Shadow

Last updated
The shadow of a musician cast onto a brick wall The shadow of a musician playing transverse flute.jpg
The shadow of a musician cast onto a brick wall
Park fence shadow is distorted by an uneven snow surface. Park grid.JPG
Park fence shadow is distorted by an uneven snow surface.
Shadows from cumulus clouds thick enough to block sunlight Cumulus cloud shadows 1.jpg
Shadows from cumulus clouds thick enough to block sunlight

A shadow is a dark area where light from a light source is blocked by an object. It occupies all of the three-dimensional volume behind an object with light in front of it. The cross section of a shadow is a two-dimensional silhouette, or a reverse projection of the object blocking the light.

Contents

Point and non-point light sources

Umbra, penumbra and antumbra Diagram of umbra, penumbra & antumbra.png
Umbra, penumbra and antumbra

A point source of light casts only a simple shadow, called an "umbra". For a non-point or "extended" source of light, the shadow is divided into the umbra, penumbra, and antumbra. The wider the light source, the more blurred the shadow becomes. If two penumbras overlap, the shadows appear to attract and merge. This is known as the shadow blister effect.

The outlines of the shadow zones can be found by tracing the rays of light emitted by the outermost regions of the extended light source. The umbra region does not receive any direct light from any part of the light source and is the darkest. A viewer located in the umbra region cannot directly see any part of the light source.

By contrast, the penumbra is illuminated by some parts of the light source, giving it an intermediate level of light intensity. A viewer located in the penumbra region will see the light source, but it is partially blocked by the object casting the shadow.

If there is more than one light source, there will be several shadows, with the overlapping parts darker, and various combinations of brightnesses or even colors. The more diffuse the lighting is, the softer and more indistinct the shadow outlines become until they disappear. The lighting of an overcast sky produces few visible shadows.

The absence of diffusing atmospheric effects in the vacuum of outer space produces shadows that are stark and sharply delineated by high-contrast boundaries between light and dark.

For a person or object touching the surface where the shadow is projected (e.g. a person standing on the ground, or a pole in the ground) the shadows converge at the point of contact.

A shadow shows, apart from distortion, the same image as the silhouette when looking at the object from the sun-side, hence the mirror image of the silhouette seen from the other side.

Astronomy

Three moons (Callisto, Europa and Io) and their shadows parade across Jupiter. Three moons and their shadows parade across Jupiter.jpg
Three moons (Callisto, Europa and Io) and their shadows parade across Jupiter.

The names umbra, penumbra and antumbra are often used for the shadows cast by astronomical objects, though they are sometimes used to describe levels of darkness, such as in sunspots. An astronomical object casts human-visible shadows when its apparent magnitude is equal or lower than -4. [2] The only astronomical objects able to project visible shadows onto Earth are the Sun, the Moon, and in the right conditions, Venus or Jupiter. [3] [4] Night is caused by the hemisphere of a planet facing its orbital star blocking its sunlight.

A shadow cast by the Earth onto the Moon is a lunar eclipse. Conversely, a shadow cast by the Moon onto the Earth is a solar eclipse. [5]

Daytime variation

The sun casts shadows that change dramatically through the day. The length of a shadow cast on the ground is proportional to the cotangent of the sun's elevation angle—its angle θ relative to the horizon. Near sunrise and sunset, when θ = 0° and cot(θ) = ∞, shadows can be extremely long. If the sun passes directly overhead (only possible in locations between the Tropics of Cancer and Capricorn), then θ = 90°, cot(θ) = 0, and shadows are cast directly underneath objects.

Such variations have long aided travellers during their travels, especially in barren regions such as the Arabian Desert. [6]

Propagation speed

Steam phase eruption of Castle Geyser in Yellowstone National Park casts a shadow on its own steam. Crepuscular rays are also visible. Steam phase eruption of Castle Geyser with crepuscular rays and shadow.jpg
Steam phase eruption of Castle Geyser in Yellowstone National Park casts a shadow on its own steam. Crepuscular rays are also visible.

