CertiCrypt
Language-Based Cryptographic Proofs in Coq

Gilles Barthe'? Benjamin Grégoire'?
Santiago Zanella '3

"Microsoft Research - INRIA Joint Centre, France
CENTRE DE RECHERCHE
COMMUN

INRIA
MICROSOFT RESEARCH

2|MDEA Software, Madrid, Spain

3INRIA Sophia Antipolis - Méditerranée, France

POPL 2009

What’s wrong with cryptographic proofs?

@ In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway.

@ Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)

S. Halevi

R PP R TN R A

What's wrong with cryptographic proofs?

@ In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway.

@ Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)

S. Halevi

@ Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in taming
the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly
impossible to verify
V. Shoup
IR Ppes..... T INRIA

Game-based cryptographic proofs

Attack Game

Game G :

A

PI’Gg [Ao]

Prea[Ao] < €(n)

Security property

Game-based cryptographic proofs

Attack Game Final Game

Game G{ : Game G : Game G :
A .- >
~_—— ~_— ~_——
Prgn[Ao] < h(Pren[di]) < o < hy(Pren[An))

Prey[Ao] < h(Prgy[An]) < e(n)

2t onc B TN RIA

Game-based proofs: essence and problems

Independent events

l....| G
~ ~
Go
. G
~ ~

Prg,[Ao] < h(Prg[A]) x b/ (Prg/[A'])

S—7 I Y7

Game-based proofs: essence and problems

Independent events

le...| G
~ ~
Go
. el
~ ~

Prg,[Ao] < h(Prg[A]) x b/ (Prg/[A'])

Essence: relate the probability of events in consecutive games
But,

@ How do we represent games?
@ What adversaries are feasible?

@ How do we make a proof hold for any feasible adversary?

Language-based proofs

What if we represent games as programs?

Games

Probability space
Game transformations
Generic adversary
Feasibility

programs

program denotation

program transformations
unspecified procedure
Probabilistic Polynomial-Time

FEELl

R PP R TN R A

PWHILE: a probabilistic programming language

T = V& assignment
| V&D random sampling
| if&thenCelseC conditional
| while£doC while loop
| V<PE,....E) procedure call
C == nil nop
| I, C sequence

Measure monad: M(X) % (X — [0,1]) — [0, 1]

[[]:C—M— MM)

PWHILE: a probabilistic programming language

T = V€& assignment
| V&D random sampling
| if&thenCelseC conditional
| while£doC while loop
| V<PE,....¢E) procedure call
C == nil nop
| I, C sequence

Measure monad: M(X) % (X — [0,1]) — [0, 1]
[[]:C—M— MM)

[x & {0,1}; y < {0,1}] mf =
§ f(mi0.0/x.y)) +
z f(m[1,0/x,y1) +

Probability: Prg. »[A] < [G] m 14

f(m[0,1/x,y]) +
f(m{1,1/x, y])

FNEN NN

R PP R TN R A

PWHILE: a probabilistic programming language

T = V€& assignment
| V&D random sampling
| if&thenCelseC conditional
| while£doC while loop
| V<PE,....¢E) procedure call
C == nil nop
| I, C sequence

Measure monad: M(X) % (X — [0,1]) — [0, 1]
[[]:C—M— MM)

[x & {0,1}; y & {0,1}] m Lyxy =
i Lezy(m[0,0/x, 1) +
% lx;éy(m“) O/X7 y]) +
Probability: Prg m[A] ' [G] m 14

Lyzy(m[0,1/X,¥]) +
ﬂx;ﬁy(m“) 1/X7y])

=D

R PP R TN R A

PWHILE: a probabilistic programming language

7

C

V&

V&D

if £ then C else C
while £ do C
V—PeE,...,E)
nil

7, C

assignment
random sampling
conditional

while loop
procedure call
nop

sequence

Measure monad: M(X) % (X — [0,1]) — [0, 1]

[x & {0,1}; y < {0,1}] M Lyzy =

Probability: Prg m[A] %' [G] m 14

[[]:C—M— MM)

A= O

.I
|

O »=

PWHILE: a probabilistic programming language

T = V€& assignment
| V&D random sampling
| if&thenCelseC conditional
| while£doC while loop
| V<P(E,....E) procedure call
C == nil nop
| I, C sequence

