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Abstract
The generation of α-acyloxy and α-alkoxycarbonyloxy radicals under reductive conditions in fragmentable probe experiments does

not provide unequivocal evidence for the fragmentation of such radicals to give ketones and acyl or alkoxycarbonyl radicals.

Instead, standard reduction predominates, even at low tin hydride concentrations. Some ketone product is formed in the α-acyloxy

substrate at low concentrations, but it is unclear whether this product arises through a slow radical fragmentation process or an inef-

ficient, chain-breaking oxidative process.
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Introduction
Most organic radical reactions occur through a cascade of two

or more individual steps [1,2]. Knowledge of the nature and

rates of these steps – in other words, the mechanism of the reac-

tion  –  is  of  fundamental  interest  and  is  also  important  in

synthetic  planning.  In  synthesis,  both  the  generation  of  the

initial radical of the cascade and the removal of the final radical

are  crucial  events  [3].  Many  useful  radical  reactions  occur

through chains that provide a naturally coupled regulation of

radical generation and removal. Among the non-chain methods,

generation and removal of radicals by oxidation and reduction

are important, as is the "persistent radical effect" [4].

Recently, Wille and coworkers have described a collection of

innovative new transformations that they have classed as "self-

terminating radical reactions" [5-10]. For example, addition of

broad assortment of oxygen-centered radicals to cyclodecyne 1

provides isomeric ketones 2 (major) and 3 (minor) in variable

yields, depending on the specific radical involved and the reac-

tion conditions. Representative reagents, reactions conditions

and  product  yields  for  this  very  general  transformation  are

shown in  Figure  1.

The suggested mechanism for formation of 2 involves addition

of  an  oxygen-centered  radical  (XO•)  to  1  to  generate  vinyl

radical  4,  followed  by  rapid  radical  translocation  by  1,5-

hydrogen  atom transfer  (Figure  2).  The  resulting  radical  5

rebounds back to the enol ether in a 1,5-cyclization to provide

6. In the crucial self-terminating step, radical 6 is suggested to

fragment  to  product  2  and  radical  X•.  Related  steps  are

involved in the formation of ketone 3 (not shown), except that

the radical translocation occurs by 1,6-hydrogen transfer and

the rebound cyclization is 1,6.
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Figure 1: Representative self-terminating radical reactions.

The  cascade  in  Figure  2  is  a  self-terminating,  non-chain

process if the radical X• does not continue on to propagate a

chain in some way. Stable radicals such as X = NO2• or SO3•-

and  others  are  not  expected  to  continue  chain  propagation.

However,  other  radicals  such  as  X  =  H•,  alkyl  (R•),  acyl

(RCO•) and alkoxycarbonyl (ROCO•) are quite reactive and

might be expected to propagate chains under some conditions.

Likewise, the stability of radicals X• is also important in the

prior  β-fragmentation step.  If  X• is  a  stable  radical  such as

stannyl, benzyl or tert-alkyl, [11-15] then the fragmentation is

well precedented [16]. However, for the hydrogen atom and

carbon-centered radicals such as methyl and primary alkyl, the

fragmentation has little precedent. Recent high level calcula-

tions support the notion that related fragmentations to make

methyl  radicals  have high barriers  and could be difficult  to

observe experimentally  [17].

Because of the potential difficulties in β-fragmentation of some

radicals  X•,  other  pathways  for  product  formation  from  6

should be considered. Oxidation (6 → 7 → 2) is a relatively

common pathway for electron rich radicals like 6 and can even

occur under reducing conditions [18,19]. Cation 7 could evolve

to ketone 2 by direct loss of X+ or through addition of a nucleo-

phile (water or an alcohol, depending on conditions) to give an

acetal-type intermediate that would in turn be subject to hydro-

lysis.  In  the  case  of  thiohydroxamate  precursors,  radical  6

could  also  add  back  to  the  initial  precursor  in  the  standard

Barton  "group  transfer"  mechanism  [20].  This  would  be

followed by fragmentation to produce 8 (an acetal form of 2)

Figure 2: Self-terminating, oxidative and chain mechanisms for evolu-
tion of 6 to 2.

and the starting radical XO•. This step begins a new propaga-

tion cycle in a chain.

