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The synthesis of phenylene-ethynylene rods and their use as rigid spacers is described. Alternation of a Sonogashira reaction and

silyl group cleavage was used to obtain rigid spacers with even and odd numbers of phenylene units. Preliminary applications of

these rods in divalent systems are shown. Inhibition studies with Pseudomonas Aeruginosa lectin LecA showed that the rigid spacer

proved greatly beneficial for the inhibitory potency.

Introduction

Linker or spacer molecules have a wide range of applications in
many areas of chemistry as bridging molecules between sepa-
rate functional units. Spacers are often flexible but depending
on the nature of the application, efforts have been made to make
rigid linkages between functional units. Examples of these have
been reported in areas such as nanoelectronics and nanooptics
[1], surfactants [2-4], photoelectrochemical detection [5], catal-
ysis [6], glycosylation reactions [7], and carbohydrate—protein
interactions [8]. Many different strategies and molecule types

have been used depending on the desired geometry, such as ring

formation [9], carbohydrate—triazole conjugation [10],
aryl—alkyne linked structures [11-15] and the use of DNA as a
rigid bridge between silver nanoparticles and quantum dots [5].
Among the rigid linking units the phenylene-ethynylene unit
has seen considerable interest in sensor [16] and molecular-
electronics applications [17]. This is due to the specific fluores-
cent, conducting and electrochemical properties that the conju-
gated system confers to the molecule [18]. In the study of
carbohydrate—protein interactions, it is now well known that

making a system multivalent increases the binding or inhibitory
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potency of ligands, whose monovalent counterparts would
otherwise be too weak to have biological relevance [19-22]. The
spacer is an important factor in the design of an effective multi-
valent ligand [23]. While most systems reported thus far contain
flexible spacers, there is a major untapped potential for systems
based on rigid spacers, even though some flexibility may be
needed to overcome design imperfections [10].

We herein describe the synthesis of rigid spacers of various
lengths based on phenylene-ethynylene units and their incorpo-
ration into divalent ligands. For design purposes this system has
the advantage that due to the high rigidity and linearity it is easy
to predict their length, as was recently shown by EPR measure-
ments [24]. The solubility of rigid hydrophobic spacers in an
aqueous environment is notoriously poor, and therefore PEG
attachments have been employed. Such PEG units were also
incorporated in glycopolymers based on the phenylene-ethynyl-
ene repeating units by Seeberger and co-workers (see schemati-
cally in Figure 1a), who used them for the detection of bacteria
[25]. The fluorescent properties of the polymer allowed a fast
detection of the E. coli bacteria. Brewer et al. reported a diva-
lent inhibitor with a short rigid spacer containing just a single
phenylene-ethynylene [26]. The inhibition shown by this com-
pound was disappointing since it was less potent than its flex-
ible divalent counterpart. There are no other examples in the
literature that show inhibition studies of lectins using divalent
ligands directly connected by a rigid spacer based on phenyl-
ene-ethynylene units (Figure 1b).

Y

polymer

Nt

Figure 1: Schematic depiction of (a) a rigid phenylene-ethynylene
polymer core with ligands attached via flexible chains, and (b) a diva-
lent ligand using phenylene-ethynylene as a rigid spacer connecting
the ligands.

In order to systematically study the effects of spacer lengths on
the binding potencies of divalent ligands, having access to a
series of spacers of well-defined lengths was imperative. We
here report the synthesis of a series of spacers based on phenyl-
ene-ethynylene building blocks (Figure 2), with distinct
syntheses for the compounds containing an even and an odd
number of aromatic rings. One of the spacers was incorporated
into the structure of a divalent galactoside ligand and was used
to inhibit the virulence-linked lectin LecA of Pseudomonas

aeruginosa [27,28].
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Figure 2: Generic structure of spacers containing an even (n =
and an odd (n = 2, 4) number of units.

1,3)

Results and Discussion

Synthetic strategies

Depending on the number of units in the spacer, two different
routes can be applied. The pathway followed to obtain rods
containing an even number of units is shown in Figure 3. The R
group on the ring is used to increase the solubility of the
system. The strategy relies on orthogonal protecting groups R!
and R2 of structure A, to enable the selective deprotection
needed to make B. Its free alkyne moiety can undergo a
Sonogashira reaction with C to give D. At this point the
removal of the protecting group R! and R2 can be performed, to
either couple the ligands or elongate the system by a double
Sonogashira reaction.

The strategy to prepare spacers containing an odd number of
units is shown in Figure 4. The strategy is more straightforward
since it does not require any orthogonal deprotection step.
Starting with F, a double Sonogashira reaction with C should
yield the three-unit system G. Removal of the protecting groups
R! can be performed, to either couple the ligands or elongate

the system by a double Sonogashira reaction.

