
Towards a Peer-to-Peer Based Global Software
Development Environment

Patrick Mukherjee1, Aleksandra Kovacevic2, Michael Benz3, Andy Schürr1

1Real-Time Systems Lab, Technische Universität Darmstadt
Merckstr. 25, 64289 Darmstadt, Germany
mukherjee, schuerr@ES.tu-darmstadt.de

2Multimedia Communications Lab, Technische Universität Darmstadt
Merckstr. 25, 64289 Darmstadt, Germany

sandra@KOM.tu-darmstadt.de
3Research Group IT-Security, Technische Universität Darmstadt

Hochschulstr. 10, 64289 Darmstadt, Germany
benz@SEC.informatik.tu-darmstadt.de

Abstract: Nowadays, large projects are developed by globally distributed developer
teams. Global Software Development (GSD) is currently not supported by appropriate
tools but with the tools designed for on-site development. In this work we analyze
benefits of a peer-to-peer approach to integrated environment for GSD, analyze its
requirements from selected industrial field studies, and present the architecture of our
solution – Peer-to-Peer based Integrated Project-support Environment (PIPE).

1 Introduction

Development of most of today’s software projects is organized into globally distributed
developer teams in different locations around the world. Outsourcing (to obtain better
expertise or to decrease cost) and efficient time management (taking advantage of different
time zones) are just a few motives for it [MH01]. Global software development (GSD) is
not a single phenomenon but, rather, the norm for industrial projects [MHK05].

In addition to cultural differences [PAE03], GSD has to cope with the lack of appropriate
support tools. Currently there is no development environment specifically designed for
GSD; the available tools are designed for on-site development where multiple clients are
using one server, i.e. the client/server communication paradigm (C/S).

In this paper we discuss the drawbacks of the C/S approach for GSD and focus on the
challenges facing a peer-to-peer based GSD environment. We analyze the general re-
quirements for GSD based on various case studies and derive requirements specific for
the peer-to-peer approach. Additionally, we introduce the architecture of our solution, the
Peer-to-Peer based Integrated Project-support Environment (PIPE), and analyze how the
requirements affected our design decisions.

204



This paper is organized as follows: After motivating why a peer-to-peer approach to GSD
is promising (Section 2), we give all identified requirements for a GSD with derived re-
quirements specific for a peer-to-peer approach (in Section 3). The architecture of our
solution, PIPE, is presented in Section 4. Related work is summarized in Section 5 and a
conclusion is given in Section 6.

2 Motivation

In order to clarify the motivation for this work, we first describe GSD, then analyse draw-
backs of existing, C/S solutions, and finally show why a peer-to-peer based system would
overcome them.

A Description of a Global Software Development Environment

GSD is typically organized as follows: The company leading the project is referred to
as project leader. It employs multiple subcontractors. In IT-projects it is not unlikely
that open-source software will be integrated so that the open-source developer community
becomes part of a project. The developers of the mentioned parties are static, meaning they
are working at a single location. It is necessary that developers have the option of meeting
face-to-face. Additionally, GSD includes experts who consult teams directly on-site. Both
of them are modeled as nomadic developers that are assumed to work in different places,
even during their travels. A GSD environment is supposed to support a large number of
participants, whereas a global company handles multiple projects using the environment
to share knowledge and expertize. The opposite should be supported as well, where a few
developers spontaneously meet for a small project and a low start-up time is important.

B Drawback of Existing Client/Server Based Solutions

The C/S solution to GSD has numerous drawbacks. Communication is often slow with
poor scalability since all communication the system supports has to be transmitted through
a single server. Numerous field studies [HPB05, HM03, Šmi06, PAP06] and a recent
survey [ISHGH07] concluded that communication is most critical for the success of dis-
tributed projects. Communication refers not only to exchange of files but of messages as
well.

Unlike on-site development, some developers in GSD are geographically distant from the
server and, therefore, have to cope with delay in data transfer [HM03]. Even if a cluster of
servers is utilized, it just offers more power, thereby extending the scalability limits. Dis-
tributing the servers across different locations can not decrease the communication delay
for all developers. The distributed servers remain limited and they are not omnipresent.

