
CertiCrypt
Language-Based Cryptographic Proofs in Coq

Gilles Barthe1,2 Benjamin Grégoire1,3

Santiago Zanella 1,3

1Microsoft Research - INRIA Joint Centre, France

2IMDEA Software, Madrid, Spain

3INRIA Sophia Antipolis - Méditerranée, France

POPL 2009

What’s wrong with cryptographic proofs?

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway.
Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)
S. Halevi
Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in taming
the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly
impossible to verify
V. Shoup

What’s wrong with cryptographic proofs?

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway.
Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)
S. Halevi
Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in taming
the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly
impossible to verify
V. Shoup

Game-based cryptographic proofs

. . .

PrGη
0
[A0]

Game Gη
0 :

Attack Game

A
. . .

PrGη
0
[A0] ≤ ε(η)

Security property

Game-based cryptographic proofs

≤ h1(PrGη
1
[A1]) · · ·≤ hn(PrGη

n
[An])

. . .
. . .

Game Gη
1 :

. . .
Game Gη

n :

≤

Final Game

PrGη
0
[A0] ≤ h(PrGη

n
[An]) ≤ ε(η)

. . .

PrGη
0
[A0]

Game Gη
0 :

Attack Game

A
. . .

Game-based proofs: essence and problems

Independent events

PrG0 [A0] ≤ h(PrG[A])× h′(PrG′ [A′])

. . .

. . .

G0

G

G′

Essence: relate the probability of events in consecutive games
But,

How do we represent games?
What adversaries are feasible?
How do we make a proof hold for any feasible adversary?

Game-based proofs: essence and problems

Independent events

PrG0 [A0] ≤ h(PrG[A])× h′(PrG′ [A′])

. . .

. . .

G0

G

G′

Essence: relate the probability of events in consecutive games
But,

How do we represent games?
What adversaries are feasible?
How do we make a proof hold for any feasible adversary?

Language-based proofs

What if we represent games as programs?

Games =⇒ programs
Probability space =⇒ program denotation
Game transformations =⇒ program transformations
Generic adversary =⇒ unspecified procedure
Feasibility =⇒ Probabilistic Polynomial-Time

PWHILE: a probabilistic programming language

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

J·K : C →M→ M(M)

Jx $← {0, 1}; y $← {0, 1}K m =

+ +
+

Probability: PrG,m[A] def
= JGK m 1A

PWHILE: a probabilistic programming language

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

J·K : C →M→ M(M)

Jx $← {0, 1}; y $← {0, 1}K m f =
1
4 f (m[0, 0/x , y]) + 1

4 f (m[0, 1/x , y]) +
1
4 f (m[1, 0/x , y]) + 1

4 f (m[1, 1/x , y])

Probability: PrG,m[A] def
= JGK m 1A

PWHILE: a probabilistic programming language

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

J·K : C →M→ M(M)

Jx $← {0, 1}; y $← {0, 1}K m 1x 6=y =
1
4 1x 6=y (m[0, 0/x , y]) + 1

4 1x 6=y (m[0, 1/x , y]) +
1
4 1x 6=y (m[1, 0/x , y]) + 1

4 1x 6=y (m[1, 1/x , y])

Probability: PrG,m[A] def
= JGK m 1A

PWHILE: a probabilistic programming language

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

J·K : C →M→ M(M)

Jx $← {0, 1}; y $← {0, 1}K m 1x 6=y =

0 + 1
4 +

1
4 + 0

Probability: PrG,m[A] def
= JGK m 1A

PWHILE: a probabilistic programming language

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Measure monad: M(X) def
= (X → [0, 1])→ [0, 1]

J·K : C →M→ M(M)

Jx $← {0, 1}; y $← {0, 1}K m 1x 6=y = 1
2

+ +
+

Probability: PrG,m[A] def
= JGK m 1A

Untyped vs. typed language

1st attempt: untyped language, lots of problems
No guarantee that programs are well-typed
Had to deal with ill-typed programs

2nd attempt: typed language (dependently typed syntax!)
Programs are well-typed by construction

Inductive I : Type :=
| Assign : ∀t , Vt → Et → I
| Rand : ∀t , Vt → Dt → I
| Cond : EBool → C → C → I
|While : EBool → C → I
| Call : ∀l t ,P(l,t) → Vt → E?

l → I
where C := I?.

