Heike Kamerlingh Onnes
Our editors will review what you’ve submitted and determine whether to revise the article.
- Born:
- Sept. 21, 1853, Groningen, Neth.
- Died:
- Feb. 21, 1926, Leiden (aged 72)
- Awards And Honors:
- Nobel Prize (1913)
- Subjects Of Study:
- condensation
- helium
- low-temperature phenomenon
- superconductivity
Heike Kamerlingh Onnes (born Sept. 21, 1853, Groningen, Neth.—died Feb. 21, 1926, Leiden) was a Dutch winner of the Nobel Prize for Physics in 1913 for his work on low-temperature physics and his production of liquid helium. He discovered superconductivity, the almost total lack of electrical resistance in certain materials when cooled to a temperature near absolute zero.
From 1871 until 1873 Kamerlingh Onnes studied and worked at Heidelberg University, notably with the German physicists Robert Bunsen and Gustav Kirchhoff. Awarded a doctorate by the University of Groningen (1879), he taught at the Polytechnic School in Delft (1878–1882). From 1882 to 1923 he served as professor of experimental physics at the University of Leiden.
Influenced by the work of Johannes van der Waals, Kamerlingh Onnes investigated the equations describing the states of matter and studied the general thermodynamic properties of liquids and gases over a wide range of pressures and temperatures. He founded (1894) and built up the Cryogenic Laboratory (now known by his name) that established Leiden as the low-temperature research centre of the world. From 1895 to 1906 he concentrated on perfecting cryogenic experimental techniques and studied metals and fluids at low temperatures. Having built an improved hydrogen-liquefaction machine two years previously, he succeeded in liquefying helium in 1908. His attempts to solidify helium were fruitless until Willem Hendrik Keesom, his student and successor as director of the Kamerlingh Onnes Laboratory, achieved the feat in 1926.
Kamerlingh Onnes also demonstrated that the resistance of some electrical conductors disappears suddenly at a temperature near absolute zero (−273° C), and he termed this phenomenon “superconductivity.” His systematic researches on superconductivity (begun in 1911) were of extreme importance because of their bearing on the theory of electrical conduction in solids.