
Probabilistic Relational Reasoning for Differential Privacy

Gilles Barthe Boris Köpf Federico Olmedo Santiago Zanella Béguelin

IMDEA Software Institute, Madrid, Spain

{gilles.barthe,boris.koepf,federico.olmedo,santiago.zanella}@imdea.org

Abstract

Differential privacy is a notion of confidentiality that protects the
privacy of individuals while allowing useful computations on their
private data. Deriving differential privacy guarantees for real pro-
grams is a difficult and error-prone task that calls for principled
approaches and tool support. Approaches based on linear types and
static analysis have recently emerged; however, an increasing num-
ber of programs achieve privacy using techniques that cannot be
analyzed by these approaches. Examples include programs that aim
for weaker, approximate differential privacy guarantees, programs
that use the Exponential mechanism, and randomized programs that
achieve differential privacy without using any standard mechanism.
Providing support for reasoning about the privacy of such programs
has been an open problem.

We report on CertiPriv, a machine-checked framework for rea-
soning about differential privacy built on top of the Coq proof assis-
tant. The central component of CertiPriv is a quantitative extension
of a probabilistic relational Hoare logic that enables one to derive
differential privacy guarantees for programs from first principles.
We demonstrate the expressiveness of CertiPriv using a number
of examples whose formal analysis is out of the reach of previ-
ous techniques. In particular, we provide the first machine-checked
proofs of correctness of the Laplacian and Exponential mechanisms
and of the privacy of randomized and streaming algorithms from
the recent literature.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Operational semantics, Denotational
semantics, Program analysis.

General Terms Languages, Security, Theory, Verification

Keywords Coq proof assistant, differential privacy, relational
Hoare logic

1. Introduction

When dealing with private data one is faced with conflicting re-
quirements: on the one hand, it is fundamental to protect the pri-
vacy of individuals; on the other hand, the desire is to maximize
the utility of the data by mining and releasing partial or aggregate
information, e.g. for medical statistics, market research, or targeted
advertising. Differential privacy [17] is a quantitative notion of pri-
vacy that achieves an attractive trade-off between these two con-
flicting requirements: it provides strong confidentiality guarantees,
yet it is permissive enough to allow for useful computations on pri-
vate data. The key advantages of differential privacy over alterna-
tive definitions of privacy are its good behavior under composition
and its weak assumptions about the prior knowledge of adversaries.
For a discussion of the guarantees provided by differential privacy
and their limitations, see [21, 22].

As the theoretical foundations of differential privacy become
well-understood, there is momentum to prove privacy guarantees
for real systems. Several authors have recently proposed methods
for reasoning about differential privacy on the basis of different lan-
guages and models of computation, e.g. SQL-like languages [24],
higher-order functional languages [29], imperative languages [9],
the MapReduce framework [30], and I/O automata [35]. The unify-
ing basis of these approaches are two key results: (i) the observation
that one can achieve privacy by perturbing the output of a determin-
istic program by a suitable amount of noise [17] and (ii) theorems
that establish privacy bounds for sequential and parallel composi-
tion of differentially private programs [24]. In combination, both
results form the basis for creating and analyzing programs by com-
posing differentially private building blocks.

While approaches relying on composing building blocks ap-
ply to an interesting range of examples, they fall short of cover-
ing the expanding frontiers of differentially private mechanisms
and algorithms. Examples that cannot be handled by previous tech-
niques include mechanisms that aim for weaker guarantees, such
as approximate differential privacy [16], or randomized algorithms
that achieve differential privacy without using any standard mech-
anism [18]. Dealing with such examples requires fine-grained rea-
soning about the complex mathematical and probabilistic computa-
tions that programs perform on private input data. Such reasoning
is particularly intricate and error-prone, and calls for principled ap-
proaches and tool support.

In this paper we revisit the foundations of differential pri-
vacy and provide a framework for fine-grained reasoning about
an expressive class of confidentiality policies, including (approx-
imate) differential privacy and probabilistic non-interference. Our
framework, coined CertiPriv, is built on top of CertiCrypt [3], a
machine-checked framework to verify cryptographic proofs in the
Coq proof assistant [34]. CertiPriv goes beyond the state-of-the-art
in three fundamental aspects. First, CertiPriv takes a foundational
approach that allows reasoning directly about the outcome of prob-
abilistic computations. This is key to its flexibility: rather than
being limited to a fixed set of building blocks, one can define and
use arbitrary blocks. Second, CertiPriv allows to construct proofs
from first principles. This is key to its precision: proofs in CertiPriv
can rely on sophisticated machinery, without any limitation other
than being elaborated from first principles. Third, CertiPriv inher-
its the generality of the Coq proof assistant and allows modeling
and reasoning about arbitrary domains and datatypes. This is key
to its expressiveness: instead of being confined to a fixed set of
datatypes, CertiPriv can be extended on demand (e.g. with types
and operators for graphs). Accessorily, CertiPriv requires that all
intermediate reasoning steps are justified formally, so that proofs
can be verified independently and automatically by the Coq type
checker.

In order to illustrate the applicability of CertiPriv, we present
the first machine-checked proofs of three representative examples:
(i) we prove the correctness of the Laplacian and Exponential

mechanisms, (ii) we prove the privacy of a randomized approxima-
tion algorithm for the Minimum Vertex Cover problem [18], and
(iii) we prove the privacy of randomized algorithms for continual
release of aggregate statistics of data streams [8]. Taken together,
these examples demonstrate the generality and versatility of our
approach.

The starting point of our technical development is the obser-
vation that differential privacy can be construed as a quantitative
2-property [11, 33]. Informally, a probabilistic computation c is
(ǫ, δ)-differentially private iff, given two initial memories m and
m′ that are sufficiently close, the output distributions generated by
c are related up to a multiplicative factor exp(ǫ) and an additive
term δ. More formally, a computation c satisfies (ǫ, δ)-differential
privacy with respect to a relation Ψ on memories iff for every pair
of memories m,m′ related by Ψ and for every event E:

Pr [c,m : E] ≤ exp(ǫ) Pr
[

c,m′ : E
]

+ δ

where Pr [c,m : E] denotes the probability of event E in the dis-
tribution obtained by running c on initial memory m. This formu-
lation of differential privacy is slightly more general than the stan-
dard definition; however, the latter is recovered by letting the pre-
condition Ψ capture adjacency of memories, i.e. letting Ψ relate
memories at distance at most 1 for some adequate notion of dis-
tance.

Our definition of differential privacy has two natural readings.
The first reading is as an information flow property. Indeed, if Ψ
is an equivalence relation and ǫ = δ = 0, the definition states
that the output distributions obtained by executing c in two related
memories m and m′ coincide, entailing that an adversary who
can only observe the final distributions cannot distinguish between
the two executions. The second reading of the definition is as a
continuity property: in case Ψ models adjacency between initial
memories, the definition states that c is a continuous mapping
between metric spaces, with the understanding that the universally
quantified inequality above provides a measure of closeness of the
two output distributions. In this paper, we leverage on both readings
to provide a fresh foundation for reasoning about differentially
private computations.

As a first step in our formalization, we introduce the notion of
α-distance. α-distance generalizes statistical distance with a skew
parameter α and enables us to cast (ǫ, δ)-differential privacy as a
continuity property. In particular, we show that a computation c is
(ǫ, δ)-differentially private w.r.t. a pre-condition Ψ iff δ is an up-
per bound of the exp(ǫ)-distance between the output distributions
obtained by running c on two memories m and m′ satisfying Ψ.

As a second step, we define an approximate probabilistic Re-
lational Hoare Logic (apRHL), following Benton’s seminal use of
relational logics to reason about information flow [7]. Judgments in
apRHL have the form

c1 ∼α,δ c2 : Ψ⇒ Φ

and capture that δ is an upper bound on the α-distance of the
probability distributions generated by two probabilistic programs
c1 and c2, modulo relational pre- and post-conditions Ψ and Φ
on program states. For the special case where Φ is the identity on
states, c1 = c2 = c, and α = exp(ǫ), the above judgment entails
that the output distributions obtained by executing c starting from
two initial memories related by Ψ are at α-distance at most δ, and
hence that c is (ǫ, δ)-differentially private w.r.t. Ψ.

As further detailed in Section 5.2, this intuitive understanding
of apRHL judgments extends to the important case where Φ is
an equivalence relation; such judgments generalize simultaneously
differential privacy and information flow and can be used to model
confidentiality for a large class of adversaries, under the view that
the equivalence relation captures their observational capabilities.

For the general case, the interpretation of apRHL judgments is
based on the novel notion of (α, δ)-lifting of relations on states
to relations on distributions. The definition crisply generalizes ex-
isting notions from probabilistic process algebra [12, 20, 32] and
enjoys good closure properties from which we derive the sound-
ness of the apRHL logic.

Summary of contributions Our contributions are twofold. On
the theoretical side, we lay the foundations for reasoning for-
mally about an important and general class of approximate rela-
tional properties of probabilistic programs. Specifically, we intro-
duce the notions of α-distance and (α, δ)-lifting, and an approx-
imate probabilistic relational Hoare logic. On the practical side,
we demonstrate the applicability of our approach by providing the
first machine-checked proofs of differential privacy properties of
fundamental mechanisms and complex approximation algorithms
from the recent literature.

Organization of the paper The remainder of this paper is struc-
tured as follows. In Section 2 we illustrate the application of our ap-
proach to an example algorithm; Section 3 introduces the represen-
tation of distributions and basic definitions used in the remainder.
Section 4 presents the semantic foundations of apRHL, while Sec-
tion 5 presents the core proof rules of the logic. Section 6 reports on
case studies. We survey prior art and conclude in Sections 7 and 8.
The Coq development containing machine-checked proofs of the
results and examples presented here, and an extended version of
this paper with pencil-and-paper proofs of the key results can be
obtained from

http://certicrypt.gforge.inria.fr/certipriv/

2. Illustrative Example

In this section we illustrate the applicability of our results by ana-
lyzing a differentially private approximation algorithm for the Min-
imum (Unweighted) Vertex Cover problem [18].

