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Abstract
This study aimed to prepare robust immobilized formate dehydrogenase (FDH) preparations which can be used as effective biocata-

lysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida

methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150), Immobead 150 support modified with ethyl-

enediamine and then activated with glutaraldehyde (FDHIGLU), and Immobead 150 support functionalized with aldehyde groups

(FDHIALD). The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead

150 functionalized with aldehyde groups was used as support. The half-life times (t1/2) of free FDH, FDHI150, FDHIGLU and

FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69,

38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD

offer feasible potentials for in situ regeneration of NADH.
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Introduction
Dehydrogenases are one of the most promising enzymes in

biocatalysis since these enzymes have a great potential in the

enantioselective reduction of ketones [1,2] and/or carbon–car-

bon double bonds [3,4] to produce optically active compounds.

However, most dehydrogenases use an expensive cofactor such

as NAD(H) or NADP(H) [5]. Therefore, the regeneration of the
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cofactor is required to decrease operational costs. NAD+-de-

pendent formate dehydrogenase (FDH, EC 1.2.1.2) catalyzes

oxidation of formate to carbon dioxide (CO2) [6]. FDH is indus-

trially used as coenzyme for the regeneration of NADH [7,8], as

sensor for the determination of formic acid [9], and as catalyst

for the production of methanol or formate from CO2 [10,11]. It

was reported that FDH is a promising enzyme for the regenera-

tion of NADH since the reaction product of FDH-catalyzed

formate oxidation is CO2 which does not interfere with the

purification of the final product [12,13]. However, free FDHs

have low thermal stability [14] and lack of reusability, there-

fore, the immobilization of FDH has been of increasing interest

in the recent years. For example, Netto et al. [15] immobilized

FDH from Candida boidinii on three different magnetic

supports and the results showed that conversion rates and recy-

cling values were changed depending on the support used for

immobilization. Bolivar et al. [16] used different strategies for

the immobilization of FDH from Candida boidinii and reported

that the stabilization factors were changed depending on the im-

mobilization protocol. Kim et al. [17] immobilized FDH from

Candida boidinii as cross-linked enzyme aggregate (CLEA) and

demonstrated that the residual activity and thermal stability of

CLEA were strictly dependent on the type of cross-linker.

Epoxy group containing supports are widely used in enzyme

immobilization studies to obtain highly stable enzyme prepara-

tions by using multi-point attachment strategies [18-20]. The

immobilization mechanism of enzymes is based on the hydro-

phobic adsorption of enzymes onto the supports and then the

covalent immobilization of enzymes. Besides, these supports

are easily modified to generate new groups for the immobiliza-

tion of enzymes with different mechanism. This allows us the

preparation of biocatalysts with different properties [21-23].

Glutaraldehyde-activated supports have been extensively used

in enzyme immobilization studies for many years [24]. Howev-

er, the exact structure of the groups formed by glutaraldehyde is

still under discussion, a Schiff base reaction between the car-

bonyl group of glutaraldehyde and the terminal amino func-

tional group could be expected [25,26].

Candida methylica FDH is a dimeric enzyme [27] and it may be

easily inactivated by the dissociation of its subunits depending

on reaction conditions. Hence, the use of a proper immobiliza-

tion technique and support could stabilize its dimeric form. In

this study, NAD+-dependent FDH from Candida methylica was

covalently immobilized onto Immobead 150, an epoxy group

containing commercial support, and Immobead 150 support

modified with ethylenediamine and then activated with

glutaraldehyde, and Immobead 150 support functionalized with

aldehyde groups. The optimum conditions of free and immobi-

lized FDH preparations were determined for formate oxidation.

The thermal stability of free and immobilized FDH prepara-

tions was tested at 35 and 50 °C. The operational stability

studies of the immobilized FDHs were performed in a batch

reactor. As far as we know, this is the first report regarding the

covalent immobilization of Candida methylica FDH.

Results and Discussion
It is well documented that one of the factors affecting the per-

