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Abstract
Decarboxylative trifluoromethylthiolation of lithium pyridylacetates was achieved using N-(trifluoromethylthio)benzenesulfon-
imide as the electrophilic trifluoromethylthiolation reagent. The reaction afforded the corresponding trifluoromethyl thioethers in
good yield. Furthermore, the preparation of lithium pyridylacetates by saponification of the corresponding methyl esters and subse-
quent decarboxylative trifluoromethylthiolation were performed in a one-pot fashion.
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Introduction
The pyridine ring is found in numerous biologically active com-
pounds. Therefore, efficient methods for synthesizing substi-
tuted pyridines are in high demand in pharmaceutical and agri-
cultural chemistry [1,2]. Because of the unique features of fluo-
rine atoms, fluorinated functional groups have also been recog-
nized as important substructures in the design of medicinally
relevant compounds [3-6]. Introducing a trifluoromethylthio
group (CF3S–), which has high lipophilicity and strong elec-
tron-withdrawing properties, into medicinal compounds can
improve their pharmacokinetic properties [7-11]. Hence, the de-
velopment of a synthetic method for the preparation of tri-
fluoromethyl thioethers has recently attracted much attention
[12-15].

Previously, our research group achieved decarboxylative func-
tionalization of tertiary β-ketocarboxylic acids by exploiting
their special ability to readily undergo decarboxylation [16-21].

During the course of this study, we found that lithium pyridyl-
acetates undergo decarboxylative fluorination upon treatment
with an electrophilic fluorination reagent to afford fluoro-
methylpyridines under catalyst-free conditions. Furthermore,
we demonstrated the one-pot synthesis of fluoromethyl-
pyridines from methyl pyridylacetates by saponification of
methyl esters and subsequent decarboxylative fluorination
(Scheme 1a) [21]. Herein, we describe the application of this
method to decarboxylative trifluoromethylthiolation with an
electrophilic trifluoromethylthiolation reagent (Scheme 1b)
[22], which enables easy installation of the trifluoromethylthio
group at a pyridylic carbon.

Results and Discussion
First, we synthesized lithium 2-pyridylacetate 1a according to
our previously reported procedure [21] and subjected it to
decarboxylative trifluoromethylthiolation with N-trifluoro-
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Scheme 1: Electrophilic decarboxylative functionalization of 2-pyridylacetates.

Table 1: Screening of reaction conditions.

entry [SCF3
+] solvent time (h) yield of 2a (%) yield of 3a (%)

1 4 DMF 15 0 0
2 5 DMF 72 0 0
3 6 DMF 3 14 31
4a 6 DMF 5 30 34
5a 6 DMSO 5 64 21
6a 6 acetonitrile 8 77 0
7a 6 toluene 168 72 0
8a 6 CH2Cl2 72 54 0
9a 6 t-BuOMe 72 55 0
10a 6 1,4-dioxane 9 75 0
11a 6 THF 8 89 0
12 6 THF 8 63 26
13a,b 6 THF 8 70 0

aThe reaction was carried out with MS 4 Å (180 mg/0.2 mmol); b1.1 equiv of 6 was used.

methylthiosuccinimide (4) in DMF at room temperature for 15
h. However, the desired product 2a was not observed (Table 1,
entry 1). The use of N-trifluoromethylthiophthalimide (5) did
not afford 2a either (Table 1, entry 2). Fortunately, the use of
N-(trifluoromethylthio)dibenzenesulfonimide 6 [23] gave 2a in

14% yield, along with the protonated product 3a in 31% yield
(Table 1, entry 3). The yield of 2a could be improved to 30% by
adding MS 4 Å to the reaction mixture (Table 1, entry 4).
Screening of various solvents revealed that THF was the best
choice for this reaction (Table 1, entries 4–11), and the yield of
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Scheme 2: One-pot procedure for the synthesis of 2a.

Scheme 3: Substrate scope. aSaponification was carried out with 2.5 equiv of LiOH, and 2.5 equiv of 6 was used for trifluoromethylthiolation.
bSaponification of 7 was carried out for 39 h. cSaponification was carried out with 2.5 equiv of LiOH under reflux conditions, and 2.5 equiv of 6 was
used for trifluoromethylthiolation.

2a was dramatically improved to 89% (Table 1, entry 11). In
the absence of MS 4 Å, the yield of 2a was diminished even
when the reaction was carried out in THF (Table 1, entry 12).

With the optimized reaction conditions in hand, we examined
the one-pot synthesis of 2a from methyl ester 7a. Methyl
2-pyridylacetate 7a were saponified with lithium hydroxide in a
MeOH/H2O system. After completion of the reaction, the sol-
vents were evaporated under reduced pressure. Then, THF,
MS 4 Å, and 6 were added to the residue, and the mixture was
stirred at room temperature for 8 h. This reaction successfully
afforded the desired product 2a in 85% yield over two steps
(Scheme 2).

Encouraged by the aforementioned result, we applied this
method to several 2-pyridylacetates (Scheme 3). Methyl
2-pyridylacetates 7b–d with arylmethyl substituents furnished

the corresponding trifluoromethylthiolated products 2b−d in
good yields. α,α-Dialkyl-2-pyridylacetates 7e–g also gave the
desired products 2e–g in moderate yields. The method could
also be applied to substrates with quinoline and isoquinoline
backbones to afford the corresponding products 2h and 2i. In
addition, the reaction of α-monosubstituted 2-pyridylacetate 8
was performed to yield the corresponding mono-trifluoro-
methylthiolated product 9 in 36% yield, along with 6% yield of
disubstituted product 10 (Scheme 4). Increasing the amount of 6
did not improve the yield of products 9 and 10 significantly.

Based on the abovementioned results and our previous study on
decarboxylative fluorination [21], we propose a plausible mech-
anism for this reaction, as outlined in Scheme 5. An electrophil-
ic sulfur atom of 6 approaches the nitrogen atom on the pyri-
dine ring to promote decarboxylation via the formation of N-tri-
fluoromethylthio-2-alkylidene-1,2-dihydropyridine intermedi-
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Scheme 4: Reaction of α-monosubstituted 2-pyridylacetates.

Scheme 5: Proposed reaction pathway.

Scheme 6: Reaction of 3- and 4-pyridylacetates.

ate I, which immediately isomerizes to afford 2 (Scheme 5).
Methyl 4-pyridylacetate 11 also gave the corresponding tri-
fluoromethylthiolated product 12 in 29% yield (Scheme 6),
where the reaction was assumed to proceed via the N-trifluoro-
methylthio-4-alkylidene-1,4-dihydropyridine intermediate. In
contrast, methyl 3-pyridylacetate 13 did not yield the trifluoro-
methylthiolated product at all, despite complete saponification
of the methyl ester.

Conclusion
In conclusion, we demonstrated the decarboxylative trifluoro-
methylthiolation of lithium 2- and 4-pyridylacetates to synthe-
size pyridine derivatives with a trifluoromethylthio group at a
tertiary carbon center adjacent to the pyridine ring. Further-
more, saponification of methyl pyridylacetates and subsequent
decarboxylative trifluoromethylthiolation of the resulting lithi-
um salts were performed in a one-pot fashion. This method can
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easily convert an ester group into a trifluoromethylthio group.
The resulting trifluoromethyl thioethers would be useful for the
preparation of various medicinally relevant compounds.

Supporting Information
Supporting Information File 1
Experimental procedures, characterization data, and copies
of NMR spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-17-23-S1.pdf]
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