A vertex cover of an undirected graph G = (V,E) is a set of
vertices S ⊆ V such that for any edge (v, w) ∈ E, either v ∈ S
or w ∈ S. The Minimum Vertex Cover problem is the problem of
finding a vertex cover S of minimal size. In the privacy-preserving
version of the problem the goal is to output a good approxima-
tion of a minimum cover while concealing the presence or absence
of edges in the graph. Contrary to other optimization algorithms
where the private data only determines the objective function (i.e.
the size of a minimum cover), in the case of the Minimum Ver-
tex Cover problem the edges in the graph determine the feasible
solutions. This means that no privacy-preserving algorithm can ex-
plicitly output a vertex cover of size less than n−1 for a graph with
n vertices, for otherwise any pair of vertices absent from the output
reveals the absence of an edge connecting them. To overcome this
limitation, the algorithm that we analyze outputs an implicit repre-
sentation of a cover as a permutation of the vertices in the graph.
This output permutation determines an orientation of the edges in
the graph by considering each edge as pointing towards the end-
point appearing last in the permutation. A vertex cover can then be
recovered (presumably in a privacy-preserving distributed manner)
by taking for each edge the vertex it points to (Fig. 1).

The algorithm that we study, shown in Fig. 2, is based on a ran-
domized, albeit not privacy-preserving, approximation algorithm
from [27] that achieves a constant approximation factor of 2. (It is
conjectured that no efficient approximation algorithm for the Min-
imum Vertex Cover problem can achieve a constant approximation
factor better than 2.) The idea behind this algorithm is to iteratively
pick a random uncovered edge and add one of its endpoints to the
cover set, both the edge and the endpoint being chosen with uni-
form probability. Equivalently, this iterative process can be seen

http://certicrypt.gforge.inria.fr/certipriv/

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 1. A minimum vertex cover (vertices in gray) and the cover
given by a permutation π of the vertices in the graph (vertices inside
the shaded area). The orientation of the edges is determined by π.

as selecting a vertex at random with probability proportional to
its uncovered degree. The privacy-preserving algorithm in Fig. 2
is obtained from this base algorithm by perturbing the distribution
according to which vertices are sampled by a carefully calibrated
weight factor that grows as more vertices are appended to the out-
put permutation. In the algorithm in the figure, at each iteration the
instruction v $← choose(V,E, ǫ, n, i) chooses a vertex v from V
with probability proportional to dE(v)+wi, where dE(v) denotes
the degree of v in E and

wi =
4

ǫ

√

n

n− i

Put otherwise, the expression choose(V,E, ǫ, n, i) denotes the dis-
crete distribution over V whose density function at x is

dE(x) + wi
∑

y∈V

dE(y) + wi

Consider two graphs G1 = (V,E) and G2 = (V,E ∪{(t, u)})
with the same set of vertices but differing in exactly one edge.
To prove that the above algorithm is ǫ-differentially private it is
sufficient to show that the probability of obtaining a permutation
π of the vertices in the graph when the input is G1 differs at most
by a multiplicative factor exp(ǫ) from the probability of obtaining
π when the input is G2. We show this using the approximate
relational Hoare logic that we present in Section 5. We highlight
here the key steps in the proof; a more detailed account appears in
Section 6.3.

To establish the ǫ-differential privacy of algorithm VERTEX-
COVER it suffices to prove the validity of the following judgment:

|= VERTEXCOVER(V,E, ǫ) ∼eǫ,0VERTEXCOVER(V,E, ǫ) : Ψ⇒ Φ

where

Ψ def
= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}

Φ def
= π〈1〉 = π〈2〉

Assertions appearing in apRHL judgments, like Ψ and Φ above,
are binary relations on program memories. We usually define as-
sertions using predicate logic formulas involving program expres-
sions. When defining an assertion m1 Φ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1

(resp. m2). For example, the post-condition Φ above denotes the
relation {(m1, m2) : m1(π) = m2(π)}.

To prove the judgment above, we show privacy bounds for each
iteration of the loop in the algorithm. Proving a bound for the i-

function VERTEXCOVER(V, E, ǫ)
1 n← |V |; π ← nil; i← 0;
2 while i < n do

3 v $← choose(V, E, ǫ, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i← i+ 1
7 end

Figure 2. A differentially private approximation algorithm for the
Minimum Unweighted Vertex Cover problem

th iteration boils down to proving a bound for the ratio between
the probability of choosing a particular vertex in the left-hand side
program and the right-hand side program, and its reciprocal. We
distinguish three different cases, and use the fact that for a graph
(V,E),

∑

y∈V dE(y) = 2|E| and the inequality 1 + x ≤ exp(x)
to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]
=

(dE〈1〉(x) + wi)
∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi

≤ exp

(

2

(n− i)wi

)

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze
the case where v = t, the other case is similar.

Pr[v〈1〉 = t]

Pr[v〈2〉 = t]
≤ 1

Pr[v〈2〉 = t]

Pr[v〈1〉 = t]
=

(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 +w−1

0 ≤ exp(ǫ/4)

(c) either t or u is already in π, in which case both executions are
observationally equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]
=

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs
exactly once. Thus, multiplying the bounds over all n iterations,

Pr [VERTEXCOVER(G1, ǫ) : π = ~v]

Pr [VERTEXCOVER(G2, ǫ) : π = ~v]
≤ exp

(

n−3
∑

i=0

2

(n− i)wi

)

≤ exp(ǫ)

Pr [VERTEXCOVER(G2, ǫ) : π = ~v]

Pr [VERTEXCOVER(G1, ǫ) : π = ~v]
≤ exp (ǫ/4) ≤ exp(ǫ)

The above informal reasoning is captured by a proof rule for loops
parameterized by an invariant and a stable property of the product
state of both executions (i.e. a relation that once established remains
true). We use the following invariant (note that if pre-condition Ψ
above holds, the invariant is established by the initialization code
appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

and the following stable property:

t ∈ π〈1〉 ∨ u ∈ π〈1〉

The application of this proof rule requires to prove three judgments
as premises, corresponding to each one of the cases detailed above;
we detail them in Section 6.3.

3. Preliminaries

3.1 Probabilities and Reals

In the course of our Coq formalization, we have found it convenient
to reason about probabilities using the axiomatization of the unit
interval [0, 1] provided by the ALEA library of Audebaud and
Paulin [1]. Their formalization supports as primitive operations
addition, inversion, multiplication, and division, and proves that
the unit interval [0, 1] can be given the structure of a ω-cpo by
taking as order the usual ≤ relation and by defining an operator
sup that computes the least upper bound of monotonic [0, 1]-valued
sequences.

In order to manage the interplay between the formalizations of
the unit interval and of the reals, we have axiomatized an embed-
ding/retraction pair between them and built an extensive library of
results about the relationship between arithmetic operations in the
two types, e.g.:

Addition: x+[0,1] y = minR(x+R y, 1);

Inversion: −[0,1]x = 1−R x;

Multiplication: x×[0,1] y = x×R y;

Division: if y 6= 0, then x/[0,1]y = minR(x/Ry, 1).

3.2 Distributions

We view a distribution µ over a set A as a function that maps
a unit-valued random variable (a function in A → [0, 1]) to its
expected value [1, 28]: when applied to an event E ⊆ A repre-
sented by its characteristic function 1E : A→ [0, 1], µ(1E) corre-
sponds to the probability of E. When applied to an arbitrary func-
tion f : A→ [0, 1], µ(f) gives the expectation of f w.r.t. µ. For
discrete distributions µ, µ(1a) corresponds to the probability den-
sity of µ at a, and we denote it using the shorthand µ(a). The con-
nection between density and expectation is given by the following
equation.

µ(f) =
∑

a∈A

µ(a) f(a)

Formally, a distribution over A is a function µ of type

(A→ [0, 1])→ [0, 1]

together with proofs of the (universally quantified) properties:

Monotonicity: f ≤ g =⇒ µ f ≤ µ g;

Compatibility with inverse: µ (1 − f) ≤ 1− µ f , where 1 is the
constant function 1;

Additive linearity: f ≤ 1− g =⇒ µ (f + g) = µ f + µ g;

Multiplicative linearity: µ (k × f) = k × µ f ;

Continuity: if F : N → (A → [0, 1]) is monotonic, then
µ (sup F) ≤ sup (µ ◦ F)

Note that we do not require that µ 1 = 1, and thus, strictly
speaking, our definition corresponds to sub-probability distribu-
tions. This provides an elegant means of giving semantics to run-
time assertions and programs that do not terminate with probability
one. We let D(A) denote the set of distributions over A and µ0

denote the null distribution.
Distributions can be given the structure of a monad; this

monadic view eliminates the need of cluttered definitions and

proofs involving summations, and allows to give a continuation-
passing style semantics to probabilistic programs. Formally, we
define the unit and bind operators as follows:

unit : A→ D(A) def
= λx. λf. f x

bind : D(A)→ (A→ D(B))→ D(B)
def
= λµ. λM. λf. µ (λ x. M x f)

The unit operator maps x ∈ A to the Dirac distribution that assigns
probability 1 to x and 0 to all other elements of A, while bind takes
a distribution on A and a conditional distribution on B given A,
and returns the corresponding marginal distribution on B.

In the remainder we use the following operations and relations:

range P µ def
= ∀f. (∀a. P a =⇒ f a = 0) =⇒ µ f = 0

π1(µ)
def
= bind µ (λ(x, y). unit x)

π2(µ)
def
= bind µ (λ(x, y). unit y)

µ ≤ µ′ def
= ∀f. µ f ≤ µ′ f

The formula range P µ states that elements of A with a non-null
probability w.r.t. µ satisfy predicate P . For a distribution µ over
a product type A × B, π1(µ) (resp. π2(µ)) defines its projection
on the first (resp. second) component. Finally, ≤ defines a natural
order on D(A).

4. First Principles

4.1 Skewed Distance of Distributions

In this section we define the notion of α-distance, a parameterized
distance between distributions. We show how this notion can be
used to express ǫ-differential privacy, (ǫ, δ)-differential privacy,
and statistical distance.

