Case Example: Bayesian approach to conduct sensitivity analysis for missing data

G. Frank Liu, Baoguang Han, Michael J Daniels, Xin Zhao and Qun Lin

For BSWG, Jan 2015

Abstract

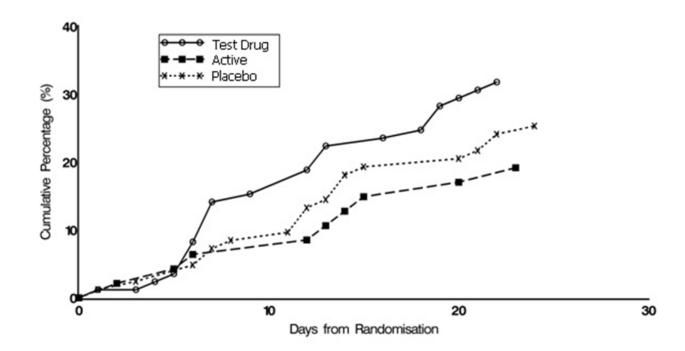
- Sensitivity analysis is recommended by regulatory guidance for clinical trials with missing data
- Bayesian methods provide flexible ways to implement complex sensitivity analysis models for missing data
- We demonstrate the application of Bayesian methods for missing data analysis through a case study with a schizophrenia clinical trial.

Background

- In a schizophrenia trial
 - ~ 200 patients were randomized with 2:1:2 ratio
 to Test, Active, and Placebo groups
 - Primary endpoint: treatment difference in change from baseline at week4 on Positive and Negative Syndrome Scale (PANSS)
 - A high score means worse condition
 - PANSS scores were measured at baseline, Day2,
 and weeks 1, 2, 3, and 4

Background

- Dropout rates at week4 were about
 - 33% in Test
 - 27% in Placebo
 - 20% in Active



Background

Number (%) of Patients Discontinued by Reason

	Active	Placebo	Test
	N=45	N=78	N=81
	n (%)	n (%)	n (%)
Adverse Event			3 (3.7)
Lack Of Efficacy	4 (8.9)	15 (19.2)	16 (19.8)
Physician Decision			1 (1.2)
Pregnancy	1 (2.2)		
Progressive Disease	1 (2.2)		1 (1.2)
Protocol Violation	1 (2.2)		
Withdrawal by Subject	2 (4.4)	6 (7.7)	6 (7.4)

Statistical analysis plan

 Protocol planned primary analysis: mixed model for repeated measures (MMRM) on change from baseline in PANSS,

CFB = base, visit, trt, visit*base, visit*trt with unstructured covariance

- Sensitivity Analyses
 - Analysis on completers
 - Selection model
 - Shared parameter model
 - Pattern mixture model

Tools for Analyses

- For selection model, shared parameter model, pattern mixture model, no general software
- With frequentist method, we used SAS macros developed by DIA Missing Data Working Group (available at www.missingdata.org.uk.)
- For Bayesian method, we used
 - SAS Proc MCMC (Stat v13.1)
 - STAN

Selection Model

- MMRM for response
 - Y | X \sim N (μ (x), Σ)
- Missing data mechanism:

 R_{ji} ~Bernoulli (q_{ji}) , dropout index for i-th patient at j-th visit

$$\log i\{q_{ji}\} = \phi_1(1 - trt_i) + \phi_2 trt_i + \phi_3(1 - trt_i)y_{j-1} + \phi_4 trt_i y_{j-1} + \phi_5(1 - trt_i)y_j + \phi_6 trt_i y_j, j = 2, ..., v_i$$

- Bayesian method with vague prior
 - $-N(0,100^2)$ for all regression parameters in MMRM
 - − Σ ~invWishart(I_5)
 - $-\phi_1, \phi_2, \sim logistic(0,1)$ and $\phi_3, \phi_4, \phi_5, \phi_6 \sim N(0, 5^2)$

Shared Parameter Model

- A quadratic model
 - Response model;

$$y_{ij} = (\beta_0 + \beta_1 w_j + \beta_2 w_j^2)(1 - trt_i) + (\beta_3 + \beta_4 w_j + \beta_5 w_j^2)trt_i + \beta_6 bl_i + U_{i0} + U_{i1}w_j + U_{i2}w_j^2 + \epsilon_{ij}$$

Missing mechanism model

$$\begin{aligned} \log & \mathrm{it}\{q_{ji}\} = \zeta_j + a \ trt_i + (a_0 + b_0 trt_i) U_{i0} \\ & + (a_1 + b_1 trt_i) U_{i1} + (a_2 + b_2 trt_i) U_{i2} \\ & (U_{i0}, U_{i1}, U_{i2}) \sim N(0, \Sigma_{II}), \ \epsilon_{ij} \sim N(0, \sigma^2). \end{aligned}$$

- Bayesian method with vague prior
 - $-N(0,100^2)$ for all regression parameters in response
 - Σ_{IJ} ~invWishart(I_3)
 - $-\zeta_{j} \sim logistic(0,1)$ and, $a_0, a_1, a_2, b_0, b_1, b_2 \sim N(0, 5^2)$