If cooperating teams are using their own server environments, significant synchronization
problems may arise. These problems occur mainly in version control systems, but may

205



also affect access rights. In practice, these problems are ignored and artifacts (all products
of the steps in software development - from specifications and documentation to source
code) are exchanged through numerous other channels like email or USB-sticks.

Another important issue of the C/S approach are its high maintenance cost. Resources
(computation power, memory, bandwidth, and storage space) in the system are not op-
timally used: servers provide all their resources while resources on client machines re-
main unused most of the time. The cost of servers is especially problematic for non-profit
projects (like open source projects) as they are normally founded by unreliable donations.

C Motivation for a Peer-to-Peer Approach

The centralization on a server is orthogonal to the natural structure of GSD. Developer
teams normally manipulate the same artifacts and communication will most likely hap-
pen between them. This communication (including message exchange and file transfer)
obviously does not need a remote server and should proceed directly from peer to peer.

A peer-to-peer based approach is naturally suited for GSD as it is inherently distributed;
There is no central point of communication. After a distributed routing algorithm connects
the participants they communicate directly with each other. Thus the network delay is as
minimal as possible.

The costs of peer-to-peer solutions are significantly lower than in C/S solutions as the
network is self-organized and resources from all participants are used [SE05].

3 Requirements and Challenges for Peer-to-Peer GSD Environment

In this section we elaborate on the requirements derived from selected industrial field
studies ([HPB05, HM03, PAP06, Šmi06, Sou01, ISHGH07]) and additional requirements
emerging from usage of peer-to-peer technology. The requirements are grouped into four
categories, depending on their main goal: system properties, services, required applica-
tions, and security aspects.

A System Properties

A.1 One conjoined system A GSD environment should be one unitary system mean-
ing it should be sufficient for a participant to join only once per working session. This
includes single sign-on as well as connection sharing among the different applications
running in the system, where the data should be managed by a single component of the
system. A study on nine GSD projects [HPB05] showed that each site had its own version
control server so as to avoid the constant delay introduced by using a common one. The
produced artifacts, therefore, had to be synchronized, which involved manual work where
errors occurred.

206



A.2 Adequate communication speed The delay of communication and transfer in the
system should be minimal. Difficulties introduced by communication delays are described
in [HPB05] and marked as critical to the project success in [HM03]. Depending on the
underlay topology awareness, peer-to-peer overlay networks can significantly decrease
such delays.

A.3 Robust to changing number of participants Participants join and leave the sys-
tem at any time. Due to different time zones, it is likely that a large number of participants
from one area will leave and participants from another will join within a short time frame.
This high fluctuation in number and geographical distribution of participating peers should
not influence system performance. Replication and update mechanisms of peer-to-peer
overlay networks are crucial here.

A.4 Scalability The system should be able to support a large, dynamic number of par-
ticipants without decreasing performance.

A.5 Availability There should be no constraints to accessing the system regarding / de-
pending on the network a participant is connected to, time of access, or working platforms
(e.g. OS).

B Services

B.1 Version management The most important service in a GSD environment is keep-
ing track of the changes and variants (branches in version management) of artifacts –
version control [Šmi06]. These requirements are one of the biggest challenges for our
peer-to-peer approach, as distributed and replicated artifacts have to be coherent. The
following three requirements are crucial for version management in GSD:

B.1.i Coherency A participant requesting the latest version of some data should not
be provided with an outdated copy. It is not necessary that all replicas in the system are
up-to-date (consistency), but outdated replicas should be marked.

B.1.ii Interoperability of different version management systems Numerous tools use
their own version control system, which is often proprietary. The version management in a
GSD system needs to be able to integrate such systems. In the ideal case only one system
should be used, as pointed out by [PAP06, HPB05, Šmi06].

B.1.iii Offline version control Nomadic developers, in particular, need to be able to
work offline (e.g. during travels). Modified artifacts should be transparently synchronized
as soon as the developer comes online as demonstrated by, for example, the C/S based
system [SVK].

B.2 Resource management In a distributed system it is important to manage the avail-
able distributed resources (e.g. data, storage, memory, etc.). This includes sharing and
discovery.

B.2.i Transparent offering of resources Services (e.g. memory and hard disc space
or data) should be offered transparently to the user. The system is responsible for balancing
the load and for offering the resources to other participants.