We begin by augmenting the standard distance between two real
numbers a and b (defined as |a− b| = max{a− b, b− a}) with a
skew parameter α ≥ 1. Namely, we define the α-distance ∆α(a, b)
between a and b by

∆α(a, b)
def
= max{a− αb, b− αa, 0}

Note that ∆α is non-negative by definition and that ∆1 coincides
with the standard distance between reals. We extend ∆α to a dis-
tance between distributions as follows.

Definition 1 (α-distance). The α-distance ∆α(µ1, µ2) between
two distributions µ1 and µ2 in D(A) is defined as:

∆α(µ1, µ2)
def
= max

f :A→[0,1]
∆α(µ1 f, µ2 f)

The definition of α-distance quantifies universally over all unit-
valued functions. The next lemma shows that for discrete distri-
butions this definition is equivalent to an alternative definition in
which quantification ranges only over Boolean-valued functions,
i.e. those corresponding to characteristic functions of events.

Lemma 1. For all distributions µ1 and µ2 over a discrete set A,

∆α(µ1, µ2) = max
E⊆A

∆α(µ1 1E, µ2 1E)

An immediate consequence of Lemma 1 is that ∆1 coincides
with the standard notion of statistical distance, i.e.,

∆1(µ1, µ2) = max
E⊆A

|µ1 1E − µ2 1E|

Differential privacy is a condition on the distance between the
output distributions produced by a randomized algorithm. Namely,
for a given metric on the input space, differential privacy requires
that for any pair of inputs at distance at most 1, the probability
that an algorithm outputs a particular value differs at most by
a multiplicative factor exp(ǫ). Approximate differential privacy
relaxes this requirement by additionally allowing for an additive

slack δ. The following definition captures these requirements in
terms of α-distance; Lemma 1 establishes the equivalence to the
original definition [16].

Definition 2 (Approximate differential privacy). Let d be a met-
ric on A. A randomized algorithm M : A → D(B) is (ǫ, δ)-
differentially private (with respect to d) iff

∀a, a′ ∈ A. d(a, a′) ≤ 1 =⇒ ∆exp(ǫ)(M a,M a′) ≤ δ

Notice that (ǫ, 0)-differential privacy corresponds to vanilla ǫ-
differential privacy [13].

It is folklore that for discrete domains the definition of differen-
tial privacy is equivalent to its pointwise variant where one quanti-
fies over characteristic functions of singleton sets rather than those
of arbitrary sets; however, this equivalence breaks when consid-
ering approximate differential privacy [16]. The following lemma
provides a way to establish bounds for α-distance (and hence for
approximate differential privacy) in terms of characteristic func-
tions of singleton sets. Note that the inequality is strict in general.

Lemma 2. For all distributions µ1 and µ2 over a discrete set A,

∆α(µ1, µ2) ≤
∑

a∈A

∆α(µ1(a), µ2(a))

We conclude this section by stating some important properties
of α-distance; these properties are used for reasoning about approx-
imate lifting and proving the soundness of our logic. All properties
are implicitly universally quantified.

Lemma 3 (Properties of α-distance).

1. 0 ≤ ∆α(µ1, µ2) ≤ 1
2. ∆α(µ, µ) = 0
3. ∆α(µ1, µ2) = ∆α(µ2, µ1)
4. ∆αα′(µ1, µ3) ≤ α′∆α(µ1, µ2) + ∆α′(µ2, µ3), or else

∆αα′(µ1, µ3) ≤ ∆α(µ1, µ2) + α ∆α′(µ2, µ3)
5. α ≤ α′ =⇒ ∆α′(µ1, µ2) ≤ ∆α(µ1, µ2)
6. ∆α(bind µ1 M, bind µ2 M) ≤ ∆α(µ1, µ2)

Most of the above properties are self-explanatory; we briefly
highlight the most important ones. Property (4) generalizes the tri-
angle inequality with appropriate skew factors; (5) states that α-
distance is anti-monotonic with respect to α; (6) states that proba-
bilistic computation does not increase the distance (which is a well-
known fact for statistical distance).

4.2 Approximate Lifting of Relations to Distributions

The logic we present in the next section can be used to establish as-
sertions about probabilistic programs w.r.t. pre- and post-conditions
on states. In order to give meaning to these judgments, we need
to interpret post-conditions as relations between distributions over
states rather than as relations between states. To this end, we de-
fine the (α, δ)-lifting of a relation to distributions. Intuitively, two
distributions µ1 ∈ D(A) and µ2 ∈ D(B) are related by the (α, δ)-
lifting of R ⊆ A × B, whenever there exists a distribution over
A×B whose support is contained in R and whose first and second
projections are at most at α-distance δ of µ1 and µ2, respectively.

Definition 3 (Lifting). Let α ∈ R
≥1 and δ ∈ [0, 1]. The

(α, δ)-lifting of a relation R ⊆ A × B is a relation over
D(A)×D(B) defined as follows:

µ1 ∼
α,δ
R µ2

def
= ∃µ.







range R µ
π1 µ ≤ µ1 ∧ π2 µ ≤ µ2

∆α(π1 µ, µ1) ≤ δ ∧∆α(π2 µ, µ2) ≤ δ

We say that a distribution µ satisfying the above conditions is a
witness for the lifting.

The notion of (α, δ)-lifting generalizes previous notions of lift-
ings, such as the lifting from [20] which is obtained by taking
α = 1 and δ = 0, and δ-lifting [12, 32] which is obtained by
taking α = 1. The next lemma shows that (α, δ)-lifting is mono-
tonic w.r.t. the slack δ, the skew factor α, and the relation R. An
immediate consequence is that for α > 1, (α, δ)-lifting is more
permissive than the previously proposed notions of lifting.

Lemma 4. For all 1 ≤ α ≤ α′ and δ ≤ δ′, and relations R ⊆ S,

µ1 ∼
α,δ
R µ2 =⇒ µ1 ∼

α′,δ′

S µ2

We next present a fundamental property of (α, δ)-lifting, which
is central to the applicability of apRHL to reason about α-distance
(and hence differential privacy). Namely, two distributions related
by the (α, δ)-lifting of R yield probabilities that are within α-
distance δ when applied to R-related functions. We say that two
functions f : A → [0, 1] and g : B → [0, 1] are related by a
relation R ⊆ A × B, and write f =R g, iff for every a ∈ A and
b ∈ B, R a b implies f a = g b.

Theorem 1 (Fundamental Property of Lifting). Let µ1 ∈ D(A),
µ2 ∈ D(B), and R ⊆ A × B. Then, for any two functions
f1 : A→ [0, 1] and f2 : B → [0, 1],

µ1 ∼
α,δ
R µ2 ∧ f1 =R f2 =⇒ ∆α(µ1 f1, µ2 f2) ≤ δ

In particular, if A = B and R is the identity relation (≡),

µ1 ∼
α,δ
≡ µ2 =⇒ ∆α(µ1, µ2) ≤ δ

Theorem 1 provides an interpretation of (α, δ)-lifting in terms
of α-distance. Next we present two results that enable us to actually
construct such liftings.

The first result is the converse of Theorem 1 for the special case
of R being the identity relation: we prove that two distributions
are related by the (α, δ)-lifting of the identity relation if their α-
distance is smaller than δ. This result is used to prove the soundness
of the logic rule for random assignments given in the next section.

Theorem 2. Let µ1 and µ2 be distributions over a discrete set A.

If ∆α(µ1, µ2) ≤ δ, then µ1 ∼
α,δ
≡ µ2.

The proof is immediate by considering as a witness for the
lifting the distribution with the following density function:

µ(a, a′) =

{

min(µ1(a), µ2(a)) if a = a′

0 if a 6= a′

The second result shows that (α, δ)-liftings compose. This re-
sult allows to derive a judgment relating two programs c1 and c2
by introducing an intermediate program c and proving the validity
of judgments relating c1 and c on one hand, and c and c2 on the
other. This approach is used in the examples of Section 6.2, and
more extensively in cryptographic proofs, see e.g. [3].

Theorem 3. Let µ1, µ2 and µ3 be distributions over discrete sets
A, B, and C, respectively. Let R ⊆ A × B and S ⊆ B × C. For

all α, α′ ∈ R
≥1 and δ, δ′ ∈ [0, 1],

µ1 ∼
α,δ
R µ2 ∧ µ2 ∼

α′,δ′

S µ3 =⇒ µ1 ∼
αα′,δ′′

R◦S µ3

where δ′′
def
= max(δ + α δ′, δ′ + α′ δ) and ◦ denotes relation

composition.

For the proof, let µR and µS be witnesses for the judgments
on the left-hand side of the implication. Then, the distribution µ
defined by the following density function is a witness for the lifting
on the right-hand side:

µ(a, c) =
∑

{b∈B|µ2(b) 6=0}

µR(a, b) µS(b, c)

µ2(b)

We conclude this section with an observation on (α, δ)-lifting
for equivalence relations. Jonsson, Yi, and Larsen [20] show that
for equivalence relations, their definition of lifting coincides with
the more intuitive notion that requires the two distributions to yield
equal probabilities on all equivalence classes. Formally, if R is an
equivalence relation over a discrete set A, then

µ1 ∼
1,0
R µ2 ⇐⇒ ∀a ∈ A. µ1 1[a] = µ2 1[a]

where [a] denotes the R-equivalence class of a ∈ A. This charac-
terization extends naturally to arbitrary α and δ = 0:

µ1 ∼
α,0
R µ2 ⇐⇒ ∀a ∈ A. ∆α(µ1 1[a], µ2 1[a]) = 0

The characterization for arbitrary δ is more involved and is pre-
sented in the extended version.

5. Approximate Relational Hoare Logic

This section introduces the central component of CertiPriv, namely
an approximate probabilistic relational Hoare logic that is used to
establish privacy guarantees of programs. We first present the pro-
gramming language and its semantics. We then define relational
judgments and show that they generalize differential privacy. Fi-
nally, we define a proof system for deriving valid judgments.

