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Germacranes are important intermediates in the biosynthesis of eudesmane and guaiane sesquiterpenes. After their initial formation

from farnesyl diphosphate, these neutral intermediates can become reprotonated for a second cyclisation to reach the bicyclic eudes-

mane and guaiane skeletons. This review summarises the accumulated knowledge on eudesmane and guaiane sesquiterpene hydro-

carbons and alcohols that potentially arise from the achiral sesquiterpene hydrocarbon germacrene B. Not only compounds isolated

from natural sources, but also synthetic compounds are dicussed, with the aim to give a rationale for the structural assignment for

each compound. A total number of 64 compounds is presented, with 131 cited references.

Introduction

Terpenoids constitute the largest class of natural products with
ca. 100,000 known compounds. Biosynthetically, all terpenoids
are derived from only a few acyclic precursors, including the
monoterpene precursor geranyl diphosphate (GPP) [1], the pre-
cursor for sesquiterpenes farnesyl diphosphate (FPP) [2],
geranylgeranyl diphosphate (GGPP) towards diterpenes [3], and
the sesterterpene precursor geranylfarnesyl diphosphate (GFPP)
[4]. It has been demonstrated recently, that even farnesylfar-
nesyl diphosphate (FFPP) can serve as a precursor to triter-
penes [5], a compound class that was believed to be solely
derived from squalene. Terpene synthases convert these linear
precursors through cationic cascade reactions into terpene

hydrocarbons or alcohols [6-8]. For type I terpene synthases this

multistep process is initiated by the abstraction of diphosphate
to produce an allyl cation that subsequently undergoes typical
cation reactions such as cyclisations by intramolecular attack of
an olefin to the cationic centre, Wagner—Meerwein rearrange-
ments, hydride or proton shifts. The process is terminated by
deprotonation to yield a terpene hydrocarbon or by nucleo-

philic attack of water to generate a terpene alcohol.

For the precursor of sesquiterpenes FPP six initial cyclisation
modes are possible (Scheme 1). After ionisation to A either a
1,10-cyclisation to the (E,E)-germacradienyl cation (B) or a
1,11-cyclisation to the (E,E)-humulyl cation (C) is possible.
Reattack of diphosphate at C-3 results in nerolidyl diphosphate
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Scheme 1: Possible cyclisation modes of FPP.

(NPP) that can undergo a conformational change by rotation
around the C-2/C-3 single bond, which allows reionisation to D.
This intermediate can react in a 1,10-cyclisation to the
(Z,E)-germacradienyl cation (E) or a 1,11-cyclisation to the
(Z,E)-humulyl cation (F), the E/Z stereoisomers of B and C.
Furthermore, a 1,6-cyclisation to the bisabolyl cation (G) or a
1,7-cyclisation to H may follow, which is not possible from A
because of its 2E configuration (a hypothetical (E)-cyclohexene
or (E)-cycloheptene would be too strained, the smallest possible

ring with an E configuration is (E)-cyclooctene).

In some cases the initially formed neutral product can become
reprotonated to initiate a second round of cyclisation reactions
which usually leads to compounds of higher structural complex-
ity. It was already noticed in the 1950s by Ruzicka [9] and
Barton and de Mayo [10], followed by a more detailed elabo-

ration by Hendrickson [11], that 10-membered sesquiterpenes

7 6 .
X 1,11-cyc
10 1 2K -
|11
A
D F

\1 ,7-cyc

such as hedycaryol (3) can serve as neutral intermediates that
can react upon reprotonation to 6-6- (selinane) or 5-7-bicyclic
(guaiane) sesquiterpenes. We have recently summarised the
accumulated knowledge about sesquiterpenes derived from
germacrene A (2) [12] and hedycaryol (3) [13]. Now we wish to
provide a review on the known chemical space of sesquiter-
penes derived from germacrene B (1) (Scheme 2). Compounds

X
13
= =
OH
2 3

Scheme 2: Structures of germacrene B (1), germacrene A (2) and
hedycaryol (3).
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derived from 1 by oxidation will not be included in this article.
The interested reader can find exemplary relevant information

about this topic in references [14-18].