We were especially interested in the general β-fragmentation

reactions of radicals like 6 to provide either acyl or alkoxycar-

bonyl radicals (Figure 3).  These radicals have many uses in

synthesis, [21] so their generation by fragmentation could be a

powerful tool. Because acyl and alkoxycarbonyl radicals are

stabilized, it is not unreasonable to suggest that such a frag-

mentation  could  occur,  yet  there  is  nonetheless  very  little

precedent  [22,23].

Are the fragmentation reactions in Figure 3 possible, and if so,

then how fast are they? If not, then how does Wille's reaction

work in such cases? To address these questions, we divorced

the other steps of the Wille cascade to isolate the fragmentation

reaction for a standard competition kinetic study [24,25]. The

results of this study suggest that such fragmentations are very

slow reactions  at  best.  In  turn,  this  leads  us  to  suggest  that

some radicals in the Wille cascade progress to products by oxid-

ation or group transfer rather than β-fragmentation.
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Figure 3: Proposed β-fragmentation reactions to form acyl and alkoxy-
carbonyl radicals.

Results and Discussion
We choose to generate the candidate radicals for fragmentation

by a radical cyclization rather than by a standard atom or group

abstraction reaction because the precursors are readily available

and stable (α-halo acetates and carbonates are not stable) and

because the intermediate radicals resemble Wille's typical inter-

mediates. The syntheses of precursors 11a and 11b are summar-

ized in Scheme 1.

Scheme 1: Synthesis of fragmentation probe substrates 11a,b

Copper-mediated conjugate addition of 3-butenylmagnesium

bromide  to  3-methylcyclohexenone  followed by  quenching

with  either  acetyl  chloride  [26]  or  methyl  chloroformate

provided enol  ester  9a  (50%) and enol  carbonate 9b  (83%).

Oxidative cleavage [27-29] and reduction then provided alco-

hols 10a  and 10b,  which were converted to iodides 11a  and

11b through mesylates by a standard procedure. Iodides 11a

and 11b were stable to heating at 120°C in C6D6 for 24 h, so

polar  pathways  for  product  formation  are  not  likely  in  the

cyclization  experiments  described  below.

Figure 4: Competing mechanistic pathways for reaction of 11 with
Bu3SnH.

The  projected  mechanism  for  cyclizations  of  11a,b  with

Bu3SnH in a competition kinetics setting is illustrated in Figure

4.  Abstraction of  iodine from 11  produces  alkyl  radical  12,

which will rapidly cyclize to give key intermediate α-acyloxy

radical 13a or α-alkoxycarbonyloxy radical 13b. Partitioning of

13a,b between bimolecular reduction to give 14a,b and unim-

olecular fragmentation to give 15 and 16a,b is the competition

step, and a standard plot of the ratio of products as a function

of  tin  hydride  concentration  should  provide  a  straight  line

passing through the origin if radical fragmentation competes

with  reduction.  Alternatively,  oxidation  of  13a,b  to  cation

17a,b will ultimately also result in the formation of 15, but the

concentration dependence of this process is not clear since the

oxidation step is not fully understood.

Based on the mechanism in Figure 4, authentic samples of all

products expected from the cyclizations of 11a and 11b were

synthesized as shown in Scheme 2. Copper-mediated conjugate

addition of propyl magnesium bromide to 3-methylcyclohex-

enone followed by quenching with acetyl chloride or methyl

chloroformate provided reduced, uncyclized products 18a,b.

These  products  were  not  detected  in  any  of  the  subsequent

cyclization experiments. Preparative radical cyclization of enol

ether 11a with tributyltin hydride (0.1 M) followed by chroma-
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tographic purification provided 14a in 95% yield as an insepar-

able 1:2 mixture of exo and endo isomers. Likewise, cycliza-

tion of enol ester 11b provided a 1:2 mixture of 14b-exo and

14b-endo in 68% isolated yield. The expected product of frag-

mentation for both substrates, ketone 15, is a known compound

[30,31]  that  was  prepared  by  reduction  of  acetate  14a  to

provide a mixture of stereoisomeric alcohols (50%), followed

by Dess-Martin oxidation (50%) [32].

