ Z𝐹 . Since the run 𝜌 is

non-Zeno, there is an index 𝑗 ≥ 𝑖 such that 𝑇𝑗 −𝑇𝑖 ≤ 𝑡 ≤ 𝑇𝑗+1 −𝑇𝑖 . Since 𝑓 (𝑧𝑖 , 𝜋, 𝑡 ′) ∉ Z𝐹 if 𝑡 ′ < 𝑡 ,
we get that 𝑧𝑘 →𝑓 𝑧𝑘+1 for all 𝑘 with 𝑖 ≤ 𝑘 ≤ 𝑗 − 1. We now have two cases to consider.

• Case 1: 𝑡 = 𝑇𝑗 − 𝑇𝑖 . In this case, 𝑧 𝑗 = 𝑓 (𝑧𝑖 , 𝜋, 𝑡) ∈ Z𝑞

post
. Since 𝑧 𝑗 ∈ Z𝐹 we must have

𝑧 𝑗 →T 𝑧 𝑗+1 in 𝜌 and hence 𝑗 ∈ 𝐼T .
• Case 2: 𝑡 > 𝑇𝑗 −𝑇𝑖 . In this case, 𝑧 𝑗 = 𝑓 (𝑧𝑖 , 𝜋,𝑇𝑗 −𝑇𝑖) ∉ Z𝐹 . Hence we must have 𝑧 𝑗 →𝑓 𝑧 𝑗+1 in
𝜌 . From the definition of→𝑓 , it follows that 𝑓 (𝑧𝑖 , 𝜋, 𝑡 ′) ∉ Z𝐹 for all 𝑡 ′ < 𝑇𝑗+1 −𝑇𝑖 . Therefore
𝑡 = 𝑇𝑗+1 −𝑇𝑖 and 𝑧 𝑗+1 = 𝑓 (𝑧𝑖 , 𝜋, 𝑡) ∈ Z𝑞

post
and we can conclude that 𝑗 + 1 ∈ 𝐼T

Therefore, in either case, we reach a contradiction as we showed that there is a 𝑘 ∈ 𝐼T with

𝑘 ≥ 𝑖 = 𝑖max + 1 > 𝑖max. □

We now prove safety.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:23

Lemma A.2. For all 𝑖 ≥ 0, 𝑓 (𝑧𝑖 , 𝜋, 𝑡) ∈ Zsafe for all 𝑡 ∈ [0, 𝑡𝑖].

Proof. Let 𝑖1 < 𝑖2 < · · · be the ordered sequence of indices in 𝐼T . Let 𝑖0 = −1. We show that for

all 𝑘 ≥ 0 and any 𝑖 ≥ 0 with 𝑖𝑘 ≤ 𝑖 < 𝑖𝑘+1, 𝑓 (𝑧𝑖 , 𝜋, 𝑡 ′) ∈ Zsafe for all 𝑡
′ ∈ [0, 𝑡𝑖].

Let 𝑧 = 𝑧𝑖𝑘+1 ∈ Zpre (VC 2). Then by VC 1, there is a 𝑡 ∈ R≥0 such that 𝑓 (𝑧, 𝜋, 𝑡) ∈ Zpost,

𝐹 (𝑧, 𝜋, 𝑡) ⊆ Zsafe and for all 𝑡 ′ ∈ [0, 𝑡), 𝑓 (𝑧, 𝜋, 𝑡 ′) ∉ Z𝐹 . Let 𝑗 ≥ 𝑖𝑘 + 1 be the smallest index

after 𝑖𝑘 such that 𝑧 𝑗 ∈ Z𝐹 . Such a 𝑗 exists since 𝑧𝑖𝑘+1 ∈ Z𝐹 . Let 𝑇 = 𝑇𝑗 − 𝑇𝑖𝑘+1. Then we have

𝑧𝑖 →𝑓 𝑧𝑖+1 for all 𝑖 with 𝑖𝑘 + 1 ≤ 𝑖 < 𝑗 . Hence 𝑧 𝑗 = 𝑓 (𝑧, 𝜋,𝑇) and for all 𝑡 ′ < 𝑇 , 𝑓 (𝑧, 𝜋, 𝑡 ′) ∉ Z𝐹 .