Review

Germacrene B

Germacrene B (1) was first prepared from germacrone (4), a
compound identified by Sorm and co-workers [19], through a
sequence of reduction to the alcohol, acetylation and reduction
with lithium in ammonia (Scheme 3A) [20], and its structure
was unambiguously assigned by X-ray crystallography of a
silver nitrate adduct [21]. From natural sources, the compound
was first obtained from Humulus lupulus by preparative gas
chromatography [22] and from Citrus junos [23], followed by

isolations from Stenocalyx michelii [24], Citrus aurantifolia
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[25], and Solidago canadensis [26]. Germacrene B has been
ascribed a warm, sweet, woody-spicy, geranium-like odour and
is an important flavour constituent of lime peel oil [25]. Germa-
crene B is also one of the main constituents of the essential oils
from different plants that have antibacterial activity [27-29].
Germacrene B synthases have been reported from Solanum
habrochaites [30] and Cannabis sativa [31]. In addition, 1 is a
minor product of the germacrene C synthase from Lycoper-
sicon esculentum [32], the (+)-germacrene D synthase from
Zingiber officinalis (17.1%) [33], the avermitilol synthase from
Streptomyces avermitilis (5%) [34], and VoTPS1 from Vale-
riana officinalis [35]. For the bacterial selinadiene synthase
(SdS) from Streptomyces pristinaespiralis 1 is an intermediate
in the cyclisation of farnesyl diphosphate (FPP) to selina-4(15)-

7(11)-diene [36]. Several SAS enzyme variants have been

=
0.23 kcal/mol
=
1b

|~ = 1.06 kcal/mol
X
1d

200 °C

12%

8 (22%)

Scheme 3: The chemistry of germacrene B (1). A) Synthesis from germacrone (4), B) the four conformers of 1 established by molecular mechanics
calculations (energies in black boxes are relative to 1a for which the energy was set to 0.00 kcal/mol), C) Cope rearrangement to 5 and formation from

6 by pyrolysis, D) dehydration of 7 to 5 and 8.
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constructed by site-directed mutagenesis, including the enzyme
variants D83E, E159D and W304L, for which the product spec-

trum is shifted towards 1 as the main product [36].

Based on molecular mechanics calculations, four conformers
1a—d have been described for 1 (Scheme 3B) [37]. The calcula-
tions revealed all four conformers are of similar stability, with
1a being the most stable conformer. The fact that 1 shows a
defined set of fifteen sharp signals in the '3C NMR spectrum
[26] indicates that the interconversion between these con-
formers is a fast process at room temperature. This is in contrast
to the findings for germacrene A (2) and hedycaryol (3) that
show strong line broadening in the NMR spectra and multiple
sets of peaks for different conformers [26,38-41], pointing to a
higher energy barrier between their conformers in comparison
to the barriers between the conformers of 1. Like observed for
germacrene A [40] and hedycaryol [41,42], 1 readily undergoes
a Cope rearrangement to y-elemene (5) above 120 °C
(Scheme 3C), while the reaction of 1 with bis(benzonitrile)
palladium chloride generates the palladium chloride complex of
5 from which 5 can be liberated by treatment with dimethyl
sulfoxide [43]. Compound 5, with tentatively assigned structure,
was first obtained as a pyrolysis product of elemol pheny-
lurethane (6) [44]. Its structure was subsequently secured by
preparation from 1 through Cope rearrangement [20] and
through dehydration of elemol (7) with POClj3 in pyridine
yielding 5 and B-elemene (8) (Scheme 3D) [45]. Compound 5
has also frequently been reported from natural sources espe-
cially after heat treatment of the sample, and has been isolated
from Cryptotaenia japonica [46], Bunium cylindricum [47], an
unidentified Pilocarpus sp. [48], and Aristolochia triangularis
[49].