Competition kinetic reactions were conducted under standard

conditions, as detailed in the Additional Material. Briefly, stock

solutions of the iodide 11a,b (1 equiv) and Bu3SnH (1.1 equiv)

in C6H6 or C6D6 were diluted to the required concentration of

tin hydride, then AIBN (0.2 equiv) and p-dimethoxybenzene

(0.1–0.2 equiv, internal standard) were added. The resulting

mixture was rapidly heated to reflux and the progress of the

reaction was followed by GC until no further consumption of

starting material was observed. Product yields and ratios were

then determined by GC and 1H NMR analyses. The results of

the two analyses were comparable (typically ± 5%), and only

the GC results are shown in the Tables. The complete data set

is contained in the Additional Material.

The results of single experiments for the cyclization of enol

carbonate 11b at 0.1 M, 0.01 M and 0.001 M are summarized

in the upper part of Table 1 (entries 1–3). At the higher two

concentrations, complete conversion of 11b was observed and

reduced product 14b  was formed in good yield. None of the

directly reduced product 18b was observed even at the highest

concentration, indicating that the intermediate radical cycliza-

tion is fast (kC > 106 s-1). Negligible amounts of ketone 15 (≤

2%) were observed, and its yields were not dependent on the

tin  hydride  concentration.  Accordingly,  no  evidence  was

obtained  for  fragmentation  of  intermediate  α-alkoxycar-

bonyloxy radical 13b. At the lowest tin hydride concentration

(entry  3),  the  conversion  stopped  with  25% of  the  starting

iodide  remaining,  but  again  only  a  trace  of  15  (1%)  was

detected. These results suggest chain propagation problems at

this concentration, which is near the dilution limit for typical

radical chain reactions.

The results for cyclization of enol acetate 11a at four different

concentrations are shown in the lower part of Table 1 (entries

4–7).  Since  increased  amounts  of  ketone  15  were  detected,

these  reactions  were  conducted  in  triplicate,  and  Table  1

records the averages of the three runs. The raw data in the Addi-

tional  Material  show satisfactory  (±  5% or  less)  agreement

from run to  run.

At 0.1 M (entry 4), the reaction of 11a goes to complete conver-

sion and provides a high yield of reduced product 14a (95%)
Scheme 2: Synthesis of authentic samples of products

along with a trace of ketone 15  (2%). At 0.01 (entry 5),  the

conversion is again complete and yields of 14a and 15 are now

73% and 8%, respectively. However, as the reaction is diluted

to 0.005 M (entry 6), the conversion of 11a becomes incom-

plete (42% recovery), while the yield of 14a declines to 28%

and that of ketone 15  increases to 16%. Finally, at  0.001 M

(entry 7), the yield of recovered 11a is still substantial (43%),

while the amount of ketone 15 has stayed the same (16%) and

the amount of the cyclized product 14a dropped to only 1%. A

significant amount (40%) of the initial mass balance is unac-

counted for in the three experiments at this concentration.

At first glance, the appearance of significant amounts of ketone

15 in the experiments with 11a at lower concentrations seems

to support the fragmentation of radical 13a to release an acyl

radical 16a. However, the ratios of 15/14a do not fit well with

the standard model of competing unimolecular (fragmentation)

and bimolecular (reduction) reactions in Figure 4. For example,

the 10-fold dilution in going from entry 4 to entry 5 should

have resulted in a 15/14a ratio about two times higher then was

observed. In contrast, the small change in concentration going

from entry 6 to 7 now results in an inordinately large increase

in this ratio.
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Table 1: Product Ratios in Bu3SnH Mediated Cyclizations of 11a,ba

Entry Precursor [Bu3SnH] Yldb 14a,b Yldb 15a,b Recoveredb

13a,b
Total Yld

1 11b c 0.1 M 80% 2% - 82%
2 11b c 0.01 M 70% 1% - 71%
3 11b c 0.001 M 60% 1% 25% 86%
4 11a d 0.1 M 95% 2% - 97%
5 11a d 0.01 M 73% 8% - 81%
6 11a d 0.005 M 28% 16% 42% 86%
7 11a d 0.001 M 1% 16% 43% 60%

a) C6H6 or C6D6, 80°C, b) GC yield against p-dimethoxybenzene standard; 2-3/1 mixture of stereoisomers, c) single experiment, d) average of three
experiments.