Measure monad: M(X) % (X — [0,1]) — [0, 1]
[]:C— M — MM)

Probability: Prg m[A] & [G] m 14

Untyped vs. typed language

o 18t attempt: untyped language, lots of problems

e No guarantee that programs are well-typed
e Had to deal with ill-typed programs

IR Ppes..... T INRIA

Untyped vs. typed language

o 18t attempt: untyped language, lots of problems
e No guarantee that programs are well-typed
e Had to deal with ill-typed programs

e 2" attempt: typed language (dependently typed syntax!)
e Programs are well-typed by construction

Inductive 7 : Type :=

| Assign : Vt, Vi — & — T

| Rand :Vt, Vi =Dy — 7T

|Cond : &gy —wC—C—T

| While : EBool — C — T

| Call Vit ’P(/’t) — Vi — 5/* —7
where C .= 7*.

Parametrized semantics: [-] : Vn, C - M — M(M)

Characterizing feasible adversaries

A cost model for reasoning about program complexity
[-]:vn, C — (M x N) — M(M x N)
Non-intrusive:

[G] m = bind ([G]" (m,0)) (Amn. unit (fst mn))

2t onc B TN RIA

Characterizing feasible adversaries

A cost model for reasoning about program complexity
[-]:vn, C — (M x N) — M(M x N)
Non-intrusive:

[G] m = bind ([G]" (m,0)) (Amn. unit (fst mn))

A program G runs in probabilistic polynomial time if:

@ It terminates with probablity 1 (i.e. Vm, Prg p[true] = 1)

@ There exists a polynomial p(-) s.t. if (m, n) is reachable
with positive probability, then n < p(n)

Program equivalence

Definition (Observational equivalence)

f:)(g déf VYmy mo, m1(X) = m2(X) — fm =g mo

FGi~hG & vmymafg, m(l)=m(l) A f=0g =
[Gi] my £ =[G mz g

[5 PP .. SR I NRIA

Program equivalence

Definition (Observational equivalence)

f:)(g déf VYmy mo, m1(X) = m2(X) — fm = g mo

FGi~hG & vmymafg, m(l)=m(l) A f=0g =
[Gi] mi f=[Go] m2 g

Generalizes information flow security.
But is not general enough...

777

X

Fifx=0theny — xelse y — 1 ~ oy}

if x=0theny < Oelse y 1

[5 PP .. SR I NRIA

Program equivalence

Definition (Observational equivalence, generalization)
'=G1 NGQZ\U:>¢d§f
Vm mp.my Vmy = [Gi] my ~o [G2] m2

Where ~¢ is the lifting of relation ¢ from memories to
distributions.

(x =0) ~py (x=0)
IZyHX~y<—O::{X}/\(X:0)<1>:>:{X7y}
Ey—1~y—1 ::{X}/\(X7é0)<1>=>:{x,y}
ifx=0theny «— xelsey «— 1~
ifx=0theny < Qelse y — 1:=3= =

[5 PP .. SR I NRIA

From program equivalence to probability

Let A be an event that depends only on variables in O
To prove Prg, m, [A] = Prg, m,[A] it suffices to show

e F G 'zb Go

® my =y me

I 5 Y. SR I NR 1A

Proving program equivalence

Goal
E Gy :6 Go

A Relational Hoare Logic

Eci~C:®d=>d Ecj~cy:d =9

R-S
FCpc)~0Cy:d = [R-Sed]

2t onc B TN RIA

Proving program equivalence

Goal
F Gy :b Go

Mechanized program transformations

@ Transformation: T(Gy,Go,/, 0) = (G}, G5, /', O)
@ Soundness theorem

T(G1,G2..0) = (G}, G). I, 0) =G ~p Gy

E G1 26 Gg

@ Reflection-based Coq tactic

Proving program equivalence

Goal
F Gy :b Go

Mechanized program transformations

@ Dead code elimination

@ Constant folding and propagation
@ Procedure call inlining

@ Instruction reordering

@ Common suffix/prefix elimination

R PP R TN R A

Proving program equivalence

Goal
E Gy :b Go

A semi-decision procedure for self-equivalence

@ Does F G ~}, G hold?
@ Analyze dependencies to compute /' s.t. £ G :g G
@ Checkthat /' C |