The farther the distance from the object blocking the light to the surface of projection, the larger the silhouette (they are considered proportional). Also, if the object is moving, the shadow cast by the object will project an image with dimensions (length) expanding proportionally faster than the object's own rate of movement. The increase of size and movement is also true if the distance between the object of interference and the light source are closer. Eventually, this speed may exceed the speed of light. [7] However, this does not violate special relativity as shadows do not carry any information or momentum.

Although the edge of a shadow appears to "move" along a wall, in actuality the increase of a shadow's length is part of a new projection that propagates at the speed of light from the object of interference. Since there is no actual communication between points in a shadow (except for reflection or interference of light, at the speed of light), a shadow that projects over a surface of large distances (light years) cannot convey information between those distances with the shadow's edge. [8]

Color

Visual artists are usually very aware of colored light emitted or reflected from several sources, which can generate complex multicolored shadows. Chiaroscuro, sfumato, and silhouette are examples of artistic techniques which make deliberate use of shadow effects. [9]

During the daytime, a shadow cast by an opaque object illuminated by sunlight has a bluish tinge. This happens because of Rayleigh scattering, the same property that causes the sky to appear blue. The opaque object is able to block the light of the sun, but not the ambient light of the sky which is blue as the atmosphere molecules scatter blue light more effectively. As a result, the shadow appears bluish. [10]

Dimension

Fog shadow of the south tower of the Golden Gate Bridge Fog shadow of GGB.jpg
Fog shadow of the south tower of the Golden Gate Bridge

A shadow occupies a three-dimensional volume of space, but this is usually not visible until it projects onto a reflective surface. A light fog, mist, or dust cloud can reveal the 3D presence of volumetric patterns in light and shadow.

Fog shadows may look odd to viewers who are not used to seeing shadows in three dimensions. A thin fog is just dense enough to be illuminated by the light that passes through the gaps in a structure or in a tree. As a result, the path of an object's shadow through the fog becomes visible as a darkened volume. In a sense, these shadow lanes are the inverse of crepuscular rays caused by beams of light, they're caused by the shadows of solid objects.

Theatrical fog and strong beams of light are sometimes used by lighting designers and visual artists who seek to highlight three-dimensional aspects of their work.

Inversion

Oftentimes shadows of chain-linked fences and other such objects become inverted (light and dark areas are swapped) as they get farther from the object. A chain-link fence shadow will start with light diamonds and shadow outlines when it is touching the fence, but it will gradually blur. Eventually, if the fence is tall enough, the light pattern will go to shadow diamonds and light outlines.

Photography

Moonlight shadow of a photographer Moonlight shadow.jpg
Moonlight shadow of a photographer

In photography, which is essentially recording patterns of light, shade, and color, "highlights" and "shadows" are the brightest and darkest parts, respectively, of a scene or image. Photographic exposure must be adjusted (unless special effects are wanted) to allow the film or sensor, which has limited dynamic range, to record detail in the highlights without them being washed out, and in the shadows without their becoming undifferentiated black areas.

On satellite imagery and aerial photographs, taken vertically, tall buildings can be recognized as such by their long shadows (if the photographs are not taken in the tropics around noon), while these also show more of the shape of these buildings.

Analogous concepts

Shadow as a term is often used for any occlusion or blockage, not just those with respect to light. For example, a rain shadow is a dry area, which with respect to the prevailing wind direction, is beyond a mountain range; the elevated terrain impedes rainclouds from entering the dry zone. An acoustic shadow occurs when a direct sound has been blocked or diverted around a given area.

Cultural aspects

Shadows often appear in mythical or cultural contexts. Sometimes in a malevolent light, other times not. An unattended shade was thought by some cultures to be similar to that of a ghost. The name for the fear of shadows is "sciophobia" or "sciaphobia".

Chhaya is the Hindu goddess of shadows.

In heraldry, when a charge is supposedly shown "in the shadow" (the appearance is of the charge merely being outlined in a neutral tint rather than being of one or more tinctures different from the field on which it is placed), it is technically described as "umbrated". Supposedly, only a limited number of specific charges can be so depicted.[ citation needed ]

Shadows are often linked with darkness and evil; in common folklore, like shadows who come to life, are often evil beings trying to control the people they reflect. The film Upside-Down Magic features an antagonistic shadow spirit who possesses people.