207



B.2.ii Transparent resource discovery All shared resources should be easy to find.
The system has to manage resource discovery without the involvement of the user. It
should not make a difference for the user whether a resource is stored locally or on a
remote location.

B.2.iii Full retrievability In spite of the fact that peers can go offline at any time, all
stored artifacts should always be retrievable.

B.2.iv Traceability Artifacts may contain links to other semantically related artifacts.
It should always be possible to trace and locate those linked artifacts in the system. Link-
ing artifacts provides needed context as demanded by [Sou01]. It also enables a user to
navigate from one artifact to another as demonstrated in [ADDK03], where the linked
artifact is retrieved and its appropriate editing tool is opened automatically.

B.3 Awareness If the participants are not able to physically see each other, it is impor-
tant that their presence in the GSD environment is visible, as shown in the empirical study
[HM03]. For example, applications like instant messengers can directly show directly
whether somebody is absent or free to respond. Group calenders can help in planning (vir-
tual) meetings and tracking conversations; As soon as a participant appears online, similar
to hallway conversations, other participants are reminded about a deferred conversation.

C Required Applications

C.1 Knowledge management system In project development, sharing expertize and
knowledge are often crucial in order to fulfill certain sub-tasks. Therefore, a knowledge
management application (knowledge database) should be offered by the GSD environment
(see [HM02, HPB05]). Additional information, e.g. about available experts on specific
topics can also be stored here [HM03, Sou01].

C.2 Requirements engineering tool An important initial step in a project is identify-
ing all necessary requirements; thus, a requirement engineering tool has to be part of a
GSD environment.

C.3 Modeling tool The design phase requires various modeling tools (e.g. UML for
specifying the software architecture) which consequently has to be part of a GSD environ-
ment.

C.4 General purpose IDE The main tool in any software development is an Integrated
Developing Environment (IDE) that supports writing source code.

C.5 Instant communication At least one tool that enables instant communication be-
tween all participants in a GSD environment should be provided. Several investigations of
distributed projects ([Šmi06, HM03]) pointed out that communication is one of the most
critical factors for success. Communication should take place directly between partici-
pants (i.e. without an intermediate like a project manager) [HPB05, Sou01].

C.6 CSCW tools To support collaboration, Computer Supported Cooperative Work
(CSCW) tools should be easy to integrate in a GSD environment. These include calen-
ders, discussion boards, event scheduling support and similar tools that allow multiple
participants to communicate efficiently.

208



D Security Aspects

A highly distributed system, where confidential data is shared between business partners,
requires sophisticated security mechanisms. Many new security challenges arise when the
tasks that are usually fulfilled by a single trusted node are divided among multiple en-
tities [Wal02]. One of the central challenges is the issue of trust [MGM06], which has
spawned numerous research studies regarding trust management in distributed systems
[AD01, ADV+06, KSGM03, SL03]. In the following, we will describe the security re-
quirements we deem most important for a GSD environment:

D.1 Access and usage control Access control plays an important role in a software
development process. Security critical documents must be protected from unauthorized
access without impairing the overall system efficiency. In a GSD environment, selected
group administrators are responsible for defining security policies for their respective user
groups. The participants have the option to further restrict access to their files. The peer-
to-peer approach introduces even more problems, since there are now multiple entities re-
sponsible for defining security policies for their respective groups. Enforcement of those
policies has to be deferred to the participant [SZRC06], since availability of central au-
thorities can not be guaranteed.

D.2 Attribute based access control In a large software development process, it is of-
ten unnecessary to control the access on an individual basis. For most tasks it suffices for
participants to be identified via their respective attributes. An administrator can issue a
signed certificate to a group member, certifying his developer status. Other participants
can then base their access decision solely on the presented user credentials. Park et al., for
example, developed a role-based access control approach for a collaborative enterprise in
peer-to-peer computing environments [PH03].

D.3 Authentication Several security goals such as confidentiality, data integrity, ac-
cess control and non-repudiation depend on proper authentication. If the system for user
identification fails, the mentioned security goals cannot be met in a satisfactory manner.
On top of that, it is not always easy to decide whom to trust in a highly distributed sys-
tem. Employees of a large company might benefit from certificates issued by a company
CA, whereas nomadic developers might have to depend on a web of trust with self-signed
certificates. Thus, the development environment has to offer and support many different
authentication methods.