Germacrene B (1) is also easily cyclised to selinanes. Percola-
tion of 1 through alumina yields a 1:1 mixture of selina-3,7(11)-
diene (9) and y-selinene (10) (Scheme 4A) [43]. Interestingly,
while racemic juniper camphor (11) is formed from 1 upon acid
treatment [50], this reaction with diluted sulfuric acid in ace-
tone results in (rac)-11 quantitatively. This observation is ex-
plained by a protonation-induced cyclisation, successive addi-
tion of acetone and water to a hemiacetal that can decompose to
11 (Scheme 4B) [43]. Furthermore, 1 shows an interesting
photochemistry (Scheme 4C). A [2 + 2] cycloaddition of the
endocyclic double bonds yields 12 whose formation is under-
standable from conformers 1c¢ and 1d. The all-cis stereoisomer
14 requires a photochemical E/Z isomerisation to 13 prior to
[2 + 2] cycloaddition. Further photochemical products from 1
include 5, 15 that may be formed through a biradical mecha-
nism, and rearranged 16 [51]. Germacrene B (1) has planar
chirality (Scheme 4D), but recovery of the starting material

from an incomplete Sharpless epoxidation of its derivative
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15-hydroxygermacrene (17) showed that this material was
racemic, indicating a rapid interconversion between the enantio-
mers of 17. Consequently, also the enantiomers of 1 may
undergo a fast interconversion [52]. The IH and 13C NMR data
of 1 have been reported [26].

Upon reprotonation germacrene B (1) can in theory yield
several cyclisation products with distinct skeletons. Eudes-
manes can be obtained through reprotonation at C-1 and cycli-
sation to intermediate I, or through reprotonation at C-4 leading
to cation J (Scheme 5A). Further cyclisation modes include a
reprotonation at C-4 and cyclisation to K or reprotonation at
C-10 and cyclisation to L, which represent possible precursors
of guaianes (Scheme 5B). For all four intermediates I-L differ-
ent stereochemistries may be realised. In principle, these reac-
tions may be enzyme catalysed or proceed without enzyme ca-
talysis, e.g., during chromatographic purifications of com-
pounds from complex extracts. In the latter case, because of the
achiral nature of 1, racemic mixtures are expected, while en-
zyme products should usually be enantiomerically pure or

enriched.

Eudesmanes

The eudesmane skeleton can arise by reprotonation at C-1 of 1,
leading to four different stereoisomers of cation I, i.e., I1 with a
trans-decalin skeleton, its enantiomer 12, I3 representing the
cis-decalin skeleton, and its enantiomer I4 (Scheme 6A). In
principle, the eudesmane skeleton can also be formed through
cyclisations induced by reprotonation at C-4. Assuming anti ad-
dition to the C-4/C-5 double bond, these reactions lead to four
stereoisomers of the secondary cation J, two with a trans-
decalin skeleton (J1 and J2) and two with a cis-decalin skeleton
(J3 and J4). However, no natural products are known that may
arise through any of these cations J, showing that a cyclisation
of 1 induced by reprotonation at C-4 is not preferred. Also no
compounds have been isolated with their structures rigorously
elucidated that arise through cation I4. For compounds poten-
tially generated through intermediates I1-I3 the accummulated

knowledge will be discussed in the following sections.

Eudesmanes from I1

The eudesmane sesquiterpenes derived from cation I1 are
summarised in Scheme 7. Cation I1 can either be deprotonated
to yield selina-3,7(11)-diene (9), (+)-y-selinene (10) or
(+)-selina-4,7(11)-diene (18), or captured by water resulting in
juniper camphor (11) or 4-epi-juniper camphor (19). y-Selinene
(10) was first obtained by Sorm and co-workers from worm-
wood oil (Artemisia absinthum). Its positive optical rotation
([(x]D25 =+2.8) [53] suggests an enzymatic formation from 1 in
this species. Compound 9, along with 10, was first isolated from

Humulus lupulus, and the structures of both compounds were
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Scheme 4: The chemistry of germacrene B (1). A) Cyclisation of 1 to 9 and 10 upon treatment with alumina, B) conversion into (rac)-11 by treatment
with diluted sulfuric acid in acetone, C) photochemical products from 1, and D) planar chirality of 1 and its derivative 17.

elucidated by 'H NMR spectroscopy and catalytic hydrogena-  [55]. Unfortunately, no optical rotations were given in these
tion, yielding the same compound selinane in both cases [54]. reports, so it remains unknown if the isolated materials arose