5.1 Programming Language

CertiPriv supports reasoning about programs that are written in the
typed, procedural, probabilistic imperative language pWHILE. For-
mally, the set of commands is defined inductively by the following
clauses:

I ::= V ← E assignment
| V $← DE random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| assert E runtime assertion

C ::= skip nop
| I; C sequence

Here, V is a set of variable identifiers, P is a set of procedure

names1, E is a set of expressions, and DE is a set of distribution
expressions. The significant novelty of CertiPriv (compared to
CertiCrypt), besides the addition of runtime assertions, is that
the interpretation of distribution expressions may depend on the
program state. This allows to express programs that sample from
dynamically evolving probability distributions, such as the one
presented in Section 2.

The semantics of programs is defined in two steps. First, we give
an interpretation JT K to all object types T—these are types that are
declared in CertiPriv programs, such as the graph type in the ex-
ample in Section 2—and we define the setM of memories as the
set of mappings from variables to values. Then, we implement de-
pendently typed evaluators that give the semantics of an expression
e of type T , a distribution expression µ of type T , and a command
c, respectively, as functions of the following types:

JeK :M→ JT K JµK :M→D(JT K) JcK :M→D(M)

Informally, the semantics of an expression e takes a memory and
returns a value in JT K, the semantics of a distribution expression
µ takes a memory and returns a distribution over JT K, and the
semantics of a program c takes an initial memory and returns
a distribution over final memories. The semantics of programs
complies with the expected equations; Figure 3 provides an excerpt.

1 For the sake of readability, we omit procedure calls from most of the
exposition; we keep them in the description of the language because we

JskipK m = unitm

Ji; cK m = bind (JiK m) JcK

Jx← eK m = unit (m {JeK m/x})

Jassert eK m = if JeK m = true then (unitm) else µ0

Jx $← µK m = bind (JµK m) (λv. unit (m {v/x}))

Jif e then c1 else c2K m=

{

Jc1K m if JeK m = true

Jc2K m if JeK m = false

Jwhile e do cK m = λf. sup (λn. J[while e do c]nK m f)

where [while e do c]0 = skip
[while e do c]n+1 = if e then c; [while e do c]n

Figure 3. Semantics of pWHILE programs

5.2 Validity and Privacy

apRHL is an approximate probabilistic relational Hoare logic that
supports reasoning about differentially private computations. Judg-
ments in apRHL are of the form

c1 ∼α,δ c2 : Ψ⇒ Φ

where c1 and c2 are programs, Ψ and Φ are relations over mem-

ories, α ∈ R
≥1 is the skew, and δ ∈ [0, 1] is the slack. In our

formalization we use a shallow embedding for logical assertions,
allowing us to inherit the expressiveness of the Coq language when
writing pre- and post-conditions.

An apRHL judgment is valid if for every pair of memories
related by the pre-condition Ψ, the corresponding pair of output
distributions is related by the (α, δ)-lifting of the post-condition Φ.

Definition 4 (Validity). A judgment c1 ∼α,δ c2 : Ψ⇒ Φ is valid,
written |= c1 ∼α,δ c2 : Ψ⇒ Φ, iff

∀m1 m2. m1 Ψ m2 =⇒ (Jc1K m1) ∼
α,δ
Φ (Jc2K m2)

The following lemma is a direct consequence of the fundamen-
tal property of lifting (Theorem 1) applied to Definition 4. It shows
that statements about programs derived using apRHL imply bounds
on the α-distance of their output distributions.

Lemma 5. If |= c1 ∼α,δ c2 : Ψ ⇒ Φ, then for all memories
m1,m2 and unit-valued functions f1, f2 :M→ [0, 1],

m1 Ψ m2 ∧ f1 =Φ f2 =⇒ ∆α(Jc1K m1 f1, Jc2K m2 f2) ≤ δ

The statement of Lemma 5 can be specialized to a statement
about the differential privacy of programs.

Corollary 1. Let d be a metric onM and Ψ an assertion express-
ing that d(m1,m2) ≤ 1. If |= c ∼exp(ǫ),δ c : Ψ ⇒ ≡, then c
satisfies (ǫ, δ)-differential privacy.

Corollary 1 is the central result for deriving differential privacy
guarantees in apRHL. Using Theorem 2, one can prove the con-
verse to Corollary 1, yielding a characterization of approximate
differential privacy.

The logic apRHL can also be used to reason about more tradi-
tional information-flow properties, such as probabilistic noninter-
ference. To see this, let Ψ be an arbitrary equivalence relation on
initial states and let ≡ be the identity relation on final states. A
judgment |= c ∼1,0 c : Ψ ⇒ ≡ entails that two initial states in-
duce the same distribution of final states whenever they are related
by Ψ. In particular, this implies that an adversary who can observe

use them to describe the algorithm SMARTSUM in Fig. 9 and modularize
its analysis.

(or even repeatedly sample) the output of c will only be able to de-
termine the initial state up to its Ψ-equivalence class. In this way, Ψ
can be used for expressing fine-grained notions of confidentiality,
including probabilistic noninterference [31]. Our interpretation of
apRHL judgments generalizes to arbitrary equivalence relations as
post-conditions. In this way, one can capture adversaries that have
only partial views on the system, as required for distributed differ-
ential privacy [5].

We finally show how apRHL can also be used for deriving
generalized Lipschitz-conditions of probabilistic programs. As a
first step, we show that valid apRHL judgments imply statements
for input distributions that are related by (α, δ)-lifting.

Lemma 6. If |= c1 ∼α,δ c2 : Ψ ⇒ Φ, then for all distributions
µ1 and µ2 of initial memories we have:

µ1 ∼
α′,δ′

Ψ µ2 =⇒ (bind µ1 Jc1K) ∼
αα′,δ+δ′

Φ (bind µ2 Jc2K)

By instantiating pre- and post-conditions in Lemma 6 to the
identity relation on memories ≡ and applying Theorems 1 and 2,
one obtains the following generalized Lipschitz-condition for prob-
abilistic programs on random inputs.

Corollary 2. If |= c1 ∼α,δ c2 : ≡ ⇒ ≡, then

∆α′(µ1, µ2) ≤ δ′ =⇒ ∆αα′(bind µ1 Jc1K, bindµ2 Jc2K) ≤ δ+δ′

5.3 Logic

This section introduces a set of proof rules to support reasoning
about the validity of apRHL judgments. In order to maximize flex-
ibility and to allow the application of proof rules to be interleaved
with other forms of reasoning, the soundness of each proof rule is
proved individually as a Coq lemma. Nevertheless, we retain the
usual presentation of the rules as a proof system.

We present the core apRHL rules in Figure 4; all rules gener-
alize their pRHL counterpart, which can be recovered by setting
α = 1 and δ = 0. (Any valid pRHL derivation admits an im-
mediate translation into apRHL.) We begin by describing the rules
corresponding to language constructs.

The [skip], [assert] and [assn] rules are direct transpositions
of the pRHL rules. Rule [rand] states that for any two distribution
expressions µ1 and µ2 of type A, the random assignments x1

$← µ1

and x2
$← µ2 are (α, δ)-related w.r.t. pre-condition Ψ and post-

condition x1〈1〉 = x2〈2〉, provided the α-distance between the
distributions Jµ1K m1 and Jµ2K m2 is smaller than δ whenever m1

and m2 are related by Ψ. The soundness of rule [rand] follows
from Theorem 2.

Rule [seq] has tight connections to composition theorems for
differentially private algorithms, as further developed in Sec-
tion 5.4.

Rule [cond] states that branching statements are (α, δ)-related
w.r.t. pre-condition Ψ and post-condition Φ, provided that the pre-
condition Ψ ensures that the guards of both statements are equiv-
alent, and that the true and false branches are (α, δ)-related w.r.t.
pre-conditions Ψ ∧ b〈1〉 and Ψ ∧ ¬b〈1〉, respectively.

The rule for loops may be best understood by taking δ = 0. In
this case, the rule [while] states that two bounded loops that execute
in lockstep are n ln(α)-differentially private when their bodies at
each iteration are ln(α)-differentially private and n is an upper
bound for the number of iterations. The rule [while] is sufficient
for proving differential privacy of examples like the k-median
from [18], where the skew remains unchanged at each iteration.
Other examples, like the ones discussed in the next section, require
applying more sophisticated rules in which the skew and the slack
may vary across iterations. For instance, the rule [gwhile] shown
in Figure 5 allows for a finer-grained case analysis depending on
a predicate P on program memories whose validity is preserved
across iterations. Assume that when P does not hold, the iterations

of each loop can be related with a privacy factor of α1(i) in case
P does not hold after their execution, and with a privacy factor
of α2 in case it does. Furthermore, assume that the iterations are
observationally equivalent when P holds initially. Then, the two
loops are related with a privacy factor of (

∏

i=1..n α1(i)) α2.
Intuitively, as long as P does not hold, the iterations of each loop
are ln(α1(i))-differentially private, while the single iteration where
the validity of P may be established (this occurs necessarily at
the same time in both loops) incurs an ln(α2) privacy penalty;
the remaining iterations preserve P and do not add to the privacy
bound.

We continue by explaining the structural rules given in Figure 4.
The rule [case] allows one to perform a case analysis in the pre-
condition of a judgment. The weakening rule [weak] generalizes
the rule of consequence of (relational) Hoare logic by allowing to
increase the skew and slack; its soundness follows from Lemma 4.
The composition rule [comp] permits to structure proofs by intro-
ducing intermediate programs (as in the game-playing technique
for cryptographic proofs [3]); its soundness follows from Theo-
rem 3. Together with rule [transp], it yields a rule for the case
when Ψ and Φ are partial equivalence relations which, specialized
to α = α′ = 1, reads:

|= c1 ∼1,δ c2 : Ψ⇒ Φ |= c2 ∼1,δ′ c3 : Ψ⇒ Φ

|= c1 ∼1,δ+δ′ c3 : Ψ⇒ Φ

Finally, the [frame] rule allows one to strengthen the pre- and
post-condition with an assertion Θ whose validity is preserved
by executing the commands of the judgment. (In the figure, the
notation × is used to denote the product of two distributions.)