Parametrized semantics: J·K : ∀η, C →M→ M(M)

Untyped vs. typed language

1st attempt: untyped language, lots of problems
No guarantee that programs are well-typed
Had to deal with ill-typed programs

2nd attempt: typed language (dependently typed syntax!)
Programs are well-typed by construction

Inductive I : Type :=
| Assign : ∀t , Vt → Et → I
| Rand : ∀t , Vt → Dt → I
| Cond : EBool → C → C → I
|While : EBool → C → I
| Call : ∀l t ,P(l,t) → Vt → E?

l → I
where C := I?.

Parametrized semantics: J·K : ∀η, C →M→ M(M)

Characterizing feasible adversaries

A cost model for reasoning about program complexity

J·K′ : ∀η, C → (M× N)→ M(M× N)

Non-intrusive:

JGK m = bind (JGK′ (m, 0)) (λmn. unit (fst mn))

A program G runs in probabilistic polynomial time if:

It terminates with probablity 1 (i.e. ∀m, PrG,m[true] = 1)
There exists a polynomial p(·) s.t. if (m′, n) is reachable
with positive probability, then n ≤ p(η)

Characterizing feasible adversaries

A cost model for reasoning about program complexity

J·K′ : ∀η, C → (M× N)→ M(M× N)

Non-intrusive:

JGK m = bind (JGK′ (m, 0)) (λmn. unit (fst mn))

A program G runs in probabilistic polynomial time if:

It terminates with probablity 1 (i.e. ∀m, PrG,m[true] = 1)
There exists a polynomial p(·) s.t. if (m′, n) is reachable
with positive probability, then n ≤ p(η)

Program equivalence

Definition (Observational equivalence)
f =X g def

= ∀m1 m2, m1(X) = m2(X) =⇒ f m1 = g m2

� G1 'I
O G2

def
= ∀m1 m2 f g, m1(I) = m2(I) ∧ f =O g =⇒

JG1K m1 f = JG2K m2 g

Generalizes information flow security.
But is not general enough...

???

� if x = 0 then y ← x else y ← 1 '{x}
{x ,y} if x = 0 then y ← 0 else y ← 1

Program equivalence

Definition (Observational equivalence)
f =X g def

= ∀m1 m2, m1(X) = m2(X) =⇒ f m1 = g m2

� G1 'I
O G2

def
= ∀m1 m2 f g, m1(I) = m2(I) ∧ f =O g =⇒

JG1K m1 f = JG2K m2 g

Generalizes information flow security.
But is not general enough...

???

� if x = 0 then y ← x else y ← 1 '{x}
{x ,y} if x = 0 then y ← 0 else y ← 1

Program equivalence

Definition (Observational equivalence, generalization)

� G1 ∼ G2 : Ψ⇒ Φ def
=

∀ m1 m2. m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2
Where ∼Φ is the lifting of relation Φ from memories to
distributions.

(x = 0) ∼{x} (x = 0)

� y ← x ∼ y ← 0 : ={x} ∧ (x = 0)〈1〉 ⇒ ={x ,y}
� y ← 1 ∼ y ← 1 : ={x} ∧ (x 6= 0)〈1〉 ⇒ ={x ,y}
if x = 0 then y ← x else y ← 1 ∼
if x = 0 then y ← 0 else y ← 1 : ={x}⇒ ={x ,y}

From program equivalence to probability

Let A be an event that depends only on variables in O

To prove PrG1,m1 [A] = PrG2,m2 [A] it suffices to show

� G1 'I
O G2

m1 =I m2

Proving program equivalence

Goal

� G1 'I
O G2

A Relational Hoare Logic

� c1 ∼ c2 : Φ⇒ Φ′ � c′
1 ∼ c′

2 : Φ′ ⇒ Φ′′

� c1; c′
1 ∼ c2; c′

2 : Φ⇒ Φ′′ [R-Seq]

. . .