Pattern Mixture Model

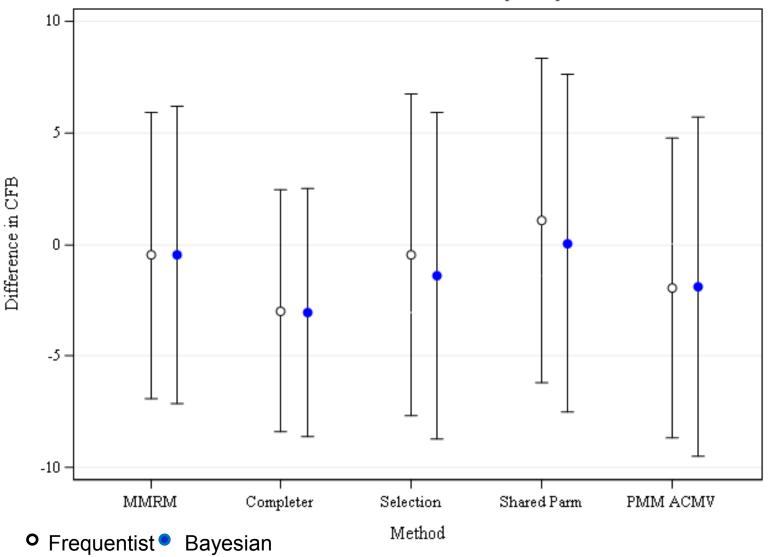
Distribution decomposition (little 1993, 1994)

$$[Y_{obs}, Y_{mis}, R \mid X] = [Y_{obs}, Y_{mis} \mid M, X] [R \mid X]$$

- This model can be fit using MI approach,
 - Impute missing data per pattern with ACMV restriction
 - Analyze and combine results
- Bayesian: using STAN with vague prior
 - Pattern indicator $(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5)$ ~ Dirichlet
 - All standard deviation ~ Uniform (0,50)
 - All regression parameters $\sim N(0, 100^2)$

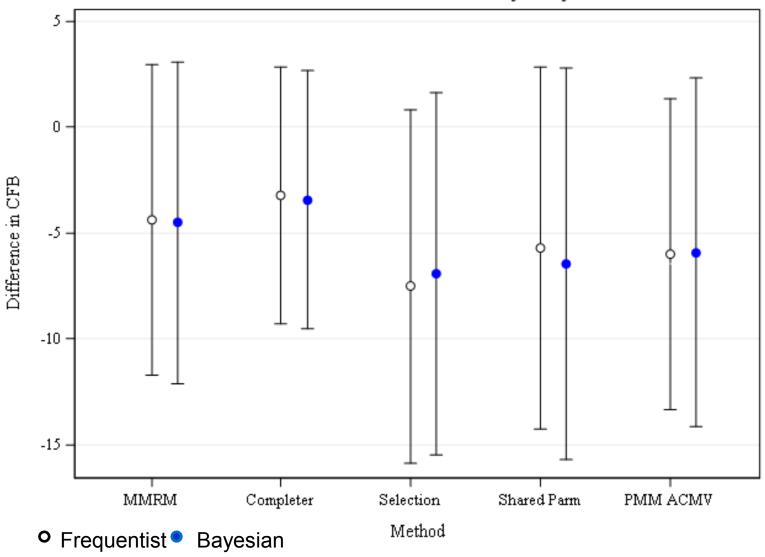
Analysis Results: Test vs Placebo

Mean and 95% CI for Test vs Placebo by Analysis Method



Analysis Results: Active vs Placebo

Mean and 95% CI for Active vs Placebo by Analysis Method



Selection model specification

- With vague prior (non-informative),
 - the Bayesian analysis ≈ frequentist method
- Primary vs sensitivity analysis
 - some differences were seen
 - may depend on model specifications, e.g.
 - In selection model

$$\begin{split} \log & \mathrm{it} \big\{ q_{ji} \big\} = \phi_1 (1 - trt_i) + \phi_2 trt_i + \phi_3 (1 - trt_i) y_{j-1} + \phi_4 trt_i y_{j-1} \\ & + \phi_5 (1 - trt_i) y_j + \phi_6 trt_i y_j \end{split}$$

Parameters did not depend on time points \Rightarrow a strong restriction when the proportions of dropout diff over time.

Selection model w modified dropout

Modify the dropout model

logit[q_{ji}] =
$$\zeta_j + \gamma_0 y_{ij} + \gamma_1 y_{i(j-1)}$$
, $j = 2, 3, 4, 5$.

allow different parameter for each time point

Bayesian analysis with vague prior

		Modified	
	Selection	Selection	
	Model	Model	MMRM
Test vs Placebo	-1.4 (3.7)	-0.6 (3.3)	-0.5 (3.3)
Active vs Placebo	-6.9 (4.4)	-4.4 (3.8)	-4.4 (3.8)
γ_0	N/A	-0.01 (0.05)	
γ_1	N/A	0.15 (0.06)	

Bayesian non-parametric model

- All Bayesian models assumed that the response ~ normal distribution
- To relax this assumption, Linero and Daniels (2014) proposed a non-parametric model
 - Assume Y ~ a Dirichlet process mixture
 - Model can be fit under MAR, or MNAR with non-future dependence (NFD)

	BNP w MAR	BNP w MNAR	MMRM
Test vs Placebo	-0.7 (2.7)	-0.3 (2.9)	-0.5 (3.3)
Active vs Placebo	-4.5 (3.0)	-4.7 (3.0)	-4.4 (3.8)

Conclusions

- For the case study, we illustrate some application of Bayesian methods for sensitivity analysis
 - With vague prior, produce similar results as the frequentist models
 - Tools available: STAN, winBUGS, SAS Proc MCMC (Stat v13.1)
- Advantage of Bayesian method:
 - Can be implemented with available software package such as STAN, SAS Proc MCMC, winBUGS, etc.
 - More flexible to handle model specification
 - Have posterior distribution besides point/SE estimates.

Conclusions

- Need to be careful:
 - Understand specification and prior
 - Check for convergence
- Sensitivity analysis require additional assumption:
 - important to clearly specify and understand them
- Tools/software are still needed for fitting these models
- Acceptance by regulatory