Both compounds were later also isolated from Cannabis sativa ~ from 1 by enzymatic or acid-catalysed reactions.
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Scheme 5: Possible cyclisation reactions upon reprotonation of 1. A) Cyclisations to eudesmane sesquiterpenes, B) cyclisations to guaiane sesquiter-

J1 J2 J3 Ja
Scheme 6: Cyclisation modes for 1 to the eudesmane skeleton. A) The reprotonation of 1 at C-1 potentially leads to four stereoisomers of cation |,
B) reprotonation at C-4 potentially leads to four stereoisomers of J.
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Scheme 7: The sesquiterpenes derived from cation 11. WMR = Wagner—Meerwein rearrangement.

The sesquiterpenes 9 and 10, besides several other products,
were also prepared through pyrolysis of elemyl p-nitrobenzoate
(23) (Scheme 8A) [56]. Because of the enantiomerically pure
starting material, the products were obtained in enantiomerical-
ly pure form, showing an optical rotation of [a]p = —6.0
(c 0.484) for 10, while no data were given for the optical
rotation of 9. Compound 9 was also isolated from Asarum
caulescens ([()(]D25 = -5.5, ¢ 0.4, MeOH) [57]. Despite the
opposite sign for the optical rotation as reported by Sorm
and co-workers [53], the same absolute configuration of 9 is
shown in this report. Furthermore, 9 has been described
as a marker of the Lemberger variety of grapes (Vitis vinifera)
[58]. Additional sources from which 10 has been isolated
include Persea japonica [59], Solidago canadensis [60],
Citrus nobilis ((+)-form) [61], Zingiber officinalis [62],
Mpyrica pensylvanica and M. macfarlanei [63], Trichogonia

scottmorii [64], and Podocarpus spicatus in which case a

high optical rotation was reported ([a]p2° = +82, ¢ 2.9, CHCl3)
[65].

The sesquiterpene 9 is a side product of the d-selinene synthase
(ag4) from Abies grandis [66] and a product of several terpene
synthases from C. sativa (CsTPS7, CsTPS8 and CsTPS22) [67],
while 10 is the main product of the bacterial selinadiene
synthase from Streptomyces pristinaespiralis [36,68]. It has
recently been shown by a combined computational and experi-
mental approach that in this enzyme the main chain carbonyl
oxygen of Gly182 near the helix G kink and an active site water
are involved in the deprotonation—reprotonation sequence in the
biosynthesis of 10 (Scheme 8B) [69]. y-Selinene (10) has been
synthesised from ketone 24 through conversion into the di-
bromoalkene 25 with PPh; and CBry, followed by treatment
with Me,CuLi (Scheme 8C) [70]. NMR data for 9 [71] and for
10 [59] have been published.
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Scheme 8: The sesquiterpenes derived from cation 11. A) Pyrolysis of 23 to yield 9 and 10, B) deprotonation—reprotonation sequence in the biosyn-

thesis of 10 by selinadiene synthase, C) synthesis of 10 from 24.

Selina-4,7(11)-diene (18), [a]p>* = +34 (¢ 0.90), was first iso-
lated from the marine alga Laurencia nidifica. Its structure was
determined by NMR spectroscopy and verified by the acid-cata-
lysed conversion into d-selinene (26) (Scheme 9A) [72]. The
same compound 18 was also reported from the closely related
alga Laurencia nipponica [73] and from lime oil (Citrus auran-
tifolia) [74]. Fully assigned IH and 13C NMR data were re-
ported for 18 [72,74].

The structure elucidation of juniper camphor (11), a compound
originally isolated by chemists at Schimmel, the world leading
company of the late 19th and early 20th century dealing with
essential oils and perfumes, was initiated by Sorm and
co-workers [75]. From the sequence of catalytic hydrogenation
to 27, dehydration to a mixture of alkenes (28) and hydrogena-
tion to selinane (29) it was concluded that 11 was a selinane
sesquiterpene alcohol (Scheme 9B) [75]. Four years later, based
on NMR data Bhattacharyya and co-workers suggested a cis-
ring junction for 11 [76], but a synthesis from B-eudesmol (30)
through epoxidation to 31, dehydration to 32 and epoxide
opening with LiAlH4 yielded (—)-11 (Scheme 9C) [77], contra-

dicting this assignment.