5.4 Sequential and Parallel Composition Theorems

Composition theorems play an important role in the construction
and analysis of differentially private mechanisms. A central re-
sult states that an ǫ-differentially private query followed by an ǫ′-
differentially private query to the same dataset corresponds to a
single (ǫ+ ǫ′)-differentially private query [24]. An important vari-
ant of this result deals with the case in which both queries access
disjoint parts of the dataset. This so-called parallel composition of
queries leads to a stronger, max{ǫ, ǫ′}-privacy bound [24]. Both
composition results admit a natural interpretation in apRHL, which
we present below.

We begin by introducing additional notation that allows us to
express independence of computations and observational capabil-
ities of adversaries. For a set of variables Z ⊆ V , we define the
relations

.
=Z and =Z as follows:

m =Z m′ def
= ∀y ∈ Z. m y = m′ y

m
.
=Z m′ def

= ∃z ∈ Z. m =(Z\{z}) m
′

Note that m
.
=Z m′ corresponds to dZ(m,m′) ≤ 1, where dZ

measures the number of variables in Z in which two memories
differ, i.e. their Hamming distance. Using this notation, we can
interpret judgments of the form

|= c ∼exp(ǫ),0 c :
.
=X ⇒ =Y

as a definition of a computation c on variables in X that is ǫ-
differentially private w.r.t. adversaries that can only observe vari-
ables in Y . Similarly, we can interpret judgments of the form

|= c ∼exp(ǫ),0 c :
.
=X ∧ =X′ ⇒ =Y

as a definition of a family (indexed by X ′) of computations c on
variables in X that are ǫ-differentially private w.r.t. adversaries that
can only observe variables in Y . To emphasize the roles of the sets
X , Y , and Y ′ we say that c is a computation from X to Y that is
parameterized by Y ′. Finally, we interpret premises of the form

|= c ∼1,0 c : =X ⇒ =X |= c ∼1,0 c :
.
=X ⇒

.
=X

m1 Ψm2
def
= (m1 {Je1K m1/x1}) Φ (m2 {Je2K m2/x2})

|= x1 ← e1 ∼1,0 x2 ← e2 : Ψ⇒ Φ
[assn]

∀m1 m2. m1 Ψm2 =⇒ ∆α(Jµ1K m1, Jµ2K m2) ≤ δ

|= x1
$← µ1 ∼α,δ x2

$← µ2 : Ψ⇒ x1〈1〉 = x2〈2〉
[rand]

Ψ =⇒ b〈1〉 ≡ b′〈2〉

|= assert b ∼1,0 assert b′ : Ψ⇒ Ψ ∧ b〈1〉
[assert]

|= c1 ∼α,δ c2 : Ψ⇒ Φ′ |= c′1 ∼α′,δ′ c
′
2 : Φ′ ⇒ Φ

|= c1; c
′
1 ∼αα′,δ+δ′ c2; c

′
2 : Ψ⇒ Φ

[seq]

|= skip ∼1,0 skip : Ψ⇒ Ψ
[skip]

|= c1 ∼α,δ c′1 : Ψ ∧ b〈1〉 ⇒ Φ |= c2 ∼α,δ c′2 : Ψ ∧ ¬b〈1〉 ⇒ Φ Ψ =⇒ b〈1〉 ≡ b′〈2〉

|= if b then c1 else c2 ∼α,δ if b′ then c′1 else c′2 : Ψ⇒ Φ
[cond]

|= c ∼α,δ c′ : Ψ ∧ b〈1〉 ∧ b′〈2〉 ⇒ Ψ ∧ b〈1〉 ≡ b′〈2〉 ∀m1 m2. m1 Ψ m2 =⇒ Jwhile b do cK m1 = J[while b do c]nK m1

|= while b do c ∼αn,nδ while b′ do c′ : Ψ ∧ b〈1〉 ≡ b′〈2〉 ⇒ Ψ ∧ ¬b〈1〉 ∧ ¬b′〈2〉
[while]

|= c1 ∼α,δ c2 : Ψ ∧Θ⇒ Φ |= c1 ∼α,δ c2 : Ψ ∧ ¬Θ⇒ Φ

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[case]

|= c1 ∼α,δ c2 : Ψ⇒ Φ |= c2 ∼α,δ′ c3 : Ψ′ ⇒ Φ′

|= c1 ∼αα′,max(δ+α δ′,δ′+α′ δ) c3 : Ψ ◦Ψ′ ⇒ Φ ◦ Φ′ [comp]

|= c1 ∼α′,δ′ c2 : Ψ′ ⇒ Φ′ Ψ⇒ Ψ′ Φ′ ⇒ Φ α′ ≤ α δ′ ≤ δ

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[weak]

|= c2 ∼α,δ c1 : Ψ−1 ⇒ Φ−1

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[transp]

|= c1 ∼α,δ c2 : Ψ⇒ Φ ∀m1 m2. m1 Θm2 =⇒ range Θ (Jc1K m1 × Jc2K m2)

|= c1 ∼α,δ c2 : Ψ ∧Θ⇒ Φ ∧Θ
[frame]

Figure 4. Core proof rules of the approximate relational Hoare logic

Φ =⇒ (b1〈1〉 ≡ b2〈2〉 ∧ P1〈1〉 ≡ P2〈2〉 ∧ i〈1〉 = i〈2〉)
∀m1 m2. m1 Φm2 =⇒ Jwhile b1 do c1K m1 = J[while b1 do c1]nK m1

|= c1; assert (¬P1) ∼α1(j),0 c2; assert (¬P2) : Φ ∧ b1〈1〉 ∧ i〈1〉 = j ∧ ¬P1〈1〉 ⇒ Φ ∧ i〈1〉 = j + 1
|= c1; assert (P1) ∼α2,0 c2; assert (P2) : Φ ∧ b1〈1〉 ∧ i〈1〉 = j ∧ ¬P1〈1〉 ⇒ Φ ∧ i〈1〉 = j + 1

|= c1 ∼1,0 c2 : Φ ∧ b1〈1〉 ∧ i〈1〉 = j ∧ P1〈1〉 ⇒ Φ ∧ i〈1〉 = j + 1 ∧ P1〈1〉

|= while b1 do c1 ∼(
∏a+n

i=a
α1(i))×α2,0

while b2 do c2 : Φ ∧ i〈1〉 = a⇒ Φ ∧ ¬b1〈1〉
[gwhile]

Figure 5. Generalized rule for loops

as a statement that c does not modify variables in X . Note that this
reading of premises is sound, but stronger than the actual semantics.

The sequential composition theorem is a direct application of
rule [seq] and is captured by the rule:

|= c ∼exp(ǫ),0 c :
.
=X ⇒ (=Y ∧

.
=X)

|= c′ ∼exp(ǫ′),0 c′ : (=Y ∧
.
=X)⇒ =(Y ∪Y ′)

|= c; c′ ∼exp(ǫ+ǫ′),0 c; c′ :
.
=X ⇒ =(Y∪Y ′)

With the intuitive reading introduced above, the rule states that the
composition of an ǫ-differentially private computation c from X
to Y , with a parameterized ǫ-differentially private computation c′

from X to Y ′ is an (ǫ+ ǫ′)-differentially private computation c; c′

from X to Y ∪ Y ′, provided that c′ does not modify variables in
Y , and c does not modify variables in X .

The parallel composition theorem is captured by the rule:

|= c ∼exp(ǫ),0 c : (
.
=X ∧ =X′)⇒ =(Y ∪X′)

|= c ∼1,0 c : (=X ∧
.
=X′)⇒ (=Y ∧

.
=X′)

|= c′ ∼exp(ǫ′),0 c′ : (=Y ∧
.
=X′)⇒ =(Y ∪Y ′)

|= c′ ∼1,0 c′ : =(Y ∪X′) ⇒ =(Y ∪Y ′) X ∩X ′ = ∅
|= c; c′ ∼exp(max(ǫ,ǫ′)),0 c; c′ :

.
=X∪X′ ⇒ =(Y ∪Y ′)

With the intuitive reading introduced above, the rule states that
the composition of an ǫ-differentially private computation c from
X to Y , with a parameterized ǫ-differentially private computation
c′ from X ′ to Y ′, where X ′ is disjoint from X , is a max(ǫ, ǫ′)-
differentially private computation c; c′ from X ∪X ′ to Y ∪Y ′. As

a prerequisite we require that c does not modify variables in X ′ and
is non-interfering w.r.t. input variables X and output variables Y ,
and that c′ does not modify variables in Y and is non-interfering
w.r.t. input variables X ′ and output variables Y ′.

6. Case Studies

We illustrate the versatility of our framework by formalizing two
prominent mechanisms, namely the Laplacian and the Exponential
mechanisms, and proving their correctness from first principles. We
then apply these mechanisms to prove differential privacy for sev-
eral streaming algorithms. Finally, we detail the proof of differen-
tial privacy of the Minimum Vertex Cover algorithm introduced in
Section 2.

6.1 Exponential and Laplacian Mechanisms

Many algorithms for statistics and data mining are numeric, i.e.
they return (approximations of) real numbers. The Laplacian mech-
anism of Dwork et al. [17] is a fundamental tool for making such
computations differentially private. This is achieved by perturbing
the algorithm’s true output with noise drawn from a Laplace distri-
bution. The density function at x of the Laplace distribution cen-
tered around r with scale factor σ is proportional to

exp

(

−
|x− r|

σ

)

m1 Ψ m2 =⇒ |JrK m1 − JrK m2| ≤ k exp(ǫ) ≤ α

|= x $← L(r, k
ǫ
) ∼α,0 y $← L(r, k

ǫ
) : Ψ⇒ x〈1〉 = y〈2〉

[lap]
m1 Ψ m2 =⇒ d(JaK m1, JaK m2) ≤ k exp(2kSsǫ) ≤ α

|= x $← E
ǫ
s,µ(a) ∼α,0 y $← E

ǫ
s,µ(a) : Ψ⇒ x〈1〉 = y〈2〉

[exp]

Figure 6. Rules for the Laplacian and Exponential mechanisms

To transform a deterministic computation f : A → R into a
differentially private computation, one needs to set r to the true
output of the computation and choose σ (i.e. the amount of noise)
according to the sensitivity of f . Informally, the sensitivity is a
Lipschitz-parameter that captures how far apart f maps nearby
inputs. Formally, the sensitivity Sf is defined relative to a metric
d on A as follows:

Sf
def
= max

a,a′|d(a,a′)≤1
|f a− f a′|

The justification for the Laplacian mechanism is a result that states
that for a function f : A → R, the randomized algorithm that
on input a returns a value sampled from the Laplacian distribution
centered around f(a) with scale factor σ = Sf/ǫ is ǫ-differentially
private [17].