formance of an immobilized enzyme is the type of binding

groups on the support which provides higher loading of en-

zyme and higher retention of activity [28]. Epoxy group con-

taining supports are widely used in the immobilization of many

enzymes through multi-point covalent attachments since epoxy

groups can easily react with different nucleophiles highly abun-

dant in the protein surface such as primary amine, sulfhydryl

and carboxylic groups [21]. In this study, Immobead 150 was

used as epoxy group containing supports for the immobiliza-

tion of C. methylica FDH (Figure 1a). The amount of bound

protein was determined as 85% of the initial loading protein per

gram of Immobead 150 support and the immobilized FDH

(FDHI150) showed 31% activity of the free FDH upon immobi-

lization. Another commonly used strategy to covalently immo-

bilize enzyme is using a bifunctional reagent glutaraldehyde. A

Schiff base is formed between the carbonyl group of glutaralde-

hyde and the amino functional groups of the enzyme [29]. In

this study, Immobead 150 support was modified with ethylene-

diamine and then activated with glutaraldehyde for the covalent

immobilization of C. methylica FDH (Figure 1b). The amount

of bound protein was determined as 75% of the initial loading

protein per gram of the support and the immobilized FDH

(FDHIGLU) showed 105% activity of the free FDH upon im-

mobilization. In recent years, using short spacer arm containing

supports has become very popular in enzyme immobilization

due to enhancement of the stability of the enzyme [30]. In this

study, Immobead 150 support was kept in 1 M acetic acid solu-

tion to produce vicinal diols and then the formed diols were oxi-

datively cleaved with NaIO4 to produce aldehyde groups onto

the support (Figure 1c). The amount of bound protein was de-

termined as 90% of the initial loading protein per gram of the

support and the immobilized FDH (FDHIALD) showed 132%

activity of the free FDH upon immobilization. The higher reten-

tion activities of FDHIGLU and FDHIALD may be related to

the prevention of subunit dissociation depending on the immo-

bilization procedure.

The activity changes of free and immobilized FDH prepara-

tions depending on the medium pH were given in Figure 2. The

free FDH showed 2% of its maximum activity at pH 4.0 where-

as FDHI150, FDHIGLU and FDHIALD showed 64, 45 and

59% of their maximum activities at the same pH. The activities

of both free and immobilized FDH preparations increased by in-
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Figure 1: The immobilization scheme of FDH onto Immobead 150 and modified Immobead 150 supports.

Figure 2: The effect of pH on the activities of free and immobilized
FDH preparations. The FDH activity at pH 7.0 was taken as 100% for
the each preparation. The experiments were run in triplicate.

creasing the pH and all the FDH preparations showed their

maximum activities at pH 7.0. When the pH was further in-

creased to 8.0, the determined activities of free FDH, FDHI150,

FDHIGLU and FDHIALD were 95, 90, 71 and 79% of their

maximum activities, respectively. Gao et al. [31] reported the

optimal pH values were 7.0 for both free FDH and immobilized

FDH onto polydopamine-coated iron oxide nanoparticles (PD-

IONPs). The optimum pH values of the both free Pseudomonas

sp. 101 FDH and its immobilized form onto glyoxylagarose

were reported as 7.0 [16].

The temperature–activity profiles of free and immobilized FDH

preparations were given in Figure 3. The relative activities were

67, 78, 64 and 88%, respectively for free FDH, FDHI150,

FDHIGLU and FDHIALD at 25 °C. The activities of free and

immobilized FDHs increased with the temperature increasing

from 25 to 35 °C and all the FDH preparations showed their

maximum activities at 35 °C. The activities of free and immobi-
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Figure 4: Thermal stability of free and immobilized FDH preparations
at 35 °C.

lized FDH preparations decreased at the temperatures above

35 °C. Netto et al. [15] reported that the optimum temperature

of free Candida boidinii FDH was 37 °C whereas the optimum

temperatures of its immobilized forms were quite different

depending on the used immobilization procedure. The optimum

temperature of C. boidinii FDH immobilized onto magnetite

nanoparticles silanized with (3-aminopropyl)triethoxysilane was

42 °C whereas the optimum temperature was 27 °C when this

support was further coated with glyoxylagarose and then

C. boidinii FDH was immobilized onto it.

Figure 3: The effect of temperature on the activities of free and immo-
bilized FDH preparations. The enzyme activity at 35 °C is taken as
100% for the each preparation. The experiments were run in triplicate.

It is generally expected from the covalently immobilized en-

zymes that they should be more durable against temperature

inactivation than their free forms. As shown in Figure 4, the

free FDH completely lost its initial activity at 35 °C after 24 h Figure 5: Thermal stability of free and immobilized FDH preparations
at 50 °C.

Table 1: The results of thermal stability experiments of free and immo-
bilized FDH at 35 and 50 °C.

Catalyst Temperature t1/2
(h)

ki
(h−1)