From this we can conclude that 𝑡 = 𝑇 and 𝑧 𝑗 = 𝑓 (𝑧, 𝜋, 𝑡) ∈ Zpost. Therefore, 𝑗 is also the smallest

index after 𝑖𝑘 such that 𝑗 ∈ 𝐼T , so 𝑗 = 𝑖𝑘+1. Now for any 𝑖 with 𝑖𝑘 + 1 ≤ 𝑖 < 𝑖𝑘+1, we have

𝑓 (𝑧𝑖 , 𝜋, 𝑡 ′) = 𝑓 (𝑧, 𝜋, 𝑡 ′ +𝑇𝑖 −𝑇𝑖𝑘+1) ∈ Zsafe for all 𝑡
′ ∈ [0, 𝑡𝑖] since 𝑡 ′ +𝑇𝑖 −𝑇𝑖𝑘+1 ≤ 𝑡 . If 𝑘 > 0, we

have 𝑧𝑖𝑘 ∈ Zpost ⊆ Zsafe and therefore 𝑓 (𝑧𝑖𝑘 , 𝜋, 𝑡 ′) = 𝑧𝑖𝑘 ∈ Zsafe for all 𝑡
′ ∈ [0, 𝑡𝑖] = {0}. □

Lemmas A.1 and A.2 together imply the theorem. □

B CHECKING VERIFICATION CONDITIONS
In this section, we describe how we check each of the VCs for a given controller 𝜋 and a hybrid

automaton A.

Verification condition 1. We observe that VC 1 is local to the dynamics of a single mode—i.e., it

suffices to verify a safe reachabililty property for the dynamics ¤𝑥 = 𝑓 (𝑧, 𝜋 (𝑧)), where the mode of 𝑧

does not change. Thus, we can drop the mode and express these dynamics as ¤𝑥 = 𝑓 𝑞 (𝑥, 𝜋 (𝑥)),where
𝑓 𝑞 : X ×U → R𝑛 and we have defined 𝜋 : X → U by 𝜋 (𝑥) = 𝜋 (ℎ(𝑞, 𝑥)). We let 𝐹𝑞 (𝑥, 𝜋, 𝑡) ⊆ X
denote the trajectory generated by evolving the system according to this differential equation from

state 𝑥 ∈ X for time 𝑡 ∈ R≥0.

Although verification tools like Verisig can only check safety properties, we can encode the

reachability condition as a safety condition by considering a time-limit 𝑇max within which we

require the system to reach X𝑞

post
when started in any state in X𝑞

pre
. Note that the mode predictor

has a discrete output; we model each output as a separate mode of the hybrid system.

Verification condition 2. Next, for VC 2, we need to check that for all 𝑞, 𝑞′ ∈ Q, we have {𝑥 ′ |
(𝑞, 𝑥) → (𝑞′, 𝑥 ′) ∈ T , 𝑥 ∈ X𝑞

post
} ⊆ X𝑞′

pre
. In other words, every state reachable from 𝑥 ∈ X𝑞

post

is contained in X𝑞′

pre
for some 𝑞′ ∈ Q. This check is problem-specific. For instance, in our F1/10

example, the transitions (𝑥, 𝑞) → (𝑥 ′, 𝑞′) ∈ T involve an affine change of coordinates—i.e., 𝑥 ′ =

𝐴𝑞→𝑞′𝑥 + 𝑏𝑞→𝑞′
. Thus, assuming X𝑞

post
and X𝑞′

pre
are represented by convex polytopes 𝑃

𝑞

post
and 𝑃

𝑞′

pre
,

respectively, then we can verify VC2 by checking for 𝑞, 𝑞′ ∈ Q, whether 𝐴𝑞→𝑞′𝑃
𝑞

post
+ 𝑏𝑞→𝑞′ ⊆ 𝑃𝑞

′

pre
.

To check this, it suffices to check that each vertex of the polytope 𝐴𝑞→𝑞′𝑃post + 𝑏𝑞→𝑞′
is contained

in 𝑃
𝑞′

pre
, which corresponds to checking feasibility of a system of linear inequalities, which we can

do efficiently via linear programming.

C SYSTEMMODELING
LiDAR model. There are 21 LiDAR rays giving us a 21-dimensional observation 𝑜 ∈ R21

. The

rays range from −115 to 115 degrees relative to the car’s orientation—i.e., there are rays at

−115,−103.5, . . . , 115 degrees relative to the car’s orientation. Each LiDAR ray can be modeled as a

function of the car’s state relative to the current track segment. Figure 8 illustrates the scenario

of a ray reaching the right wall in a straight segment. The specific equation for such a ray is

𝑜𝑖 = ℎ(®𝑥)𝑖 = 𝑑𝑟
cos(𝜗−𝛼𝑖) , where 𝑑𝑟 is the distance to the right wall, and 𝛼𝑖 is the relative angle (in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Ivanov, et al.