One limitation of the Laplacian mechanism is that it is confined
to numerical algorithms. The Exponential mechanism [23] is a gen-
eral mechanism for building differentially private algorithms with
arbitrary (but discrete) output domains. The Exponential mecha-
nism takes as input a base distribution µ on a set B, and a scor-

ing function s : A × B → R
≥0; intuitively, values b maximizing

s(a, b) are the most appealing output for an input a. The Exponen-
tial mechanism is a randomized algorithm that takes a value a ∈ A
and returns a value b ∈ B that approximately maximizes the score
s(a, b), where the quality of the approximation is determined by a
parameter ǫ > 0. Formally, the Exponential mechanism Eǫs,µ maps
every element in A to a distribution in B whose density function at
b is given by:

Eǫs,µ(a) b =
exp(ǫ s(a, b)) (µ b)

∑

b∈B

exp(ǫ s(a, b)) (µ b)

The definition implicitly assumes that the sum in the denominator
is bounded for all a ∈ A. McSherry and Talwar [23] show that Eǫs,µ
is 2ǫSs-differentially private, where Ss is the maximum sensitivity
of s w.r.t. a, for all b.

In our proofs, the Exponential and Laplacian mechanisms are

defined as instances of a general construction (·)♯ that takes as

input a function f : A → B → R
≥0 and returns a function

f ♯ : A→ D(B) such that for every a ∈ A the density function of

f ♯ a at b is given by:

f ♯ a b =
f a b

∑

b∈B

f a b

We derive the correctness of the Laplacian and Exponential
mechanisms as a consequence of the following lemma.

Lemma 7. Let B be a discrete set and consider a function

f : A→ B → R
≥0 such that f ♯ is well defined. Let a, a′ ∈ A,

γ ≥ 0 be such for all b, f(a, b) ≤ γ f(a′, b) and f(a′, b) ≤
γ f(a, b). Then,

∆γ2 (f ♯ a, f ♯ a′) = 0

If moreover
∑

b∈B f a b =
∑

b∈B f a′ b, then

∆γ(f
♯ a, f ♯ a′) = 0

Using the construction (·)♯ defined above, the Exponential
mechanism for a scoring function s, base distribution µ and scale

factor ǫ is defined as

Eǫs,µ
def
= (λa b. exp(ǫ s(a, b)) (µ b))♯

whereas the Laplacian mechanism with mean value r and scale
factor σ is defined as

L(r, σ) def
=

(

λa b. exp

(

−
|b− a|

σ

))♯

r

The privacy guarantees for the Exponential and the Laplacian
mechanisms are stated as the rules [lap] and [exp] in Figure 6;
their soundness is a corollary of Lemma 7 above.

Observe that the premise of rule [lap] requires to prove that the
values around which the mechanism is centered are within distance
k. This is the case when these values are computed by a k-sensitive
function starting from adjacent inputs, which corresponds to the
usual interpretation of the guarantees provided by the Laplacian
mechanism [17].

As a further illustration of the expressive power of CertiPriv,
we have also defined a Laplacian mechanism Ln for lists; given
σ ∈ R

+ and a vector a ∈ R
n, the mechanism Ln outputs a vector

in R
n whose i-th component is drawn from distribution L(a[i], σ).

More formally, we have proved the soundness of the following rule

m1 Ψ m2 =⇒
∑

1≤i≤n

|Ja[i]K m1 − Ja[i]K m2| ≤ k

|= x $← L
n(a, k

ǫ
) ∼exp(ǫ),0 y $← L

n(a, k
ǫ
) : Ψ⇒ x〈1〉=y〈2〉

which we refer to as [lap∗].

6.2 Statistics over Streams

In this section we present an analysis of algorithms for computing
private and continual statistics in a data stream [8]. As in [8],
we focus on algorithms for private summing and counting. More
sophisticated algorithms, e.g. computing heavy hitters in a data
stream, can be built using sums and counters as primitive operations
and inherit their privacy and utility guarantees.

We consider streams of elements in a bounded subset D ⊆ R,
i.e. with |x − y| ≤ b for all x, y ∈ D. This setting is slightly
more general than the one considered by Chan et al. [8], where only
streams over {0, 1} are considered. On the algorithmic side, the
generalization to bounded domains is immediate; for the privacy
analysis, however, one needs to take the bound b into account
because it conditions the sensitivity of computations. This requires
a careful definition of metrics and propagation of bounds, which is
supported by CertiPriv.

Although in our implementation we formalize streams as fi-
nite lists, we use array-notation in the exposition for the sake of
readability. Given an array a of n elements in D, the goal is to
release, for every point in time 0 ≤ j < n the aggregate sum

c[j] =
∑j

i=0 a[i] in a privacy-preserving manner. As observed
in [8], there are two immediate solutions to the problem. The first is
to maintain an exact aggregate sum c[j] and output at each iteration
a curated version c[j] $← L(c[j], b/ǫ) of that sum. The second so-
lution is to maintain and output a noisy aggregate sum c̃[j], which
is updated at iteration j + 1 according to

a[j + 1] $← L(a[j + 1], b/ǫ); c̃[j + 1]← c̃[j] + a[j + 1]

The stream c[0] · · · c[n − 1] offers weak, nǫ-differential pri-
vacy, because every element of a may appear in n different ele-

ments of c, each with independent noise. However, each c[j] offers
good accuracy because noise is added only once. In contrast, the
stream c̃[0] · · · c̃[n− 1] offers improved, ǫ-differential privacy, be-
cause each element of a appears only in one ǫ-differentially private
query. However, as shown in [8], the sum c̃[j] yields poor accuracy
because noise is added j times during its computation.

One solution proposed by Chan et al. [8] is a combination
of both basic methods of releasing partial sums that achieves a
good compromise between privacy and accuracy. The idea is to
split the stream a into chunks of length q, where the less accurate
(but more private) method is used to compute the sum within the
current chunk, and the more accurate (but less private) method
is used to compute summaries of previous chunks. Formally, let

st =
∑q−1

i=0 a[t q + i] be the sum over the t-th chunk of a and
let st $← L(st, b/ǫ) be the corresponding noisy version. Then, for
each j = qr + k, with k < q, we compute

ĉ[j] =

r−1
∑

t=0

st +
k
∑

i=0

a[qr + i]

The sequence ĉ[0] · · · ĉ[n − 1] offers 2ǫ-differential privacy, intu-
itively because each element of a is accessed twice during com-
putation. Moreover, ĉ[j] also offers improved accuracy over c̃[j]
because noise is added only r + k times rather than j = qr + k
times.

We will now turn the above informal security analysis into
a formal analysis of program code. The code for computing st
is given as the function PARTIALSUM in Figure 7, the code for
computing c is given as the function PARTIALSUM’ in Figure 8,
and the code for computing ĉ is given as the function SMARTSUM

in Figure 9 (we omit the code for computing c̃ and the proof of
its privacy bound). We next sketch the key steps in our proofs of
differential privacy bounds for each of these algorithms. For all of
our examples, we use the pre-condition

Ψ def
= length(a〈1〉) = length(a〈2〉) ∧ a〈1〉

.
= a〈2〉 ∧

∀i. 0 ≤ i < length(a〈1〉) =⇒ |a[i]〈1〉 − a[i]〈2〉| ≤ b

which relates two lists a〈1〉 and a〈2〉 whenever they have the same
length, differ in at most one element, and the distance between the
elements at the same position at each array is upper-bounded by b.

PARTIALSUM The proof of differential privacy of PARTIALSUM

proceeds in two key steps. First, we prove (using the pRHL frag-
ment of apRHL) that

|= c1−5 ∼1,0 c1−5 : Ψ⇒ |s〈1〉 − s〈2〉| ≤ b

where c1−5 corresponds to the code in lines 1-5 in Figure 7, i.e.
the initialization and the loop. We apply the rule [lap] that gives a
bound for the privacy guarantee achieved by the Laplacian mecha-
nism (see Figure 6) to c6 = s $← L(s, b/ǫ) (the instruction in line
6) and derive

|= c6 ∼exp(ǫ),0 c6 : |s〈1〉 − s〈2〉| ≤ b⇒ s〈1〉 = s〈2〉

Using the rule for sequential composition, applied to c1−5 and
c6, we derive the following statement about PARTIALSUM, which
implies that its output s is ǫ-differentially private.

|= PARTIALSUM(a) ∼exp(ǫ),0 PARTIALSUM(a) : Ψ⇒ s〈1〉 = s〈2〉

PARTIALSUM’ Our implementation of PARTIALSUM’ in Fig-
ure 7 differs slightly from the description given above in that we
first add noise to the entire stream (line 1), before computing the
partial sums of the noisy stream (lines 2-6). This modification al-
lows us to take advantage of the proof rule for the Laplacian mech-
anism on lists. By merging the addition of noise into the loop,
our two-pass implementation can be turned into an observationally

function PARTIALSUM(a)
1 s← 0; i← 0;
2 while i < length(a) do
3 s← s+ a[i];
4 i← i+ 1;
5 end;
6 s← L(s, b/ǫ)

Figure 7. A simple ǫ-differentially private algorithm for summing
over lists

function PARTIALSUM’(a)
1 a $← Ln(a, b/ǫ);
2 s[0]← a[0]; i← 1;
3 while i < length(a) do
4 s[i]← s[i− 1] + a[i];
5 i← i+ 1;
6 end

Figure 8. An ǫ-differentially private algorithm for partial sums
over lists

function SMARTSUM(a, q)
1 i← 0; c← 0;
2 while i < length(a)/q do
3 b← PARTIALSUM(a[iq..i(q + 1)− 1]);
4 x← PARTIALSUM’(a[iq..i(q + 1)− 1]);
5 s← OFFSETCOPY(s, x, c, iq, q);
6 c← c+ b;
7 i← i+ 1;
8 end

Figure 9. A smart 2ǫ-differentially private algorithm for partial
sums over lists

equivalent one-pass implementation suitable for processing streams
of data.