Notably, Sorm and co-workers noticed that 11 was racemic,
because neither 11 nor any of its degradation products showed
optical activity [75], suggesting that the compound they had iso-
lated arose through acid-catalysed cyclisation of 1 rather than in
an enzymatic process. Also the material isolated from Platysace
linearifolia showed no optical rotation [78], while the optical
activity of 11 isolated from Bunium cylindricum [47],
Acritopappus prunifolius [79], Aniba riparia [80], Juniperus
oxycedrus [81], and Laggera alata [82] has not been deter-
mined. The (—)-enantiomer of 11 with the structure as shown in
Scheme 9C was reported from Cabralea cangerana ([a]p20 =
—-1.3, ¢ 1.3, CDCly) [83], Zanthoxylum naranjillo (no value
specified) [84], and Chiloscyphus polyanthos ([a]p = —3.0,
¢ 2.41, CHCl3) [85]. The (+)-enantiomer of 11 is known from

Cinnamomum camphora ([0(]]325 =

+1.79), representing the first
isolated enantiomerically enriched material [86]. The low value
of the optical rotation of 11 makes configurational assignments
based on optical activity difficult, especially if minor contami-
nants falsify these data. Furthermore, the variability of the
optical rotations given in the literature may be a consequence of
mixed enantiomeric compositions arising from contaminations

of enzymatically formed 11 with 11 generated upon acid cataly-
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Scheme 9: The sesquiterpenes derived from cation I1. A) Acid-catalysed conversion of 18 into 26, B) conversion of 11 into 29 showing that 11 is a
selinane sesquiterpene alcohol, C) synthesis of (-)-11 from 30 (yields were not specified in the original report).

sis during compound isolations. The reporting of (-)-11, (+)-11
and 11 of unspecified absolute configuration all under the same
CAS number (473-04-1) adds to the confusion. Moreover, one

report is available that mentions the isolation of 11 from &
Atractylodes macrocephala [87]. For unclear reason, this paper 8% =
is assigned to CAS number 1647153-38-5 representing the
structure of 19 (Scheme 7), which actually seems to be an (-)-20
unknown compound.
H*

Compound 11 is a side product of ZmTPS7 from Zea mays [88] ) - >
and 'H and '3C NMR data for 11 have been published [82,83]. /— 0.9% h
A recent molecular docking study suggested that 11 can bind to
the main protease MP™ of the SARS-CoV-2 virus that is (-)-34 (-)-20
involved in viral reproduction, but experimental tests support- C)
ing this finding are lacking [89]. o soch,
Selina-5,7(11)-diene (20) can arise from I1 through 1,2-hydride ( 20% N
shift to I1a and deprotonation (Scheme 7). This compound was
first reported from olibanum oil, but only identified from its (-)-35 21
mass spectrum and GC retention time [90]. This structural as- D)
signment in the absence of a reference standard or at least litera-
ture data for 20 is likely erroneous. Compound (—)-20 was later - SOCl,
obtained by thermal degradation of (+)-maalian-5-ol (33) 0%
(Scheme 10A) and upon treatment of 4-epi-maaliol (34) with
acid (Scheme 10B). Full 'H and '3C NMR data for 20 were re- OH

(-)-36 (+)-22

ported [91]. Compound 21 can in theory be formed from Ila by
1,2-methyl group shift to I1b and deprotonation (Scheme 7).
However, this compound was only obtained as synthetic Scheme 10: The sesquiterpenes derived from cation I1. A) Formation
material by dehydration of (-)-1(10)-valencen-7p-o0l (35) OCf)deE;,deg:%ﬁsjasf 2212’231) %ﬁ%:ﬁ;gﬁ;‘ii‘?gédgﬁ;; of 34 to 20,
(Scheme 10C) [92], but has not been isolated from natural ’ ’
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sources. Compound 22 could be formed from Ila by
Wagner—Meerwein rearrangement to Ilc and deprotonation
(Scheme 7). This hydrocarbon ([O(]D22 = +26, ¢ 0.06) has been
obtained as a dehydration product of (—)-hinesol (36)
(Scheme 10D), but has never been isolated from natural
sources. 'H NMR data have been reported [92].