𝑜!

𝑜"!
𝑜#

𝑑$

𝛼#

𝜋
2
− 𝜗

Fig. 8. LiDAR observation for a straight segment.

radians) of ray 𝑖 with respect to the car’s orientation 𝜗 . Rays for other walls and segments can be

modeled similarly, depending on which walls are in range.

D CONTROLLER TRAINING
Reward function. The reward function we used for a right turn (the left-turn case is symmetric) is

𝑟 (®𝑥, ®𝑢) =

𝑔𝑠 − 𝑔𝑖 · 𝜙2 − 𝑔𝑚 · 𝑑 (®𝑥) if before turn

𝑔𝑠 − 𝑔ℎ · ℎ(®𝑥) if during turn

𝑔𝑠 + 𝑔𝑓 · 𝛿 (®𝑥, ®𝑢) − 𝑔𝑚 · 𝑑 (®𝑥) if after turn

𝑔𝑐 if crash,

where 𝑔𝑠 = 5 is a reward for each safe step, 𝑔𝑖 is a loss penalizing high steering angle 𝜙 , 𝑔𝑚 is

a penalty on the car’s distance 𝑑 (®𝑥) from the middle of the lane, 𝑔ℎ = 3 is a loss penalizing the

difference ℎ(®𝑥) between the car’s orientation and the turn angle (either 90 or 120 degrees), 𝑔𝑓 = 10

is a reward for the distance 𝛿 (®𝑥, ®𝑢) covered on the current step after the turn in the new segment

direction, and 𝑔𝑐 = 100 is a penalty for crashing. The values 𝑔𝑖 and 𝑔𝑚 depend on the mode and are

chosen as follows: (i) 𝑔𝑖 = −0.05, 𝑔𝑚 = −2 for state-feedback; (ii) 𝑔𝑖 = 0, 𝑔𝑚 = −3 for a 90-degree turn

and LiDAR-feedback; and (iii) 𝑔𝑖 = −0.05, 𝑔𝑚 = −0.5 for a 120-degree turn and LiDAR-feedback.

Each controller has two hidden layers, with 32 neurons per layer, each with a tanh activation.

We train each controller for 2e5 number of simulation steps, using the TD3 algorithm [28]. The

training code takes roughly 15 minutes to run.

E MODE PREDICTOR TRAINING
As described in Section 5, the mode predictor is trained using standard supervised training, with

the data labeling illustrated in Figure 5. The mode predictor consists of a total of six NNs: a new
mode predictor and five exit detectors, one for each track segment. All NNs have two hidden layers,

with 32 neurons per layer; the hidden layers have tanh activations, whereas the output layer is

linear. We train the new mode predictor for 30 epochs, whereas each exit detector is trained for 15

epochs, with a batch size of 32 and learning rate of 0.001. Training is fairly fast and takes a few

minutes per NN.

F VERIFICATION OF STRAIGHT SEGMENTS
In this section, we describe our inductive approach for verifying straight segments of all lengths

ℓ ≥ ℓmin where ℓmin is a bound on the shortest straight segment. We first choose Z𝑞

post
to be of

the form Z𝑞

post
= {(𝑞, (𝑥,𝑦, 𝜗, 𝑣)) | (𝑥, 𝜗, 𝑣) ∈ ˜Xpost, 𝑦 ∈ [𝑦ℓ

inf
, 𝑦ℓ

sup
]}, where ˜Xpost6 ⊆ R3

is a

set of possible values for 𝑥 , 𝜗 and 𝑣 . Next, we identify a recurrent set ˜Xrec ⊆ ˜Xpost and define

Z𝑞
rec

= {(𝑞, (𝑥,𝑦, 𝜗, 𝑣)) | (𝑥, 𝜗, 𝑣) ∈ ˜Xrec}. Then we split VC 1 into two VCs as follows.

6
The superscript 𝑞 is omitted since it is clear from context.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Compositional Learning and Verification of NN Controllers 1:25

Mode # instances # branches

Verification time (seconds)

Composed system NN only

90-degree right 24 1.50 258 40

120-degree right 24 1.75 285 38

straight initial 30 1.00 71 17

straight inductive 1 1.00 11 3

Table 2. Verification results for state-feedback system. Verification times and number of branches are averaged
across all the instances for that mode. “Composed system” is the (average) time for fully verifying a single
instance, and “NN only” is the time spent propagating reachable sets through the NNs during closed loop
verification. All times are in seconds.