D.4 Dynamic user groups The composition of the user groups is highly dependent
on the current project setup. For example, open source projects often have a fluctuating
developer team. Therefore, efficient methods for handling group collaborations [PWF+02]
are required. Numerous efforts aimed at providing efficient group keying mechanisms
have already been carried out in the research community. Ever since the point to point
Diffie-Hellmann key exchange protocol was first proposed in 1976, there have been efforts
to extend its simplicity to a group setting. Steiner et al. [STW96], for example, proposed
an extension of the Diffie-Hellman protocol to an n-party setting and showed that the
security of their protocol is equivalent to the security of the original 2-party protocol. A
couple of years later they proposed another extension to support highly dynamic group
collaborations [STW98].

209





trol, traceability and search components and uses access control. As an IDE we chose to
integrate Eclipse, currently the most popular IDE, in order to meet requirement C.4. The
IDE relies on the same components as the Wiki Engine. We will provide an IM plug-in
for the choosen IDE, which, in addition to standard instant communication, highlights the
user who last edited the currently opened sourcecode (B.3). Messages that are meant for
an offline peer would automatically be sent by other peers as soon as it appears online.
In existing peer-to-peer IMs (e.g. [sky]), such a message would arrive only when both
participants are online meaning that the message could be delayed as long as the sender is
offline. There will be other integrated CSCW-tools like a shared calender, which is cou-
pled with the IM. As soon as a user appears online, all scheduled events related to that user
will pop up to notify other connected users.

To enable users to get a global view of the resources and the current state of the system
(how many peers are connected, etc) we will implement a Monitor application. Additional
project-specific tools like, for example, a modeling tool (C.3) can be easily integrated into
PIPE with the Tool-Integrator [KS06b], which will be an integral component. As the
developers in GSD projects are usually working with different tools and, therefore, creat-
ing artifacts in different proprietary formats, conversion and keeping artifacts consistent is
the focus of this component. Therefore, we use [KS06a], which is based on triple graph
grammars (TGG) [Sch94] that enable extracting the semantic information of a structured
document and transforming it in another structured document, thereby making their editing
tools interoperable.

The Search component will provide data indexing and localization, which helps fulfilling
B.2.ii. If an application, like the Wiki Engine, needs this service it will index its artifacts
in order to provide a full-text search. Tracing a semantic link between artifacts is another
way to retrieve information. The service which fulfills this need described by requirement
B.2.iv is the component Traceability Links. The link information can be explicitly or im-
plicitly set by the user (e.g. when linking wiki articles) or automatically by the system as a
result of the Tool-Integrator as done in [ADDK03]. Additionally, any other metadata can
be stored in traceability links, like the last authors name or the link status. This component
takes versioning into account and retrieves a linked artifact in the corresponding version
though it is not necessarily the latest one. Therefor it utilizes the Version Control compo-
nent, which fully meets requirement B.1 and will be implemented similar to [BLS06]. It
will feature offline version control to support nomadic developer (and statisfy A.5).

The component Access Control is responsible for fulfilling requirements D.1, D.2, D.3, and
D.4, taking into account requirement D.6. Whenever information should be retrieved, this
component ensures that the requesting user is authorized. This applies to querry results as
well. Confidential data is exchanged via the Secure Communication component (fulfilling
requirement D.5). Standard secure communication methods like SSL encryption will be
used here.

The Service Dispatcher configures the overlay network for all applications, keeps track of
the resources (data, services) an individual peer offers to the network, and sets/defines all
overlay specific parameters as well as the peer ID for a peer. This component computes
hashes for the data-keys obtained from an application, as the mapped key-space depends
on the overlay configuration/implementation. Additionally, it keeps track of all running

211



applications and their offered services in order to direct messages not only to another
peer, but to a specific application on that peer. If we further equip the system with the
ability to discover offered services, an indexing mechanism would be implemented in this
component. It meets requirements B.2.i and B.2.ii as well as supporting A.1.

The Component Storing Logic provides permanent availability of the data (requirements
A.3 and A.5) by creating and maintaining replicas independently of the used overlay. In
spite of the fact that replication and storage is part of most overlay designs, it can be
separated from routing in structured overlays [DZD+03].