Eudesmanes from 12

Much less is known about sesquiterpenes derived from cation
I2 (Scheme 11). The compounds described in the literature
include (+)-juniper camphor (37) that can be formed by attack
of water to I2. As mentioned above, this compound occurs in
Cinnamomum camphora [86] and has later also been isolated
from Laggera pterodonta ([()(]D24 = +4, ¢ 0.5, MeOH) [93].
Compound 38, (+)-eudesma-5,7(11)-diene, could potentially
arise from 12 by 1,2-hydride shift to I2a and deprotonation, but
has not been isolated from natural sources. This material was
obtained by treatment of (+)-6,11-epoxyeudesmane (41) with
acidic ion exchange resin (Scheme 12A) [94].

Also 4pH,5a-eremophila-1(10),7(11)-diene (39), biosyntheti-
cally accessible from I2a by 1,2-methyl shift to I2b and depro-
tonation (Scheme 11), is only known as a synthetic compound.
This hydrocarbon has first been obtained by dehydration of

Beilstein J. Org. Chem. 2023, 19, 186—203.

(+)-valerianol (42) with SOCI, or POCl3, yielding — besides the
Hofmann product as main product (75%) — (+)-39 (25%,
[0(]]320 = +167.5, neat) (Scheme 12B) [95]. After the first de-
scription of 39, also (+)-a-vetivone (43) (Scheme 12C) [96,97]
and isovalencenic acid (45) (Scheme 12D) [98] were correlated
to this hydrocarbon. Recently, an iron catalyst has been de-
veloped that was applied in the isomerisation of valencene (48)
to 39 (Scheme 12E) [99]. The biogenesis of 40 would be
possible from I2a through Wagner—-Meerwein rearrangement to
I2¢ and deprotonation, but also this compound is not known
as a natural product. This hydrocarbon has been obtained
by partial hydrogenation of (+)-a-vetispirene (49) in a small
scale reaction using PtO, hydrate in CHCl3 as a catalyst
(Scheme 12F). The amounts of isolated 40 (0.2 mg) were insuf-

ficient for a full spectroscopic characterisation [92].

Eudesmanes from I3

Also only a few compounds potentially arising from I3 are
known (Scheme 13). Compound 18 was already discussed
above and can be formed by deprotonation from I1 or I3.
Cation I1 seems to be the more likely precursor than I3,
because I1 is the intermediate towards structurally related
natural products such as the widespread compounds 9 and 10
and a common biosynthesis of 18 through the same intermedi-

H,0
12
1,2-H~
: g 1,2-H~
— H+ _ H+
38 12b 39

12¢c

Scheme 11: The sesquiterpenes derived from cation 12. WMR = Wagner—Meerwein rearrangement.
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20%
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Raney-Ni

1.S0Cl,
2. LiAlH,

47

40

Scheme 12: The sesquiterpenes derived from cation 12. A) Acid catalysed conversion of 41 into 38, B) dehydration of 42 to 39, C) chemical correla-
tion of 43 with 39, D) chemical correlation of 45 with 39 (no yields were given in the original report), E) isomerisation of 48 to 39 (product was not iso-

lated), F) partial hydrogenation of 49 to 40.

ate can be assumed (Scheme 7). A 1,2-hydride shift to I3a and
deprotonation could give rise to 50, a compound for which the
situation in the literature is very confusing. There is no paper
available describing the isolation and structure elucidation of a
compound with the structure of 50, and the first published paper
that can be found under the CAS number of 50 (869998-21-0)

does not mention this compound [100]. Several later reports

claim the detection of “eudesma-5,7(11)-diene”, a name
assigned to CAS number 869998-21-0, but neither a structure is
shown nor a reference to previous work is given in these
reports, leaving doubt about the stereostructure the authors of
this work had in mind [101-103]. One recent report mentions
the detection of “eudesma-5,7(11)-diene”, but again no struc-

ture is shown, and the structural assignment is based on a com-
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Scheme 13: The sesquiterpenes derived from cation I13. WMR = Wagner—Meerwein rearrangement.