Stabilization
factor

Free FDH 35 °C 10.6 6.5 × 10−2 –
50 °C 8.1 8.5 × 10−2 –

FDHI150 35 °C 28.9 2.4 × 10−2 2.7
50 °C 23.1 3.0 × 10−2 2.8

FDHIGLU 35 °C 22.4 3.1 × 10−2 2.1
50 °C 15.1 4.6 × 10−2 1.9

FDHIALD 35 °C 38.5 1.8 × 10−2 3.6
50 °C 23.9 2.9 × 10−2 2.9

incubation time. However, FDHI150, FDHIGLU and

FDHIALD retained 62, 48 and 69% of their initial activities, re-

spectively at 35 °C after 24 h incubation time. At 50 °C, the free

FDH completely lost its initial activity whereas FDHI150,

FDHIGLU and FDHIALD retained 54, 35 and 56% of their

initial activities, respectively after 24 h incubation time

(Figure 5). The half-life times (t1/2) of free FDH, FDHI150,

FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4

and 38.5 h, respectively at 35 °C (Table 1). The corresponding

t1/2 values were 8.1, 23.1, 15.1 and 23.9 h at 50 °C. These

results showed that the free FDH was stabilized 2.7, 2.1 and

3.1 fold at 35 °C and 2.8, 1.9 and 2.9 fold at 50 °C when it was

immobilized onto Immobead 150, Immobead 150 via

glutaraldehyde spacer arm, and Immobead 150 support functio-

nalized with aldehyde group. These results show that a strong

and stable imino bond could be formed between the aldehyde

group of the modified Immobead 150 support and the terminal
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amino group of the enzyme at pH 6.0. Kim et al. [17] investi-

gated the thermal stability of free C. boidinii FDH and immobi-

lized FDH as cross-linked enzyme aggregates and reported that

cross-linked enzyme aggregates of C. boidinii FDH prepared

with dextrane polyaldehyde and glutaraldehyde showed 3.6 and

4.0 folds higher stability than the free FDH at 50 °C.

It is an important feature to reuse a biocatalyst for many cycles

without loss of initial activity. In this study, the operational

stability of immobilized FDHs was tested in the batch type

reactor for 10 reuses (Figure 6). The immobilized FDHs nearly

protected their initial activities after 2 reuses. The remaining ac-

tivities of FDHI150, FDHIGLU and FDHIALD were 69, 38 and

51%, respectively after 10 reuses. Gao et al. [31] reported that

mutant FDH immobilized onto PD-IONPs protected 60% of its

initial activity after 17 cycles. Kim et al. [17] determined that

C. boidinii FDH immobilized as cross-linked enzyme aggre-

gates prepared with dextrane polyaldehyde and glutaraldehyde,

retained 96 and 89% of their initial activities, respectively after

10 reuses.

Figure 6: The reusability of immobilized FDHs.

Conclusion
In this study, the covalent immobilization of C. methylica FDH

onto Immobead 150 support and modified Immobead 150

supports were investigated. A higher immobilization yield was

obtained when tthe Immobead 150 support functionalized with

aldehyde groups was used as support. Of the tested FDH prepa-

rations, FDHIALD showed highest catalytic efficiency and

stability than the free FDH, FDHI150 and FDHIGLU.

FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51%

of their initial activities, respectively after 10 reuses. In conclu-

sion, Immobead 150 support functionalized with aldehyde

groups may be a potential candidate for the immobilization of

enzymes and the immobilized FDHs, especially FDHIALD, is a

robust biocatalyst and it may be used in the combination with

other dehydrogenases to regenerate NADH.

Experimental
Nicotinamide adenine dinucleotide hydrate (NAD+) was pur-

chased from Acros Organics (New Jersey, USA). Sodium

formate, Immobead 150 (Polyacrylic matrix, particle size

250 μm, oxirane content ≥200 μmol/g dry support), ethylenedi-

amine (EDA), glutaraldehyde and sodium metaperiodate were

obtained from Sigma-Aldrich (St. Louis, MO, USA). All other

chemicals used in this study were of analytical grade and used

without further purification.

Purification of C. methylica FDH
The purification of FDH was performed according to Demir et

al. [32]. Briefly, 7 g of wet E. coli BL21 (DE3) cell paste con-

taining the expressed FDH protein was suspended in 10 mL

buffer solution (20 mM Tris–HCl, pH 7.8, 0.5 M NaCl, 5 mM

imidazole) at 4 °C. Then, the cells were disrupted by sonication

and the sonicated cells were harvested by centrifugation

(28000 × g, 30 min) at 4 °C. The cell pellet was resuspended in

an ice-cold buffer (20 mM NaH2PO4, 0.5 M NaCl, 30 mM

imidazole, pH 7.4). The resuspended cells were further lysed by

adding lysozyme. Then the lysate was filtered through a

0.45 μm filter. The filtered samples were loaded to a His-trap

column after equilibration with 5 mL of the ice-cold buffer.

Then the column was washed with 5 mL of the same buffer.

FDH was eluted with a series of elution buffers: 3 mL of elution

buffer (20 mM phosphate buffer, 0.5 M NaCl with 100 mM

imidazole pH 7.4), 5 mL of elution buffer (20 mM phosphate

buffer, 0.5 M NaCl with 0.2 M imidazole pH 7.4), and finally

3 mL of elution buffer (20 mM phosphate buffer, 0.5 M NaCl

with 0.4 M imidazole pH 7.4). The collected fractions were

analyzed on SDS-PAGE.