Proving program equivalence

Goal

� G1 'I
O G2

Mechanized program transformations

Transformation: T (G1, G2, I, O) = (G′
1, G′

2, I′, O′)

Soundness theorem

T (G1, G2, I, O) = (G′
1, G′

2, I′, O′) � G′
1 'I′

O′ G′
2

� G1 'I
O G2

Reflection-based Coq tactic

Proving program equivalence

Goal

� G1 'I
O G2

Mechanized program transformations

Dead code elimination
Constant folding and propagation
Procedure call inlining
Instruction reordering
Common suffix/prefix elimination

Proving program equivalence

Goal

� G1 'I
O G2

A semi-decision procedure for self-equivalence

Does � G 'I
O G hold?

Analyze dependencies to compute I′ s.t. � G 'I′
O G

Check that I′ ⊆ I

Example

'∅
{d}

inline r B;
ep;
deadcode;
eqobs in

Game ElGamal0 :
x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy, ζ);
d← b = b′

Procedure B(α, β, γ) :
(m0,m1)← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ ×mb);
return b = b′

Game DDH0 :
x $← Zq;
y $← Zq;
d← B(gx, gy, gxy)

The Fundamental Lemma of Game-Playing

Fundamental lemma
If two games G1 and G2 behave identically in an initial memory
m unless a failure event A fires, then

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2 [F]

The Fundamental Lemma of Game-Playing

Game G1 :
. . .
bad← true; c1

. . .

Game G2 :
. . .
bad← true; c2

. . .

PrG1,m[A ∧ ¬bad] = PrG2,m[A ∧ ¬bad]

PrG1,m[bad] = PrG2,m[bad]

Corollary

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2 [bad]

Wrapping up

Contributions
Formal semantics of a probabilistic programming language
Characterization of probabilistic polynomial-time programs
A Probabilistic Relational Hoare logic
Mechanization of common program transformations
Formalized emblematic proofs: ElGamal, FDH, OAEP

Perspectives
Overwhelming number of applications: IB, ZK proofs, ...
Computational soundness of symbolic methods and
information flow type systems
Verification of randomized algorithms

Some statistics

6 persons involved
CertiCrypt: 30,000 lines of Coq, 48 man-months
Full Domain Hash: 2,500 lines of Coq, 4 man-months
(for a person without experience in CertiCrypt)

Questions

ElGamal encryption

∣∣∣∣PrElGamal[b = b′]− 1
2

∣∣∣∣ = |PrDDH0 [d]− PrDDH1 [d]|

Observational equivalence

� G1 ∼ G2 : Ψ⇒ Φ def
= m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2

Lifting

range P µ def
= ∀f , (∀a, P a⇒ f a = 0)⇒ µ f = 0

µ1 ∼Φ µ2
def
= ∃µ, π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ range Φ µ

Small-step semantics

(nil, m, []) unit (nil, m, [])

(nil, m, (x , e, c, l) :: F) unit (c, (l , m.glob){JeK m/x}, F)

(x ← p(~e); c, m, F) unit (E(p).body, (∅{J~eK m/E(p).params}, m.glob), (x , E(p).re, c, m.loc) :: F)

(if e then c1 else c2; c, m, F) unit (c1; c, m, F)

if JeK m = true
(if e then c1 else c2; c, m, F) unit (c2; c, m, F)

if JeK m = false
(while e do c; c′, m, F) unit (c; while e do c; c′, m, F)

if JeK m = true
(while e do c; c′, m, F) unit (c′, m, F)

if JeK m = false

(x ← e; c, m, F) unit (c, m{JeK m/x}, F)

(x $← d ; c, m, F) bind (JdK m)(λv . unit (c, m{v/x}, F))

Denotation

JSK0
def
= unit S JSKn+1

def
= bind JSKn J·K1

JcK m : M(M) def
= λf . sup {J(c, m, [])Kn f |final | n ∈ N}