Table 2: Effect of AIBN Concentration on Product Yields in Reaction
of 11aa

Entry Equiv AIBN Yld 14a Yld 15a

1 0.25 73% 12%
2 0.50 71% 15%
3 0.75 76% 10%
4 1.0 77% 8%
5 2.0 71% 9%

a) C6H6, 80°C, 0.01 M Bu3SnH (1.1 equiv relative to 11c).

We feel that the results in Table 1 with 11a  might be better

accommodated  by  an  oxidation  pathway  for  conversion  of

radical 13a to ketone 15 via cation 17a. Since the nature of the

oxidant is not known, it is not possible to interpret the concen-

tration dependence of the product ratios. However, the trends

of  decreased  conversions,  decreased  yields  and  lost  mass

balance are not uncommon in such radical oxidation reactions,

especially those run under ostensibly reducing conditions [9].

The oxidation step may be inefficient and is almost surely a

chain-breaking event. Thus, when the rate of the unspecified

oxidation reaction(s) begins to exceed the rate of reduction of

radicals 13a by tin hydride, the whole process begins to break

down, so low conversions and yields result.

AIBN has been suggested to be an oxidant in related reactions,

[9,33] so we conducted a series of individual cyclizations of

11a at 0.01 M with increasing amounts of AIBN. The results of

these  experiments  are  summarized  in  Table  2.  If  AIBN  is

acting as an oxidant, then the yield of 14a should decrease and

15  should increase  as  the  concentration of  AIBN increases.

These  trends  were  not  observed.  Instead,  the  yield  of  14a

stayed about  constant,  while the yield of  15  decreased by a

small amount. These experiments do not support the active role

of AIBN as anything other than a standard radical chain initi-

ator.

Conclusion
In summary, the results with fragmentation probes 11a and 11b

show the β-fragmentation reactions of α-acyloxy and α-alkoxy-

carbonyloxy radicals to give ketones and acyl or alkoxycar-

bonyl radicals (s Figure 3 and Figure 4) are, at best, slow reac-

tions. Only traces of ketone 15 were detected in the reduction

of  11b  even at  very low concentrations,  and a  conservative

upper limit for the fragmentation of this type of radical at 80°C

is <103 s-1. Small but variable amounts of ketone 15 (7–16%)

were  produced  during  cyclizations  of  11b,  so  the  related

α-acyloxy radical fragmentations to give acyl radicals could

have  rate  constants  as  high  as  103  –  104  s-1.  However,  the

results  can  also  be  interpreted  through  the  intermediacy  of

cationic precursors of ketones produced by radical oxidation, in

which case the rate constant for fragmentation is even smaller.

Even if the β-fragmentation is occurring by a radical pathway,

it is so slow as to have limited synthetic value in radical chain

sequences. The sluggishness of these β-fragmentation reactions

is surprising, especially give that they produce a strong C=O

bond and a stable radical.
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In the bigger picture, the results suggest that continued evalu-

ation of the role of β-fragmentation reactions in self-termin-

ating oxidative radical reactions is worthwhile. While the reac-

tion conditions of our probe experiments and prior preparative

experiments are very different, the slowness of the β-fragmenta-

tions to produce acyl and alkoxycarbonyl radicals suggests that

such reactions may not be very competitive under any standard

preparative  conditions.  If  fragmentations  do  not  occur  to

produce acyl and alkoxycarbonyl radicals with reasonable rate

constants,  then it  is  unlikely that  fragmentations to produce

unstable alkyl radicals (for example, CH3•) or a hydrogen atom

(H•) will occur. A similar conclusion has recently been reached

through calculations by Sigmund, Wille, and Schiesser [17].

Either  oxidative  processes  or  group  transfer  reactions  may

contribute ketone formation in many of these types of reactions.

Oxidative pathways should also be considered when inorganic

radicals such as NO3• and SO4•- are used as promoters. In such

cases,  the  radicals  produced on β-fragmentation (NO2•  and

SO3•-) are very stable, so the proposed fragmentation is more

likely.  However,  the  inorganic  conditions  are  also  more

strongly oxidizing. So both oxidation and fragmentation path-

ways are seem reasonable, and further experimentation will be

needed to identify which path is preferred as a function of reac-

tion conditions and fragmenting radical in these cases.

The synthetic value of self-terminating oxidative radical reac-

tions is already evident from the pioneering work of Wille, and

added value will accrue as we continue to better understand the

details of each of the different processes for conducting such

reactions.
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