Synthesis of the building blocks

The building blocks were prepared as shown in Scheme 1. In
the general structures shown in Figure 3 and Figure 4 the R
group is used to increase the solubility. For this purpose dieth-
ylene glycol was used as a side chain, which terminated as a
free hydroxy group for 1 and a methoxy group for 2. Silyl
groups were used as selective protective groups for the alkyne
moiety. Monoalkyne 3 and bisalkyne 4 were made from 1 [29]
by a Sonogashira reaction with TIPS-acetylene in 31% and
50%, respectively. Similarly, 5 and 6 were obtained from 2, in
agreement with a recent literature report [16]. The use of the
microwave reactor allowed a shorter reaction time (20 min at
60 °C) than the one reported in the literature (24 h at 40 °C for 6
and 24 h at 10 °C for 5).

Synthesis of a two-unit spacer

The strategy of Figure 3 was applied to the synthesis of the two-
unit spacer. In order to obtain our orthogonally protected inter-
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Figure 3: Synthetic strategy for rigid spacers with an even number of units.
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Figure 4: Synthetic strategy for rigid spacers with an odd number of units.
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Scheme 1: Synthesis of building blocks; (a) from 1, Pd(PPh3)4 , Cul, PPh3, TEA, toluene, 50 °C, 5 h, 31% for 3 and 50% for 4; from 2, PdCly(PPh3)z ,
Cul, TEA, THF, microwave, 60 °C, 20 min, 35% for 5 and 53% for 6.
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mediate 7, mono-iodo compound 5 was coupled with terz-
butyl(ethynyl)dimethylsilane (TBDMS-acetylene, Scheme 2).
From 7 the more labile TMS group was removed by using
K,COj3 to give 8. This compound was coupled to 5 by a
Sonogashira reaction to give the protected two-unit spacer 9.
Removal of its silyl protecting groups with TBAF yielded the
desired two-unit spacer 10. A slightly different strategy (see

Supporting Information, Scheme S1) was used starting from the

OR R!
=
a b
5 — _—
R? FZ
=z R OR i

7

R'=TMS

R2 = TBDMS
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mono-iodo derivative 3, because partial silyl migration to the
free hydroxy groups was observed while attempting mono-desi-
lylation.

Synthesis of three-unit spacers
To obtain the three-unit spacer, the odd strategy (Figure 4) was
applied starting with compound F. In order to make F, the silyl

protecting groups of both 4 and 6 were removed (Scheme 3).

OR
OR
8
C
OR
=
OR O
=
st
=
=

Scheme 2: Synthesis of a two-unit spacer. (a) PdCIy(PPh3),, Cul, TEA, THF, microwave, 60 °C, 20 min, 81% for 7, 79% for 9; (b) Ko,CO3, MeOH/

CH.Cly, 45 min, 78%; (c) TBAF, THF, 84%.
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Scheme 3: Synthesis of three-unit spacers. (a) from 4: TBAF, THF, 62%; from 6 and 14: K,CO3, MeOH/CH,Cly, 45 min, 85-88%; (b) from 11:
Pd(PPh3)4, Cul, PPh3, TEA, toluene, 50 °C, 14 h, 50%; from 12: PdCly(PPh3),, Cul, TEA, THF, microwave, 60 °C, 20 min, 75%.
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For 4 the TIPS groups were removed with an excess of TBAF
to give 11. Compound 6, which bears the TMS group, was
treated with K,COj3 to afford 12. Both 11 and 12 were elong-
ated in a double Sonogashira reaction with 3 and 5, respective-
ly. Of the products, 14 was deprotected by using K,COj3 to
yield the three-unit spacer 15, according to a recent literature
report [16].

Synthesis of a four-unit spacer

The four-unit spacer was synthesized starting from the two-
unit spacer 10 and the iodo compound 5 through a double
Sonogashira reaction to give 16 (Scheme 4). Deprotection of the
two alkyne moieties with K,COj3 afforded the four-unit spacer
17.

Synthesis of a five-unit spacer

The synthesis of the five-unit spacer started with the elongation
of the three-unit spacer 15 through a double Sonogashira reac-
tion with iodo compound 5 to give 18 (Scheme 5). The five-unit
spacer 19 was obtained after deprotection of the alkyne moieties
with K,COs.

10+5

R = :77_:\/0\/\0/
R'=TMS
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Preliminary application

As part of our program on bacterial adhesion inhibition by
multivalent carbohydrates, the bacterial lectin LecA, a viru-
lence factor of the problematic pathogen Pseudomonas aerugi-
nosa is a target of interest [30,31]. This tetrameric lectin binds
galactosides and the shortest distance between two binding sites
is around 26 A [20,28]. We previously noted that the use of a
rigid spacer with some flexibility in the aglycon chain
connecting the galactose ligands, led to more potent inhibition
[10]. Since the distance to cover is ca. 26 A, the best match in
the phenylene-ethynylene series is the three-unit spacer 15. Just
the spacer, without the aglycon linking moiety measures around
22 A. Coupling of the galactose ligand and the flexible aglycon
part should result in a promising compound. CuAAC of 15 with
the ligand 20 was performed as shown in Scheme 6 to give 21.
The acetyl protecting groups were removed by using NaOMe in
MeOH, yielding final product 22.

Compound 13, bearing hydroxy-terminated diethylene glycol
chains, has the potential of solubilizing in water constructs

bearing active spearheads less hydrophilic than simple sugars.