Definition F.1 (VC 1.1). For any 𝑧 ∈ Z𝑞
pre

, there is a 𝑡 ∈ [0, ℓmin/𝑣max] such that 𝑓 (𝑧, 𝜋, 𝑡) ∈ Z𝑞
rec

and 𝐹 (𝑧, 𝜋, 𝑡) ⊆ Zsafe.

This VC says that the car safely reachesZ𝑞
rec

from any state inZ𝑞
pre

within time ℓmin/𝑣max where

𝑣max is the maximum speed of the car. The time bound guarantees that the car does not reach a

state inZ𝐹 before reachingZ𝑞
rec
. For the next VC, we define the progress region with respect to a

state 𝑧 = (𝑞, (𝑥,𝑦, 𝜗, 𝑣)) ∈ Z𝑞
rec

asZ𝑞
>𝑧 = {(𝑞, (𝑥 ′, 𝑦 ′, 𝜗 ′, 𝑣 ′)) | (𝑥 ′, 𝜗 ′, 𝑣 ′) ∈ ˜Xrec, 𝑦 ′ ≥ 𝑦 + 𝜀} where

𝜀 ∈ R>0 is a lower bound on the increase in 𝑦-position7.

Definition F.2 (VC 1.2). For any 𝑧 ∈ Z𝑞
rec
, there is a 𝑡 ∈ R>0 such that 𝑓 (𝑧, 𝜋, 𝑡) ∈ Z𝑞

>𝑧 and

𝐹 (𝑧, 𝜋, 𝑡) ⊆ ˜Z𝑞

post
where

˜Z𝑞

post
= {(𝑞, (𝑥,𝑦, 𝜗, 𝑣)) | (𝑥, 𝜗, 𝑣) ∈ ˜Xpost}.

This VC says that the car stays in
˜Z𝑞

post
while making progress in the 𝑦-direction. Since the

observation in a straight segment is independent of the 𝑦 position, it is enough to verify VC 1.2 for

a fixed starting value of 𝑦. Furthermore, the progress criterion ensures that the car will safely reach

the post-region of any straight segment of length ℓ ≥ ℓmin when started in its pre-region.

G VERIFICATION RESULTS FOR STATE-FEEDBACK SYSTEM
In this section, we provide verification results for the F1/10 system with a state-feedback controller.

In this setting, it is sufficient to verify the 90-degree right, 120-degree right and the straight segments

since the left turns are symmetric. This is not the case with the LiDAR-feedback system since the

mode predictor is not symmetric.

Similar to the LiDAR-feedback system, pre-region is the same for all modes, given by 𝑥 ∈ [0.6, 0.9],
𝑦 ∈ [0, 0.24], 𝜗 ∈ [−0.005, 0.005] and 𝑣 ∈ [2.4, 2.4]; the post-regions are similar. To reduce the

overapproximation error introduced during verification, we split the initial set by increments of

0.05 along the 𝑥-dimension and 0.06 along the 𝑦-dimension, thus ending up with 24 verification

instances per turn. For the initial straight segment, we split the initial set by increments of 0.01

along the 𝑥-dimension and there is no uncertainty in the 𝑦-dimension.

Finally, in order to apply inductive reasoning in straights, we clip the 𝑦-distances to a maximum

value of 5 (before feeding the state to the NN controller) which makes the observations independent

of 𝑦 in the straights. The verification results are summarized in Table 2.

7
Here 𝑦 and 𝑦′ denote 𝑦-distances from the start of the straight segment.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Overview
	3 Compositional Verification
	3.1 Problem Formulation
	3.2 Verification Conditions

	4 Compositional Learning and Synthesis
	4.1 Pre/Post-Region Inference
	4.2 Testing
	4.3 Controller & Mode Predictor Learning

	5 System Modeling
	6 Experimental Results
	6.1 Benefits of Compositional Learning
	6.2 Pre/Post-Region Synthesis
	6.3 Verification Results

	7 Related Work
	8 Conclusion
	References
	A Proof of Theorem 3.9
	B Checking Verification Conditions
	C System Modeling
	D Controller Training
	E Mode Predictor Training
	F Verification of Straight Segments
	G Verification Results for State-Feedback System

