Kinetik enerji

bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.[1]

Kinetik enerji
Bir lunapark treninin vagonları maksimum kinetik enerjiye ray yolunun en dip noktasında ulaşır. Vagonlar, bu konumdan daha yüksek bir noktaya çıkmaya başladığında, kinetik enerji potansiyel enerji dönüşmeye başlar. Bu sistemdeki sürtünme kayıpları ihmal edilirse, vagonların kinetik ve potansiyel enerjilerinin toplamı sabit kalır.
Yaygın sembol(ler): KE, Ek, or T
SI birimi: joule (J)
Diğer niceliklerden türetimi: Ek = 1/2mv2

Ek = Et + Er

Tespit edilemeyen bir ressama ait Émilie du Châtelet'nin (1706-1749) sağ elinde bir pergel tutarkenki bir portresi. Kendisi, kinetik enerjiye ait ilişkisini yayımlayan ilk kişi olmuştur.

Kinetik enerji, hareketsiz kütleli bir cismi belli bir hıza çıkarmak için yapılan olarak tanımlanır. İvmelenmede elde edilen kinetik enerji, cisim hızı sabit kaldığı sürece sabittir. Cismi bu sabit hızından hareketsizlik durumuna döndürmek için aynı düzeyde iş yapılması gerekir.

Klasik mekanikte, v hızlı ve m kütleli dönmeyen bir cismin kinetik enerjisi şudur: . Lagrange mekaniğine göre ise bir sistemin Lagrange denklemindeki herhangi bir terim kinetik enerji olarak tanımlanabilir.[2][3] İzafiyet mekaniğinde ise bu eşitlik v ışık hızından çok daha az olduğu durumlarda yaklaşık olarak geçerlidir.

Kinetik enerjinin standart birimi jouledür.

Etimoloji ve tarihçe

değiştir

Kinetik sıfatının kökeni "hareket" anlamına gelen Grekçe κίνησις kinesis kelimesine dayanmaktadır. Kinetik enerji ve potansiyel enerji arasındaki dikotomi, Aristoteles'in bilfiil ve bilkuvve kavramlarına kadar uzandırılabilir.[4]

Klasik mekaniğin Emv2 ilişkisini, kinetik enerjiyi ilk olarak hareketli kuvvet (vis viva) olarak tanımlayan Gottfried Leibniz ve Johann Bernoulli geliştirmiştir. Willem 's Gravesande ise bu ilişkiyi teyit eden ilk deneysel çalışmayı yapmıştır: deneylerinde, farklı kil kalıplarını farklı yüksekliklerden salan Gravesande, kalıpların yüzeye girim derinliklerinin kalıp hızının karesi ile orantılı olduğunu gözlemlemiştir. Émilie du Châtelet ise bu deney sonuçlarını yorumlayan ve açıklayan bir çalışmayı yayımlamıştır.[5]

Kinetik enerji ve terimlerinin modern anlamları ile kullanılması 19. yüzyılın ortalarına uzanmaktadır. Bu terimlerin ilk kavramsallaştırılması, 1829'da Du Calcul de l'Effet des Machines başlıklı bir makale ile kinetik enerjiyi matematiksel bağlamda açıklayan Gaspard-Gustave Coriolis'e atfedilmektedir. Fakat, kinetik enerji terimini ilk ortaya koyan 1849–1851 arası kullanımları ile William Thomson (Lord Kelvin) olur.[6][7] 1853'te potansiyel enerji ve onu tamamlayan gerçek enerji terimlerini ortaya koyan Rankine,[8] William Thomson ve Peter Tait'in gerçek yerine kinetik kelimesini kullandığını aktarır.[9]

Newtonsal kinetik enerji

değiştir

Rijit-cisim kinetik enerjisi

değiştir

Klasik mekanikte, sabit kütleli ve sabit süratli noktasal bir cismin (i.e. kütlesi olan bir nokta) ya da dönmeyen bir rijit cismin kinetik enerjisi, cismin kütlesine ve süratine bağlıdır. Kinetik enerji, kütle ve süratin karesinin çarpımının yarısına eşittir:

 

Cisim, kütle merkezi sabit bir çizgi üzerinden ayrılmayan doğrusal hareket içinde ise, kinetik enerji türü öteleme kinetik enerjisi olarak ifade edilebilir.