Scheme 4: Synthesis of a four-unit spacer. (a) PdCla(PPh3),, Cul, TEA, THF, microwave, 60 °C, 20 min, 73%; (b) K2CO3, MeOH/CH,Cl,, 45 min,

76%.

15+5

R= ’Lti/\/o\/\o/
R'=TMS

Scheme 5: Synthesis of a five-unit spacer. (a) PdCIy(PPh3),, Cul, TEA, THF, microwave, 60 °C, 20 min, 70%; (b) KoCO3, MeOH/CH,Cly, 45 min,

75%.
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Scheme 6: Synthesis of divalent ligand 22. (a) CuSO4-5H,0, Na-ascorbate, DMF/H,0, microwave, 80 °C, 40 min, 85%; (b) NaOMe, MeOH, 41%.

We have been developing pseudo-disaccharide molecules such
as 23 [32] (Scheme 7) as mimics of mannose disaccharides for
the interaction with DC-SIGN and other C-lectins [33-35]. This
molecule and its derivatives [36] contain lipophilic moieties that
generally increase their affinity for the target proteins, but can
create solubility problems. Desilylation of 13 (TBAF, THF,
Scheme 7) followed by in situ CuAAC with the pseudo-disac-
charide 23 led to the divalent ligand 24, which was found to be
fully soluble in water, at least up to millimolar concentrations.
Compound 24 is a mimic for DC-SIGN inhibition and its bioac-
tivity will be tested elsewhere.

Inhibition studies

The inhibitory potency of 22 for LecA was studied in an ELISA
type assay by using a glycochip as the solid phase [10]. In this
assay an [Cs( value of 0.9 pM was determined (Table 1). This
compared favorably with the monovalent reference compound
25 (Figure 5), which exhibited an ICsq of 120 uM [10]. Simi-
larly, the divalent compound 22 was a more potent inhibitor
than the higher valency compound 26, especially when
expressed as the relative potency per sugar, which is 11 for the
tetravalent 26 [37,38] and 67 for 22.

Conclusion
In this work a strategy for the synthesis of rigid spacers or rods
of different length based on phenylene-ethynylene units was

developed. On the phenyl ring, two versions of a solubilizing

OH

HO
HO

13 + MeooC_ @

MeOOC

24
OH
OoH
0 HO Q
R=%"O~"0n HO

R'= meooc ©

MeOOCm
0

¥

Scheme 7: Synthesis of divalent ligand 24. (a) 13, TBAF in THF, rt,
1 h, then Hy0O, TBTA, CuSO4-5H,0, Na-ascorbate, 23, rt, 18 h, 76%.
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Table 1: Inhibitory potency of mono, di- and tetravalent galactosides
on LecA binding®.

Relative
Compound Valency ICs0/uM Potency
(per sugar)
25 1 120 1
26 4 2.7 44 (11)
22 2 0.90 133 (67)

aF|TC-labeled LecA, 20 yg mL~" binding to a galactoside functional-
ized surface.

HO OH OR
O _— (e}
HO o\/\//
OH NH
oI OR
25
(@)
OR

NH H

O—/_ O/\/N
R (0]
MeO o OR

o OR

NH O\/\H

(0]
OR
26 O\L
NH OR
(e}
OR
HO OH

oA

R= HO O\/\/N\)\;LLL'1
OH

Figure 5: Previously tested compounds.

diethylene glycol moiety were used, one terminating in a
hydroxy and one terminating in a methoxy group. The hydroxy
version led to some migration of the silyl protecting group upon
attempted monodeprotection, and alternative strategies had to
be devised for the synthesis of the two-unit spacer. Compounds
17 and 19, containing four and five phenylene-ethynylene units,
respectively, can still be further elongated, depending on the
need of the project, thus enabling the preparation of long
spacers with a well-defined number of monomeric units. The
CuAAC of the three unit spacer 15 with a galactose ligand gave
the divalent ligand 21 in good yield. After deprotection
this compound was used to inhibit the lectin LecA from

Pseudomonas aeruginosa. A major potency increase was seen

Beilstein J. Org. Chem. 2013, 9, 215-222.

with the divalent structure based on the phenylene-ethynylene
spacer, with an IC5q of 0.9 uM, i.e., a 133-fold potency increase
over a monovalent reference compound, clearly showing the

potential for spacers of this nature.

It was also shown that the three-unit spacer 13 could be used in
a one-pot desilylation and CuAAC reaction to give 24, which
was found to be fully soluble in water, despite the more
lipophilic nature of the active ligand. This finding paves the
way for the synthesis and evaluation of polyvalent glyco-
mimetics with regularly spaced cores to be used for Man-
specific C-lectin inhibition assays. With access to structural
data of target lectins, the design of multivalent inhibitors can be
performed on a customized level, where the selection of the
proper spacer is based on the information about the binding site,
such as its density, orientation and position. Furthermore, the
rigidity of the rods described above can contribute to over-
coming the entropic penalty of flexible multivalent scaffolds,
thus improving the overall activity of the ligands.

Supporting Information

Supporting Information File 1

Synthetic procedures and spectral data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-9-25-S1.pdf]
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