parison of retention indices [104]. However, the deviation be-
tween measured and reference retention index is quite large
(I = 1572 vs 1543), and the reference data originate from [103]
in which the basis for structural assignment is unclear. Finally,
one more paper assigned to CAS number 869998-21-0 mentions
the detection of “eudesma-5,7(11)-diene”, but in this case the
structure of 38 (Scheme 11) instead of 50 is shown, which
based on a comparison of the measured to a database retention
index may at least in terms of the relative configuration be a
correct structural assignment [105]. Taken together, the
confusing situation for 50 in the literature demonstrates impres-
sively, how inaccurate data reporting can lead to unclear struc-
tural assignments and even error propagation, and shows the
importance of structure elucidation by classical methods, i.e.,
isolation and compound characterisation by NMR spectroscopy
and determination of optical rotation.

Compound 51 can be generated biosynthetically from I3a
through 1,2-methyl migration to I3b and deprotonation. How-
ever, this hydrocarbon has not been isolated from natural
sources and is only known as racemic synthetic material [106].
Similarly, 52 has only been described as a synthetic compound
[107]. Its hypothetical biosynthesis is possible from I3a by

Wagner—Meerwein rearrangement to I3c¢ and deprotonation.

Guaianes

As discussed above, the cyclisation of 1 induced by reprotona-
tion at C-4 to the eudesmane skeleton encounters obstacles
because of the formation of secondary cations. Preferentially,
reprotonation at C-4 leads to the guaiane skeleton since the
formed cations are tertiary. Alternatively, reprotonation of 1 at
C-10 can also induce the formation of the guaiane skeleton.
Assuming anti addition to the C-4/C-5 double bond in 1, only
four cationic intermediates (K1-K4) can be generated by repro-
tonation at C-4 (Scheme 14A). Similarly, reprotonation of 1 at
C-10 leads by anti addition to the C-1/C-10 double bond to four
cationic intermediates, L1-L4 (Scheme 14B).

The guaiane sesquiterpenes derived from cationic intermediates
K1, K2 and K4 are summarised in Scheme 15A, while no com-
pounds are known whose formation could be explained from
K3. B-Bulnesene (53), a product by the deprotonation of K1 or
K2, was first isolated from the guaiac wood oil of Bulnesia
sarmientoi [108] and later also observed in Pogostemon cablin
[109]. Bulnesol (57), a compound of known absolute configura-
tion [110] that occurs in the same essential oil [108], has been
converted through pyrolysis of its acetate 58 into 53
(Scheme 15B) [111], securing the relative configuration. This

work did not comment on the question of absolute configura-
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L3 L4

Scheme 14: Cyclisation modes for 1 to the guaiane skeleton. A) The reprotonation of 1 at C-4 potentially leads to four stereoisomers of cation K,

B) reprotonation at C-10 can result in four stereoisomers of L.

tion, but assuming a common biosynthesis of 53 and 57 analo-
gous absolute configurations for these compounds are likely.
Despite several reported syntheses of (rac)-53 [112-116], no en-
antioselective synthesis is available. Full 'H and '3C NMR data
of 53 (including 14 carbon signals) have been published [113].

The guaiane sesquiterpenes that are potentially derived from
cationic intermediates L.1-L.4 are summarised in Scheme 16A.
trans-B-Guaiene (54) can either be generated from K1 under-
going a 1,2-hydride shift to K1a followed by deprotonation
(Scheme 15A), or from L4 through a similar sequence of steps
(Scheme 16A). Its enantiomer ent-54 could analogously arise
from K4 or L1. The first detection of this compound was
claimed from Aframomum alboviolaceum, but this study did not
report on the isolation and structure elucidation [117]. Rather
the identification was only based on GC-MS data, without a
reference to a previous identification through rigorous structure
elucidation. Conclusively, this compound has not been de-
scribed thoroughly and its identification is doubtful. Informa-

tion about the mass spectrum and Kovats retention index have

been added to data bases such as the NIST Chemistry Webbook
[118], which promoted the ambiguous detection of 54 in many

other species, as described in more than 300 papers to date.