Ancient Egyptians surmised that a shadow, which they called šwt (shut), contains something of the person it represents because it is always present. Through this association, statues of people and deities were sometimes referred to as shadows.

In a commentary to The Egyptian Book of the Dead (BD), Egyptologist Ogden Goelet, Jr. discusses the forms of the shadow: "In many BD papyri and tombs the deceased is depicted emerging from the tomb by day in shadow form, a thin, black, featureless silhouette of a person. The person in this form is, as we would put it, a mere shadow of his former existence, yet nonetheless still existing. Another form the shadow assumes in the BD, especially in connection with gods, is an ostrich-feather sun-shade, an object which would create a shadow." [11]

Energy generating

Scientists from the National University of Singapore presented a shadow-effect energy generator (SEG), which consists of cells of gold deposited on a silicon wafer attached on a plastic film. The generator has a power density of 0.14 μW cm−2 under indoor conditions (0.001 sun). [12]

See also

Related Research Articles

<span class="mw-page-title-main">Eclipse</span> Astronomical event where one body is hidden by another

An eclipse is an astronomical event which occurs when an astronomical object or spacecraft is temporarily obscured, by passing into the shadow of another body or by having another body pass between it and the viewer. This alignment of three celestial objects is known as a syzygy. An eclipse is the result of either an occultation or a transit. A "deep eclipse" is when a small astronomical object is behind a bigger one.

<span class="mw-page-title-main">Lunar eclipse</span> Natural phenomenon wherein the Earth casts a shadow on the Moon

A lunar eclipse is an astronomical event that occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. Such an alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth's orbit.

<span class="mw-page-title-main">Umbra, penumbra and antumbra</span> Distinct parts of a shadow


The umbra, penumbra and antumbra are three distinct parts of a shadow, created by any light source after impinging on an opaque object. Assuming no diffraction, for a collimated beam of light, only the umbra is cast.

<span class="mw-page-title-main">Shading</span> Depicting depth through varying levels of darkness

Shading refers to the depiction of depth perception in 3D models or illustrations by varying the level of darkness. Shading tries to approximate local behavior of light on the object's surface and is not to be confused with techniques of adding shadows, such as shadow mapping or shadow volumes, which fall under global behavior of light.

<span class="mw-page-title-main">Whiteout (weather)</span> Reduced visibility due to snow or sand

Whiteout, white-out, or milky weather is a weather condition in which the contours and landmarks in a snow-covered zone become almost indistinguishable. It could be also applied when visibility and contours are greatly reduced by sand. The horizon disappears from view while the sky and landscape appear featureless, leaving no points of visual reference by which to navigate; there is absence of shadows because the light arrives in equal measure from all possible directions. Whiteout has been defined as: "A condition of diffuse light when no shadows are cast, due to a continuous white cloud layer appearing to merge with the white snow surface. No surface irregularities of the snow are visible, but a dark object may be clearly seen. There is no visible horizon."

<span class="mw-page-title-main">Solar eclipse of October 3, 2005</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, October 3, 2005, with a magnitude of 0.958. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.75 days after apogee, the Moon's apparent diameter was smaller.

The penumbra is the part of a shadow where the light source is only partially blocked.

<span class="mw-page-title-main">June 1955 lunar eclipse</span> Penumbral lunar eclipse June 5, 1955

A penumbral lunar eclipse took place at the Moon's ascending of the orbit on Sunday, June 5, 1955, with a penumbral eclipse magnitude of 0.62181 (62.181%). A penumbral lunar eclipse takes place when the Moon moves through the faint, outer part of Earth's shadow, the penumbra. This type of eclipse is not as dramatic as other types of lunar eclipses and is often mistaken for a regular Full Moon. The Moon shines because its surface reflects the Sun's rays. A lunar eclipse happens when the Earth comes between the Sun and the Moon and blocks some or all of the Sun's light from reaching the Moon. A penumbral lunar eclipse occurs when the Sun, Earth, and the Moon are imperfectly aligned. When this happens, the Earth blocks some of the Sun's light from directly reaching the Moon's surface and covers all or part of the Moon with the outer part of its shadow, also known as the penumbra. Since the penumbra is much fainter than the dark core of the Earth's shadow, the umbra, a penumbral eclipse of the Moon is often difficult to tell apart from a normal Full Moon. Occurring only 0.5 days after apogee, the moon's apparent diameter was 6.5% smaller than average.