The proof of privacy for PARTIALSUM’ proceeds in the fol-
lowing basic steps. First, we apply the rule [lap∗] to the random
assignment in line 1 (noted as c1) of PARTIALSUM’. We obtain

|= c1 ∼exp(ǫ),0 c1 : Ψ⇒ a〈1〉 = a〈2〉

i.e. the output a is ǫ-differentially private at this point. For lines 2-6
(denoted by c2−6), we prove (using the pRHL fragment of apRHL)
that

|= c2−6 ∼1,0 c2−6 : a〈1〉 = a〈2〉 ⇒ s〈1〉 = s〈2〉

This is straightforward because of the equality appearing in the pre-
condition; this result can be derived using the apRHL rules, but is
also an immediate consequence of the preservation of α-distance
by probabilistic computations (see Lemma 3).

Finally, we apply the rule for sequential composition to c1 and
c2−6 and obtain

|= PARTIALSUM’(a) ∼exp(ǫ),0 PARTIALSUM’(a) :Ψ⇒ s〈1〉=s〈2〉

which implies that the output s of PARTIALSUM’ is ǫ-differentially
private.

SMARTSUM Our implementation of the smart private sum in
Figure 9 makes use of PARTIALSUM and PARTIALSUM’ as build-
ing blocks, which enables us to reuse the above proofs.

In addition, our implementation makes use of a procedure
OFFSETCOPY that given two lists s and x, a constant c and non-
negative integers i, q, returns a list which is identical to s, but where
the entries s[i] · · · s[i+(q−1)] are replaced by the first q elements
of x, plus a constant offset c, i.e. s[i+j] = x[j]+c for 0 <= i < q.

We obtain

�s←OFFSETCOPY(s, x, c, i, q)∼1,0 s←OFFSETCOPY(s, x, c, i, q) :
={s,x,c,i,q} ⇒ s〈1〉 = s〈2〉

We combine this result with the judgments derived for PARTIAL-
SUM and PARTIALSUM’ using the rule for sequential composition,
obtaining

|= c4−7 ∼exp(2ǫ),0 c4−7 : Ψ⇒ s〈1〉 = s〈2〉

where c4−7 denotes the body of the loop in lines 4-7. To conclude,
we apply the rule for while loops in Fig. 5 with α1(i) = 1 and
α2 = exp(2ǫ). This instantiation of the rule states that a loop
that is non-interfering in all but one iteration is 2ǫ-differentially
private, if the interfering loop iteration is 2ǫ-differentially private.
More technically, the existence of a single interfering iteration is
built into the rule using a pair of stable events for each command.
In our case, the critical iteration corresponds to the one in which
the chunk contains the position in which the two lists differ.

6.3 Minimum Vertex Cover

We conclude this section with a more detailed account of the proof
of differential privacy of the Minimum Vertex Cover approximation
algorithm of Section 2. The main step of the proof is an application
of the rule for loops in Fig. 5 with parameters

α1(i) = exp

(

2

(n− i)wi

)

α2 = exp
(ǫ

4

)

,

the following invariant Φ

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉,

and stable properties P1 = P2 = t ∈ π ∨ u ∈ π.
The first and second equivalences appearing in the premises of

the rule are of the form:

|= c1; assert P ∼α,0 c2; assert P : Ψ⇒ Φ

For each of them, we first hoist the assertion immediately after the
random assignment. At this point the expression in the assertions
becomes (t, u /∈ (v :: π)) in the case of the first premise and
(t ∈ (v :: π) ∨ u ∈ (v :: π)) in the case of the second. We
then compute the weakest pre-condition of the assignments that
now follow the assertions. The resulting judgments simplify, after
applying the [weak] and [frame] rules, to judgments of the form

|= c ∼α,0 c : Ψ⇒ v〈1〉 = v〈2〉

where

Ψ def
= E〈2〉 = E〈1〉 ∪ {(t, u)} ∧ V 〈1〉 = V 〈2〉 ∧ t, u /∈ π ∧

i〈1〉 = i〈2〉 = j ∧ π〈1〉 = π〈2〉

For the first premise we have α = α1(j) and

c = v $← choose(V,E, ǫ, n, i); assert (t, u /∈ (v :: π))

whereas for the second premise we have α = α2 and

c = v $← choose(V,E, ǫ, n, i); assert (t∈(v :: π) ∨ u∈(v :: π))

To establish the validity of both judgments, we cast the code for
c as a random assignment where v is sampled from the interpreta-
tion of choose(V,E, ǫ, n, i) restricted to v satisfying the condition
on the assertion. In the first case, the restriction amounts to v 6= u, t
whereas in the second it amounts to v = t ∨ v = u. For each one
of these cases, we apply the rule for random assignments and are
thus left to prove that the α-distance of the corresponding distribu-
tions is null. In view of Lemma 2, this in turn amounts to verifying
for each element x in the support of the distribution that the ratio
between the probability of v being equal to x in the left-hand side

(resp. right-hand side) program and the right-hand side (resp. left-
hand side) program is bounded by α, which directly translates into
the inequalities appearing in Section 2. Technically, these inequal-
ities are proved by appealing to a variant of Lemma 7.

The proof in apRHL yields a bound of 5ǫ/4 rather than the ǫ
bound from [18]. This difference is due to the symmetric nature
of our logic. We believe that the optimal bound can be proved
in apRHL at the cost of a more complicated proof by using rule
[comp] to introduce intermediate programs or, more elegantly, by
using an asymmetric version of apRHL. See the appendix for a
discussion on what it would take to build an asymmetric logic and
how it could be used to improve the privacy bound from 5ǫ/4 to
just ǫ.

7. Related Work

Our work builds upon program verification techniques, and in par-
ticular (probabilistic and relational) program logics, to reason about
differential privacy. We briefly review relevant work in these areas.

Differential privacy There is a vast body of work on differential
privacy. We refer to recent overviews, see e.g. [14, 15], for an
account of some of the latest developments in the field, and focus
on language-based approaches to differential privacy. The Privacy
Integrated Queries (PINQ) platform [24] supports reasoning about
the privacy guarantees of programs in a simple SQL-like language.
The reasoning is based on the sensitivity of basic queries such as
Select and GroupBy, the differential privacy of building blocks
such as NoisySum and NoisyAvg, and meta-theorems for their
sequential and parallel composition. AIRAVAT [30] leverages these
building blocks for distributed computations based on MapReduce.

The linear type system of [29] extends sensitivity analysis to
a higher-order functional language. By using a suitable choice of
metric and probability monads, the type system also supports rea-
soning about probabilistic, differentially private computations. As
in PINQ, the soundness of the type system makes use of known
composition theorems and relies on assumptions about the sen-
sitivity/differential privacy of nontrivial building blocks, such as
arithmetic operations, conditional swap operations, or the Lapla-
cian mechanism. While the type system can handle functional data
structures, it does not allow for analyzing programs with condi-
tional branching. Work on the automatic derivation of sensitiv-
ity properties of imperative programs [9] addresses this problem
and can (in conjunction with the Laplacian mechanism) be used
to derive differential privacy guarantees of programs with control
flow. Although this approach supports reasoning about probabilistic
computations, the reasoning is restricted to Lipschitz-conditions.

In contrast to [9, 24, 29], CertiPriv supports reasoning about
differential privacy guarantees from first principles. In particular,
CertiPriv enabled us to prove (rather than to assume) the correct-
ness of Laplacian and Exponential mechanisms, and the differential
privacy of complex interleavings of (not necessarily differentially
private) probabilistic computations.

A recent approach considers the verification of privacy proper-
ties based on I/O-automata [35]. There, the focus lies on the verifi-
cation of the correct use of differentially private sanitization mecha-
nisms within interactive systems, where the effect of a sanitization
mechanism is soundly abstracted using a single, idealized transi-
tion.

An early approach to quantitative confidentiality analysis [26]
uses the distance of output distributions to quantify information
flow. Their measure is closely related to (0, δ)-approximate differ-
ential privacy, which can be reasoned about in CertiPriv. More re-
cent approaches to quantitative information-flow focus on measures
of confidentiality based on information-theoretic entropy. Tech-
niques for code-based structural reasoning about these measures

are developed in [10]. For an overview and a discussion of the re-
lationship between entropy-based measures of confidentiality and
differential privacy, see [2].

Probabilistic and relational program verification Program log-
ics have a long tradition and have been used effectively to reason
about functional correctness of programs. In contrast, privacy is a
2-safety property [11, 33], that is, a (universally quantified) prop-
erty about two runs of a program. There have been several propos-
als for applying program logics to 2-safety, but these proposals are
confined to deterministic programs and impractical.

A seminal paper [7] develops a relational Hoare logic (RHL)
for a core imperative programming language and shows how it can
be used to reason about information flow properties of programs.
This line of work has been generalized to a probabilistic setting by
CertiCrypt [3], which formalizes an extension of RHL for proba-
bilistic programs. CertiPriv builds upon and significantly extends
CertiCrypt [3]. The most outstanding difference between the two
frameworks is that CertiPriv supports reasoning about a wide range
of quantitative relational properties, whereas CertiCrypt is con-
fined to baseline information flow properties. Although we make
a modest use of this feature, CertiPriv supports (for a richer lan-
guage) the certified program transformations that are implemented
in CertiCrypt. Thanks to a recent development, the construction of
game-playing proofs [6] in CertiCrypt can be achieved efficiently
using EasyCrypt [4], a front-end that generates automatically prob-
abilistic RHL derivations using SMT solvers and a verification con-
dition generator. There are exciting opportunities to exploit the syn-
ergies between CertiPriv, CertiCrypt and EasyCrypt, as further
discussed in Section 8.