Compound 55 can be formed from K2 through capture with
water. A compound with the same planar structure of 55%
named guai-7(11)-en-10-0l has been reported from
Zanthoxylum syncarpum with fully assigned 'H and '3C NMR
data, but unresolved relative and absolute configuration [119].
For unclear reason, this compound has been assigned to CAS
number 461691-86-1, a molecule for which the relative and
absolute configuration are shown. No other reports for this com-

pound are available.

B-Guaiene (56) is a well described compound that can biosyn-
thetically arise from K2 by a 1,2-hydride shift to K2a and de-
protonation (Scheme 15A), or alternatively from L2 through
similar reactions, or from L1 by 1,3-hydride shift to L1b and
deprotonation (Scheme 16A). DFT calculations have shown that

such 1,3-hydride shifts are only possible for trans-fused guaiane
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1,2-H~

Scheme 15: The sesquiterpenes derived from cations K1, K2 and K4. A) Mechanisms of formation for compounds 53-56, B) pyrolysis of 58 to 53.

systems [120]. Without detailed knowledge about the structure,
B-guaiene (56) was first obtained from guaiol (61) by Wallach
in 1894 [121] and again prepared by Gandurin in 1908 by elimi-
nation of the instable methyl xanthogenate (Scheme 16B) [122],
followed by an isolation from Acorus calamus ([O(]D20 =+13)
by Sorm and co-workers [123]. It is well known that 56 can
easily be dehydrogenated, e.g., by heating with sulphur, to the
blue azulene derivative 62 (Scheme 16C) [121,122,124-126],
but the structure elucidation of this compound was only com-
pleted in 1936 [127]. Based on a comparison of IR spectra of
natural terpenes, their hydrogenation and dehydrogenation
products, the correct planar structure of 56 was concluded by
Pliva and Sorm [128]. After the absolute configuration of 61

was solved [129], the full stereostructure of 56 became known.

No total synthesis and no NMR data are available for 56.
B-Guaiene is one of the main constituents of the essential oil
from Achillea millefolium that shows inhibitory activity against
Babesia canis, a parasite transmitted by ticks that infects blood
cells [130].

Compound 59 is accessible by deprotonation of L1b, but only
known as synthetic racemic material [113-116]. Compound 60
can be produced by cationic intermediate L3 through 1,2-
hydride shift to L3a and deprotonation (Scheme 16A). Howev-
er, this compound itself is not known as a natural product, but
has been obtained together with y-gurjunene (64) from guai-11-
en-5-ol (63), a natural product isolated from gurjun wood oil, by
elimination (Scheme 16D) [131].
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L3 L4

L3a

Scheme 16: The sesquiterpenes derived from cations L1-L4. A) Mechanisms of formation for compounds 54, 56, 59 and 60, B) dehydration of 61 to
56, C) oxidation of 56 to 62, D) dehydration of 63 to 60 and 64 (no yields were given in the original reports for the synthetic transformations shown in

this Scheme).

Conclusion

As summarised in this review, the biosynthesis of many
sesquiterpene hydrocarbons and alcohols exhibiting the eudes-
mane or guaiane skeleton can be explained from the neutral
intermediate germacrene B, although not all compounds known

to literature have been isolated from natural sources; some com-

pounds are only known as synthetic materials. Compared to the
known compounds arising from germacrene A or hedycaryol
through similar reactions as discussed here [12,13], however,
the number of terpenes derived from germacrene B is much
lower. In this article we have explained the rationale for the

structure elucidation including relative and, if known, absolute
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configurations. Through a detailed analysis of the available
information it also turned out that some of the assigned struc-
tures are doubtful. The importance of rigorous structure elucida-
tion, historically usually performed by chemical correlations
and today preferentially done by NMR spectroscopy or X-ray
analysis, is clearly evident from the fact that wrongly reported
structures or structures assigned without any comprehensible
basis lead to error propagations and highly confusing situations
in the literature. Today many reports are only based on tenta-
tive GC-MS assignments, often even without comparison to
authentic standards, which results in a lot of information of
questionable relevance. The large number of such papers
published today makes it more and more difficult to find the
relevant information in the literature. With this work we hope to
help the interested reader to have an easier access to the know-

ledge about sesquiterpenes derived from germacrene B.
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