Örneğin, saniyede 18 metre (yaklaşık 65 km/s) hızla doğrusal bir yolda hareket eden 80 kg'lık bir kütlenin kinetik enerjisi şu şekilde hesaplanabilir:

 

Aynı zamanda, hareket halindeki bir cismin kinetik enerjisi, cismi hareketsizlikten ( =0[m/s]) anlık süratine ( ≠0[m/s]) getirmek için cisme uygulanan işe eşittir:

 
  •  : yerdeğişim doğrultusundaki net kuvvetin skaler büyüklüğü (Newton (N))
  •  : yerdeğişimin skaler büyüklüğü (metre (m))

Kinetik enerji cismin momentumu ile de formüle edilebilir:

 
  •  : momentumun skaler büyüklüğü (kg m/s)
  •  : kütle

Denklem türetimi

değiştir

Bir cismin konumu, sabit bir F kuvveti ile kuvvete paralel x yerdeğişirse, yapılan W şu olur:

 

Newton'un İkinci Kanunu, bir cisme etkiyen sabit net kuvvetin, sabit kütleli bir cisme kütlesi ile ters orantılı sabit bir ivme kazandırdığını bildirir:

 
  •  : kütle
  •  : ivme

Kinematik denklemlere göre yerdeğişimi, hızın ve zamanın fonksiyonudur:

 
 
  •  : hız
  •  : sürat
  •  : zaman

İkinci denklemdeki F ve üçüncü denklemdeki x terimleri birinci denkleme konulursa, iş-kinetik enerji ilişkisi türetilmiş olunur:

 

Dönme kinetik enerjisi

değiştir

Kütle merkezinden geçen bir doğru etrafında dönen cisimlerin sahip olduğu kinetik enerjidir.

  ile ifade edilir.

Formülün türetilişi

değiştir

  açısal hızıyla dönen bir cismi parçalara ayırırsak, tüm parçaların toplam enerjisi bize cismin kinetik enerjisini verir. Yani

 
 

Düzgün dairesel hareket yapan cisimlerde aşağıdaki eşitlik vardır:

  yerine yazarsak
  paranteze alalım
 

İşte bu ifadenin parantez içindeki kısmına eylemsizlik momenti denir ve   ile gösterilir. Cismin şekline bağlıdır.

 

Yüksek hızda kinetik enerji

değiştir

Newton mekaniği'nin yasaları, sadece ışık hızına kıyasla küçük hızlarda hareket eden parçacıkların hareketlerini tanımlamada geçerlidir. Parçacık hızları c ile karşılaştırılabilir olduğunda, Newton mekaniğindeki denklemler, yerini görelilik teorisinin öngördüğü daha genel denklemlere bırakır. Görelilik teorisine göre, çok büyük   hızıyla hareket eden   kütleli bir parçacığın kinetik enerjisi:

  ile verilir.

Bu ifadeye göre c den daha büyük hızlar yoktur. Çünkü v c ye yaklaşırken E sonsuza gider.

Kaynakça

değiştir
  1. ^ Jain, Mahesh C. (2009). Textbook of Engineering Physics (Part I). s. 9. ISBN 978-81-203-3862-3. 4 Ağustos 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Haziran 2018. , Chapter 1, p. 9 4 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ Landau, Lev; Lifshitz, Evgeny (15 Ocak 1976). Mechanics (Third bas.). s. 15. ISBN 0-7506-2896-0. 
  3. ^ Goldstein, Herbert (15 Ocak 2002). Classical Mechanics (Third bas.). s. 62-33. ISBN 978-0201657029. 
  4. ^ Brenner, Joseph (2008). Logic in Reality (illustrated bas.). Springer Science & Business Media. s. 93. ISBN 978-1-4020-8375-4. 25 Ocak 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Şubat 2016.  p. 93 4 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  5. ^ Judith P. Zinsser (2007). Emilie du Chatelet: Daring Genius of the Enlightenment. Penguin. ISBN 978-0-14-311268-6. 
  6. ^ Crosbie Smith, M. Norton Wise (26 Ekim 1989). Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge University Press. ss. 866. ISBN 0-521-26173-2. 
  7. ^ John Theodore Merz (1912). A History of European Thought in the Nineteenth Century. Blackwood. s. 139. ISBN 0-8446-2579-5. 
  8. ^ William John Macquorn Rankine (1853). "On the general law of the transformation of energy". Proceedings of the Philosophical Society of Glasgow. 3 (5). 
  9. ^ "... what remained to be done, was to qualify the noun 'energy' by appropriate adjectives, so as to distinguish between energy of activity and energy of configuration. The well-known pair of antithetical adjectives, 'actual' and 'potential,' seemed exactly suited for that purpose. ... Sir William Thomson and Professor Tait have lately substituted the word 'kinetic' for 'actual.Şablon:' " William John Macquorn Rankine (1867). "On the Phrase "Potential Energy," and on the Definitions of Physical Quantities". Proceedings of the Philosophical Society of Glasgow. VI (III).