There is also a growing body of work that uses proof assistants
for reasoning about properties of probabilistic algorithms. For in-
stance, Hurd and co-workers [19] formalized in the HOL system
a theory for reasoning about a probabilistic extension of Dijkstra’s
guarded command language, and used it to prove the correctness of
the Miller-Rabin primality test.

8. Future Work and Conclusions

CertiPriv is a machine-checked framework that supports fine-
grained reasoning about an expressive class of privacy policies
in the Coq proof assistant. In contrast to previous language-based
approaches to differential privacy, CertiPriv allows to reason di-
rectly about probabilistic computations and to build proofs from
first principles. As a result, CertiPriv achieves flexibility, expres-
siveness, and reliability, and appears as a plausible starting point
for capturing and analyzing formally new developments in the field
of differential privacy.

An immediate objective for future work is to use the game-
playing technique from [3] for verifying in CertiPriv the privacy of
multi-party computation algorithms, where one is concerned with
ensuring privacy against (computationally bounded) adversaries
that only have a partial view of the state, concretely the local state
of corrupt participants [5, 25]. This objective is within reach, since
CertiPriv inherits from CertiCrypt a formalization of probabilistic
polynomial-time algorithms, and can already capture this variant of
differential privacy.

Another exciting avenue for further research is to automate the
verification of differentially private computations. There are three
facets to this work: building an automated checker for apRHL
derivations, automatically inferring relational loop invariants, and
implementing a precise dependency analysis for an optimal usage
of existing composition theorems. EasyCrypt [4] provides an ex-
cellent starting point for these tasks.

9. Acknowledgments

This work was partially funded by European Projects FP7-256980
NESSoS and FP7-229599 AMAROUT, Spanish project TIN2009-
14599 DESAFIOS 10, Madrid Regional project S2009TIC-1465
PROMETIDOS and French project ANR SESUR-012 SCALP.

References

[1] P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms
in Coq. Sci. Comput. Program., 74(8):568–589, 2009.

[2] G. Barthe and B. Köpf. Information-theoretic bounds for differentially
private mechanisms. In 24rd IEEE Computer Security Foundations

Symposium, CSF 2011, pages 191–204, Los Alamitos, 2011. IEEE
Computer Society.

[3] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification
of code-based cryptographic proofs. In 36th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, POPL 2009,
pages 90–101, New York, 2009. ACM.

[4] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In Ad-

vances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes

in Computer Science, pages 71–90, Heidelberg, 2011. Springer.

[5] A. Beimel, K. Nissim, and E. Omri. Distributed private data analysis:
Simultaneously solving how and what. In Advances in Cryptology –

CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 451–468, Heidelberg, 2008. Springer.

[6] M. Bellare and P. Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Advances in
Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in

Computer Science, pages 409–426, Heidelberg, 2006. Springer.

[7] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In 31st ACM SIGPLAN-SIGACT symposium

on Principles of Programming Languages, POPL 2004, pages 14–25,
New York, 2004. ACM.

[8] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of
statistics. In 37th International colloquium on Automata, Languages

and Programming, ICALP 2010, volume 6199 of Lecture Notes in
Computer Science, pages 405–417, Heidelberg, 2010. Springer.

[9] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving
programs robust. In 8th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ESEC/FSE ’11. ACM, 2011.

[10] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying
information flow in a simple imperative language. Journal of Com-

puter Security, 15(3):321–371, 2007.

[11] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of

Computer Security, 18(6):1157–1210, 2010.

[12] J. Desharnais, F. Laviolette, and M. Tracol. Approximate analysis of
probabilistic processes: Logic, simulation and games. In 5th Interna-

tional Conference on Quantitative Evaluation of Systems, QEST 2008,
pages 264–273. IEEE Computer Society, 2008.

[13] C. Dwork. Differential privacy. In 33rd International Colloquium on

Automata, Languages and Programming, ICALP 2006, volume 4052
of Lecture Notes in Computer Science, pages 1–12, Heidelberg, 2006.
Springer.

[14] C. Dwork. Differential privacy: A survey of results. In Theory and

Applications of Models of Computation, volume 4978 of Lecture Notes

in Computer Science, pages 1–19, Heidelberg, 2008. Springer.

[15] C. Dwork. A firm foundation for private data analysis. Commun.

ACM, 54(1):86–95, January 2011.

[16] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our
data, ourselves: Privacy via distributed noise generation. In Advances

in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 486–503, Heidelberg, 2006. Springer.

[17] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In 3rd Theory of Cryptography

Conference, TCC 2006, volume 3876 of Lecture Notes in Computer

Science, pages 265–284, Heidelberg, 2006. Springer.

[18] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar. Differen-
tially private combinatorial optimization. In 21st Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2010, pages 1106–1125.
SIAM, 2010.

[19] J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands
mechanized in HOL. Theor. Comput. Sci., 346(1):96–112, 2005.

[20] B. Jonsson, W. Yi, and K. G. Larsen. Probabilistic extensions of
process algebras. In J. Bergstra, A. Ponse, and S. Smolka, editors,
Handbook of Process Algebra, pages 685–710. Elsevier, Amsterdam,
2001.

[21] S. P. Kasiviswanathan and A. Smith. A note on differential privacy:
Defining resistance to arbitrary side information. Cryptology ePrint
Archive, Report 2008/144, 2008.

[22] D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In
2011 International conference on Management of Data, SIGMOD ’11,
pages 193–204. ACM Press, 2011.

[23] F. McSherry and K. Talwar. Mechanism design via differential pri-
vacy. In 48th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2007, pages 94–103, Washington, 2007. IEEE Com-
puter Society.

[24] F. D. McSherry. Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. In 35th SIGMOD international

conference on Management of Data, SIGMOD 2009, pages 19–30,
New York, 2009. ACM.

[25] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Computational
differential privacy. In Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 126–142,
Heidelberg, 2009. Springer.

[26] A. D. Pierro, C. Hankin, and H. Wiklicky. Approximate non-
interference. Journal of Computer Security, 12(1):37–82, 2004.

[27] L. Pitt. A simple probabilistic approximation algorithm for vertex
cover. Technical Report TR-404, Yale University, 1985.

[28] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In 29th ACM SIGPLAN-SIGACT symposium

on Principles of Programming Languages, POPL 2002, pages 154–
165, New York, 2002. ACM.

[29] J. Reed and B. C. Pierce. Distance makes the types grow stronger: a
calculus for differential privacy. In 15th ACM SIGPLAN international
conference on Functional programming, ICFP 2010, pages 157–168,
New York, 2010. ACM.

[30] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat:
security and privacy for MapReduce. In 7th USENIX conference on

Networked Systems Design and Implementation, NSDI 2010, pages
297–312, Berkeley, 2010. USENIX Association.

[31] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-
threaded programs. In 13th IEEE workshop on Computer Security

Foundations, CSFW 2000, pages 200–215, Los Alamitos, 2000. IEEE
Computer Society.

[32] R. Segala and A. Turrini. Approximated computationally bounded
simulation relations for probabilistic automata. In 20th IEEE Com-

puter Security Foundations symposium, CSF 2007, pages 140–156,
2007.

[33] T. Terauchi and A. Aiken. Secure information flow as a safety prob-
lem. In 12th International Symposium on Static Analysis, SAS 2005,
volume 3672 of Lecture Notes in Computer Science, pages 352–367,
Heidelberg, 2005. Springer.

[34] The Coq development team. The Coq Proof Assistant Reference
Manual Version 8.3. Online – http://coq.inria.fr, 2010.

[35] M. C. Tschantz, D. Kaynar, and A. Datta. Formal verification of differ-
ential privacy for interactive systems. Electronic Notes in Theoretical

Computer Science, 276:61–79, 2011.

A. Asymmetric Logic

Asymmetric versions of apRHL can be obtained by re-defining α-
distance as

∆α(a, b)
def
= max(b− αa, 0)

and dropping in Definition 3 either of the inequalities

∆α(π1 µ, µ1) ≤ δ
∆α(π2 µ, µ2) ≤ δ

Dropping the second inequality yields a logic for which the validity
of a judgment

c1 ∼α,δ c2 : Ψ⇒ Φ

implies only that for m1,m2 s.t. m1Ψm2 and f1, f2 s.t. f1 ≤Φ f2,

Jc1K m1 f1 ≤ α(Jc2K m2 f2) + δ

Application to the Minimum Vertex Cover Problem An asym-
metric version of the logic would allow to prove in an independent
way that for any permutation ~v, exp(ǫ) is a bound for both, the ratio

Pr [VERTEXCOVER(G1, ǫ) : π = ~v]

Pr [VERTEXCOVER(G2, ǫ) : π = ~v]
(1)

and its reciprocal. Each ratio could be bounded by applying an
asymmetric version of the rule for while loops shown in Figure 5,
and each application would in turn require to independently bound
for each iteration the ratios

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
and

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]

This would allow to choose tighter values for the parameters α1

and α2 in each case. E.g., when bounding (1), one could take
α1(i) = exp(2/(n − i)wi) and α2 = 1, whereas when bounding
its reciprocal one could take α1(i) = 1 and α2 = exp(ǫ/4).

http://coq.inria.fr

	Introduction
	Illustrative Example
	Preliminaries
	Probabilities and Reals
	Distributions

	First Principles
	Skewed Distance of Distributions
	Approximate Lifting of Relations to Distributions

	Approximate Relational Hoare Logic
	Programming Language
	Validity and Privacy
	Logic
	Sequential and Parallel Composition Theorems

	Case Studies
	Exponential and Laplacian Mechanisms
	Statistics over Streams
	Minimum Vertex Cover

	Related Work
	Future Work and Conclusions
	Acknowledgments
	Asymmetric Logic