Preparation of modified supports
The modification of Immobead 150 support with EDA and

glutaraldehyde was performed according to Yildirim et al. [33].

One gram of Immobead 150 support was treated with 10 mL of

EDA solution (1 M in water, pH 10) for 12 h with mild stirring

at room temperature. Then, the obtained supports were washed

with distilled water and then dried at room temperature. One

gram of EDA treated support was mixed with 25 mL phosphate

buffer (50 mM, pH 7.0) containing 2.5% glutaraldehyde (w/v).

After gently 2 h stirring, the supports were washed with

distilled water and then dried at room temperature.

One gram of Immobead 150 support was treated with 10 mL of

1 M acetic acid solution for 12 h with mild stirring at room tem-

perature. Then, the obtained supports were washed with

distilled water and then dried at room temperature. One gram of
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the support was added onto 25 mL of sodium meta periodate

solution. After 2 h stirring time the supports were washed with

distilled water and then dried at room temperature.

Immobilization of FDH
The covalent immobilization of FDH onto Immobead 150

support was performed according to Alagöz et al. [34]. One

gram of Immobead 150 support was mixed with 9.0 mL of FDH

solution containing 1.0 mg/mL protein in 1.0 M, pH 7.0 phos-

phate buffer. The mixture was gently shaken at 25 °C in a water

bath during 24 h immobilization time. The immobilized FDH

preparations were filtrated to collect them and washed with

distilled water.

The covalent immobilization of FDH onto Immobead 150 via a

glutaraldehyde spacer arm was performed according to Yildirim

et al. [33] with slight modification. One gram of the modified

support was treated with 9.0 mL of FDH solution containing

1.0 mg/mL protein in 50 mM, pH 7.0 phosphate buffer. The im-

mobilization was allowed to continue in a water bath at 5 °C for

4 h with slow shaking. Then, the immobilized FDH prepara-

tions were filtrated to collect them and washed with distilled

water.

The covalent immobilization of FDH onto Immobead 150 func-

tionalized with aldehyde groups was carried out by adding

9.0 mL of FDH solution containing 1.0 mg/mL protein in

50 mM, pH 6.0 citrate buffer onto 1 g of the support. The im-

mobilization was allowed to continue in a water bath at 5 °C for

4 h with slow shaking. Then, the immobilized FDH prepara-

tions were filtrated to collect them and washed with distilled

water.

The protein contents of filtrates were checked by measuring

their absorbance values at 280 nm and the washing procedure

was continued until no absorbance were detected in the filtrates.

After that, the immobilized FDH preparations were stored at

5 °C until use. The amounts of immobilized protein onto the

supports were determined using a Bradford protein assay [35].

FDH assay
The FDH activity was measured spectrophotometrically at

340 nm according to Özgün et al. [36]. Five milligrams of

immobilized FDH or 50 µL of free FDH (5.4 mg protein/mL),

2.6 mL of phosphate buffer (0.1 M, pH 7.0) and 0.5 mL of

0.1 M sodium formate solution (0.1 M in pH 7.0 phosphate

buffer) were mixed in a test tube. The reaction was started by

the addition of 0.1 mL NAD+ solution (10 mM in water) at

25 °C in a water bath. After 10 min reaction time, an aliquot of

3 mL was taken from the reaction mixture and its absorbance

was measured at 340 nm. The same procedure was applied to a

blank tube containing no free or immobilized FDH sample. One

unit of FDH activity was defined as the amount of enzyme pro-

duced 1.0 µmol of CO2 from formate in the presence of NAD+

under the assay conditions.

Characterization of FDH
The effect of pH on the activities of free and immobilized FDHs

was investigated at different pHs ranging from 5.0 to 8.0 at

35 °C. The optimal temperatures of free and immobilized FDH

preparations were determined in a temperature range of

25–50 °C at pH 7.0.

The thermal stability of free and immobilized FDH prepara-

tions was tested by incubating the preparations at 35 and 50 °C

and measuring the activities of the samples in certain time inter-

vals.

Operational stability of immobilized FDH
The operational stability of the immobilized FDHs was investi-

gated in a batch type column reactor. The immobilized FDH

preparation (0.1 g of each) was loaded to the reactor and 2.6 mL

of phosphate buffer (0.1 M, pH 7.0) and 0.5 mL of 0.2 M sodi-

um formate solution (0.1 M in pH 7.0 phosphate buffer) were

added. The reaction was started by the addition of 0.1 mL

NAD+ solution (10 mM in water) at 25 °C in a water bath. The

reaction mixture was separated from the immobilized FDH and

its absorbance was measured at 340 nm. For the next cycle, the

immobilized FDH was rinsed with the phosphate buffer (5 mL)

and the freshly prepared reaction mixture was added onto it.
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