The overlay layer provides the communication logic, i.e. message exchange, storage, and
resource discovery. In order to fulfill requirements A.2, A.3, and A.4, we use Globase.KOM
[KLS07], a superpeer-based peer-to-peer overlay that forms a tree. It enables a fully re-
trievable location-based search. Each superpeer is responsible for all peers in an assigned
rectangular zone. Globase.KOM proved to have short response time due to a high degree
of underlay topology awareness and to be logarithmically scalable. In PIPE we use the
available servers as superpeers in order to improve robustness and stability (A.3). We use
the advantage that a superpeer is geographically close to the peers it is responsible for, as
it is likely that developers within one subcontractor would more frequently exchange data
and communicate with each other than with geographically distant developers.

However, by using the Key-Based Routing Common API (KBR) [DZD+03] our solution
supports any peer-to-peer overlay network that can be adapted to it, like, for example,
FreePastry [FP] or the superpeer overlay network for GSD proposed by Bischofs et al.
[BH04]

The Peer-to-Peer based Integrated Project-support Environment (PIPE) is highly avail-
able (A.5) by using the platform independent programming language Java and due to the
inherent properties the peer-to-peer technology offers [SE05]. Currently it consist of a
wiki engine, which utilizes components for traceability, version control, (full-text) search
and storing logic. Other described components are under development.

5 Related Work

There are numerous C/S based tools that support GSD. Most of them cover only a par-
ticular aspect of GSD, sometimes integrated into a single platform, e.g. IBM Rational
[IBM]. Jazz [HCRP04] is a tool under development, intended specifically for GSD. It
will be based on the C/S paradigm. According to the best authors’ knowledge, there is no
integrated tool environment that fulfills the needs listed in section 3.

Groove Virtual Office [Gro] is a collaboration environment that is partly peer-to-peer-
based. In its first version it had serious scalability problems, hardly supporting 20 de-
velopers in the same workspace [Har01]. When Microsoft bought Groove Networks in
March 2005 in order to save the project [Mil], it became evident that the technology was
still unready for the market. The software was restructured to improve scalability using
the C/S approach. The current version fulfills several security requirements but still does
not support version control management.

212



Code co-op [Rel] is a version management system that is partly peer-to-peer based. In local
area networks, it uses peer-to-peer-communication. For longer distance communication
and for storing data, it relies on mail servers.

The only peer-to-peer-tool that was designed to support GSD is MASE P2P [Bow03].
Basically, MASE P2P is an extension of the C/S based MASE environment [Mau] which
was developed in a diploma thesis. However, this peer-to-peer-extension was discontinued
after the thesis was finished. The development of MASE continues on a C/S basis.

6 Conclusion

In this paper we point out the needs for a global software development (GSD) environ-
ment, as there is no suitable solution available. Further more, we discussed the benefits
that a peer-to-peer approach brings to this purpose in contrast to a client/server solution.
Based on selected industrial field studies and taking into account issues emerging from the
usage of peer-to-peer technology, we derived four sets of requirements: system properties,
services, required applications, and security aspects. We proposed a peer-to-peer GSD
environment design which implements the aforementioned requirements. The consistent
modular design of our architecture should help in exchanging or adding components, start-
ing from an overlay network and applications and going to version control, replication, and
access control mechanisms. PIPE will be developed as a proof-of-concept within the DFG
funded research group QUAP2P aiming to improve quality properties of peer-to-peer sys-
tems.

Acknowledgment

The authors would like to thank colleagues from DFG funded research group QUAP2P
and Real-Time System Lab for valuable discussions and future collaboration.

References

[AD01] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer Information Sys-
tem. In Proceedings of the Conference on Information and Knowledge Management
(CIKM), pages 310–317, 2001.

[ADDK03] Frank Altheide, Sven Dörfel, Heiko Dörr, and Jan Kanzleiter. An Architecture for a
Sustainable Tool Integration. In Proceedings of the Workshop on Tool Integration in
System Development (TIS), pages 29–32, September 2003.

[ADV+06] Roberto Aringhieri, Ernesto Damiani, Sabine De Capitani Di Vimercati, Stefano Para-
boschi, and Pierangelo Samarati. Fuzzy Techniques for Trust and Reputation Man-
agement in Anonymous Peer-to-Peer Systems. Journal of the American Society for
Information Science and Technology, 57(4):528–537, February 2006.