<span class="mw-page-title-main">Solar eclipse of May 20, 2012</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit between Sunday, May 20 and Monday, May 21, 2012, with a magnitude of 0.9439. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres or miles wide. Occurring about 1.3 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of June 30, 1954</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, June 30, 1954, with a magnitude of 1.0357. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 2, 2024</span> Annular eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Friday, October 2, 2024, with a magnitude of 0.9326. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2 hours before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of September 11, 1988</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 11, 1988, with a magnitude of 0.9377. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 12.5 hours after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 31, 1970</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit between Monday, August 31 and Tuesday, September 1, 1970, with a magnitude of 0.94. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 20 hours after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of September 12, 1950</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Monday, September 11, 1950 and Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, January 5, 2057, with a magnitude of 1.0287. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 20, 2061</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, April 20, 2061, with a magnitude of 1.0475. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.9 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of July 3, 2084</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, July 2 and Monday, July 3, 2084, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 10 minutes after apogee, the Moon's apparent diameter will be near its minimum. Thus, apogee did occur slightly before the peak of this eclipse.

<span class="mw-page-title-main">Solar eclipse of July 28, 1851</span> First solar eclipse to be accurately photographed

A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, July 28, 1851, with a magnitude of 1.0577. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Earth's shadow</span> Shadow that Earth itself casts through its atmosphere and into outer space

Earth's shadow is the shadow that Earth itself casts through its atmosphere and into outer space, toward the antisolar point. During the twilight period, the shadow's visible fringe – sometimes called the dark segment or twilight wedge – appears as a dark and diffuse band just above the horizon, most distinct when the sky is clear.

References

  1. "March of the moons". Archived from the original on 28 July 2015. Retrieved 24 June 2015.
  2. NASA Science Question of the Week. Gsfc.nasa.gov (7 April 2006). Retrieved on 26 April 2013.
  3. "Young astronomer captures a shadow cast by Jupiter : Bad Astronomy". Blogs.discovermagazine.com. 18 November 2011. Archived from the original on 2 July 2013. Retrieved 27 May 2013.
  4. Duncan, J. C. (1906). "Jupiter casting a Shadow". Popular Astronomy. 14: 123. Bibcode:1906PA.....14..123D . Retrieved 21 May 2024.
  5. "Lunar Eclipse vs Solar Eclipse". www.moonconnection.com. Retrieved 27 November 2019.
  6. The Edinburgh monthly review. 1820. p. 372.
  7. Nemiroff et. al (2016) https://iopscience.iop.org/article/10.1088/0031-9120/51/4/043005/meta
  8. Philip Gibbs (1997) Is Faster-Than-Light Travel or Communication Possible? Archived 10 March 2010 at the Wayback Machine math.ucr.edu
  9. Maughan, William (14 August 2013). The Artist's Complete Guide to Drawing the Head. Clarkson Potter/Ten Speed. ISBN   978-0-7704-3473-1.
  10. Question Board – Questions about Light. Pa.uky.edu. Retrieved on 26 April 2013.
  11. Goelet, Ogden Jr. (1994). The Egyptian Book of the dead: the Book of going forth by day: being the Papyrus of Ani (royal scribe of the divine offerings), written and illustrated circa 1250 B.C.E., by scribes and artists unknown, including the balance of chapters of the books of the dead known as the Theban recension, compiled from ancient texts, dating back to the roots of Egyptian civilization (1st ed.). Chronicle Books. p. 152. ISBN   0811807673.
  12. Qian Zhang; et al. (2020). "Energy harvesting from shadow-effect". Energy & Environmental Science. doi:10.1039/D0EE00825G.