213



[BH04] Ludger Bischofs and Wilhelm Hasselbring. A Hierarchical Super Peer Network for
Distributed Software Development. In Proceedings of the Workshop on Cooperative
Support for Distributed Software Engineering Processes (CSSE), September 2004.

[BLS06] Elizabeth Borowsky, Andrew Logan, and Robert Signorile. Leveraging the Client-
Server Model in P2P: Managing Concurrent File Updates in a P2P System. In Proceed-
ings of the Advanced Int’l Conference on Telecommunications and Int’l Conference on
Internet and Web Applications and Services (AICT-ICIW), 2006.

[Bow03] Seth Bowen. Using a Peer-to-Peer Architecture to Support Distributed Software De-
velopment. Master’s thesis, University of Calgary, Department of Computer Science,
November 2003.

[DZD+03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. Towards
a Common API for Structured Peer-to-Peer Overlays. In Proceedings of the 2nd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS03), pages 33–44, February 2003.

[FP] FreePastry. http://www.freepastry.org/FreePastry/.

[GHHS07] Michael Geisser, Hans-Joerg Happel, Tobias Hildenbrand, and Stefan Seedorf. Ein-
satzpotentiale von Wikis in der Softwareentwicklung am Beispiel von Requirements
Engineering und Traceability Management. Social Software in der Wertschöpfung,
March 2007.

[Gro] Groove Virtual Office. http://www.groove.net/index.cfm/pagename/
VirtualOffice/?home=hp-overview.

[Har01] Ann Harrison. The Promise and Peril of P2P. http://www.networkworld.
com/buzz2001/p2p/, September 2001.

[HCRP04] Susanne Hupfer, Li-Te Cheng, Steven Ross, and John Patterson. Introducing Collabora-
tion into an Application Development Environment. In Proceedings of the Conference
on Computer Supported Cooperative Work (CSCW), pages 21–24, 2004.

[HM02] Harald Holz and Frank Maurer. Knowledge Management Support for Distributed Agile
Software Processes. In Proceedings of 4th International Workshop of Advances in
Learning Software Organizations (LSO), pages 60–80, 2002.

[HM03] James D. Herbsleb and Audris Mockus. An Empirical Study of Speed and Communi-
cation in Globally Distributed Software Development. IEEE Transactions on Software
Engineering, 29:481–494, June 2003.

[HPB05] James D. Herbsleb, Daniel J. Paulish, and Matthew Bass. Global Software Develop-
ment at Siemens: Experience from Nine Projects. In Proceedings of the 27th Interna-
tional Conference on Software Engineering (ICSE), pages 524–533, 2005.

[IBM] IBM Rational Software. http://www-306.ibm.com/software/
rational/.

[ISHGH07] Timea Illes-Seifert, Andrea Herrmann, Michael Geisser, and Tobias Hildenbrand. The
Challenges of Distributed Software Engineering and Requirements Engineering: Re-
sults of an Online Survey. In Proceedings of the First Global Requirements Engineering
Workshop (GREW), pages 55–66, 2007.

[KLS07] Aleksandra Kovacevic, Nicolas Liebau, and Ralf Steinmetz. Globase.KOM - A P2P
Overlay for Fully Retrievable Location-based Search. In Proceedings of the Seventh
IEEE International Conference on Peer-to-Peer Computing, pages 87–96, September
2007.

214



[KS06a] Alexander Königs and Andy Schürr. MDI - a Rule-Based Multi-Document and Tool
Integration Approach. Special Section on Model-based Tool Integration in Journal of
Software&System Modeling, 5(4):349–368, December 2006.

[KS06b] Alexander Königs and Andy Schürr. Tool Integration with Triple Graph Grammars -
A Survey. In R. Heckel, editor, Proceedings of the SegraVis School on Foundations of
Visual Modelling Techniques, volume 148 of Electronic Notes in Theoretical Computer
Science, pages 113–150, Amsterdam, 2006. Elsevier Science Publ.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The Eigentrust
algorithm for reputation management in P2P networks. In Proceedings of the 12th
International Conference on World Wide Web (WWW), pages 640–651, 2003.

[Mau] Frank Maurer. MASE. http://ebe.cpsc.ucalgary.ca/ebe/Wiki.jsp?
page=MASE.

[MGM06] Sergio Marti and Hector Garcia-Molina. Taxonomy of Trust: Categorizing P2P Repu-
tation Systems. Computer Networks, 50(4):472–484, March 2006.

[MH01] Audris Mockus and James D. Herbsleb. Challenges of Global Software Development.
In Proceedings of the IEEE Seventh International Software Metrics Symposium, pages
182–184, 2001.

[MHK05] Eve MacGregor, Yvonne Hsieh, and Philippe Kruchten. Cultural Patterns in Software
Process Mishaps: Incidents in Global Projects. In Proceedings of the Workshop on
Human and Social Factors of Software Engineering (HSSE), pages 1–5, 2005.

[Mil] Phil Milford. Suit challenges Microsoft’s deal for Groove. http://seattlepi.
nwsource.com/business/218502_msftgroove02.html.

[PAE03] Rafael Prikladnicki, Jorge Luis Nicolas Audy, and Roberto Evaristo. Global Software
Development in Practice Lessons Learned. Software Process: Improvement and Prac-
tice, 8(4):267–281, October 2003.

[PAP06] Leonardo Pilatti, Jorge Luis Nicolas Audy, and Rafael Prikladnicki. Software Con-
figuration Management over a Global Software Development Environment: Lessons
Learned from a Case Study. In Proceedings of the International Workshop on Global
Software Development for the Practitioner (GSD), pages 45–50, 2006.

[PH03] Joon S. Park and Junseok Hwang. Role-Based Access Control for Collaborative Enter-
prise in Peer-to-Peer Computing Environments. In Proceedings of the Eighth ACM
Symposium on Access Control Models and Technologies (SACMAT), pages 93–99,
2003.

[PWF+02] Laura Pearlman, Von Welch, Ian Foster, Carl Kesselman, and Steven Tuecke. A Com-
munity Authorization Service for Group Collaboration. In Proceedings of the 3rd In-
ternational Workshop on Policies for Distributed Systems and Networks (POLICY),
page 50, 2002.

[Rel] Reliable Software. Code Co-Op - Affordable Peer-to-Peer Version Control System for
Distributed Development. http://www.relisoft.com/co_op/index.htm.

[Sch94] Andy Schürr. Specification of Graph Translators with Triple Graph Grammars. In Pro-
ceedings of the 20 International Workshop on Graph-Theoretic Concepts in Computer
Science, June 1994.

[SE05] Ralf Steinmetz and Klaus Wehrle (Eds.). Peer-to-Peer Systems and Applications.
Springer, Sep 2005.

215



[sky] Skype - A VoIP Instant Messenger. http://www.skype.com/.

[SL03] Aameek Singh and Ling Liu. TrustMe: Anonymous Management of Trust Relation-
ships in Decentralized P2P Systems. In Proceedings of the 3rd International Confer-
ence on Peer-to-Peer Computing (P2P), 2003.

[Šmi06] Darja Šmite. Requirements Management in Distributed Projects. Journal of Universal
Knowledge Management, 1(2):69–76, 2006.

[Sou01] Cleidson R. B. De Souza. Global Software Development: Challenges and Perspectives,
2001. Available online http://citeseer.ist.psu.edu/457465.html.

[STW96] Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman Key Distribution
Extended to Group Communication. In Proceedings of the 3rd ACM conference on
Computer and communications security (CCS), pages 31–37, 1996.

[STW98] Michael Steiner, Gene Tsudik, and Michael Waidner. CLIQUES: A New Approach
to Group Key Agreement. In Proceedings of the 18th International Conference on
Distributed Computing Systems (ICDCS), pages 380–387, 1998.

[SVK] The SVK Version Control System. http://svk.elixus.org/view/
HomePage. Last checked: September 2007.

[SZRC06] Ravi Sandhu, Xinwen Zhang, Kumar Ranganathan, and Michael J. Covington. Client-
side Access Control Enforcement Using Trusted Computing and PEI Models. Journal
of High Speed Networks, 15:229–245, August 2006.

[Wal02] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. In Proceedings of the
International Symposium on Software Security (ISSS), 2002.

216