Example

Game ElGamalg :
v Ly y &Ly inline_r B;
(mo,m1) < A(g"); ep;
b & {071}; deadcode;
¢ — g% x my; eqobs_in
v — A(g%, 9%, Q); !
de—b=10 }
) |

) - -----
Game DDHj : | Procedure B(a, 3,7) :
T & Ly | (moym) = Ala);
y&Zq; | b&{():l}a

d — B(g®, gv,g7), ¥ = Al By xm);
| return b =1

ct o B TN.R LA

The Fundamental Lemma of Game-Playing

Fundamental lemma

If two games G; and G, behave identically in an initial memory
m unless a failure event A fires, then

|Pra, mlA] — Pra, mlAl| < Prg, ,[F]

MR ™ Yo A INRIA

The Fundamental Lemma of Game-Playing

Game Gj : Game G5 :

bad < true; ¢ bad « true; co

@ Prg, m[AA —bad] = Prg, ,[A A —bad]
@ Prg, m[bad] = Prg, n[bad]

Pra, mlAl — Pre, mlAll < Prg, ,[bad]

S—7 I Y7

Wrapping up

Contributions

@ Formal semantics of a probabilistic programming language

@ Characterization of probabilistic polynomial-time programs
@ A Probabilistic Relational Hoare logic

@ Mechanization of common program transformations

@ Formalized emblematic proofs: EIGamal, FDH, OAEP

Perspectives
@ Overwhelming number of applications: 1B, ZK proofs, ...

@ Computational soundness of symbolic methods and
information flow type systems

@ Verification of randomized algorithms

R PP R TN R A

Some statistics

@ 6 persons involved
@ CertiCrypt: 30,000 lines of Coq, 48 man-months

@ Full Domain Hash: 2,500 lines of Coqg, 4 man-months
(for a person without experience in CertiCrypt)

Questions

ElGamal

deadcode.
swap.
eqobs.in.

inline.r B.

encryption

Game ElGamal :

(8,¢) « Enc(a, mp);

Game ElGamalp :
T & ZLg; y & Lg;
(mo,m1) — A(g®);
b& {01}

¢ — g™ X my;

b — A'(g*%, 9¥,¢);
d—b="b

Game ElGamals :

(z, @) «— KG(); z & Zg; y & Lg;
(mo,m1) +— A(@); (mo,m1) « A(g®);
b & {01} 2 & Zg; { — g%

v — A'(g%,9Y,();

Game ElGamal; :

z & Zq; y & Lg;
(mo,m1) — A(g®);

b & {0,1}

2 & Lg; — g* X my;
v — A'(g%,9Y,¢);
d—b=1¥

Lemma B_PPT :
Proof. PPT_tac. Qed.

PPT B.

Lemma Bwf : WFAdv B.
Proof. ... Qed.

inline. 1 KG. b — A'(a, 8,¢); b& {0,1}

inline 1 Enc. d—b="b d—b="b swap.

ep. eqobs_hd 4.
=d =d = eqobs_tl 2.

apply mult.pad.

inline.r B.
ep.

ep. = ~
deadcode. AR ot RS A Z::gcode.
eqobs_in. eqcb; in

Game DDHg : Adversary B(a, 8,7) : Game DDH; : —

z & Zg; (mo,m1) — A(a); T & Zg;

y & Za; b & {0,1} y & Zg;

d — B(g®, 9%, %) b — Ao, B,y x my); 2 & Zg;

return b=’ d — B(¢”, 9%, 9°%)

]
Preigamalb = b'] — 5| = |Propw,[d] — Propw, [d]]

=

INRIA

Observational equivalence

FGi~G: V=0 déf m1\Um2é[[G1]]m1 ~¢[[Gz]]m2

range P 1 & Vf, (Va, Pa=fa=0)=puf=0

i ~o iz & 3, m () = Ama(p) = pz Arange ® p

Small-step semantics

(nil, m, []
(nil, m, (x, e,c,1)
(x < p(€); c.m. F
(if ethen ¢y else ¢o; ¢, m, F

) ~
F) ~
) ~
) ~

(if ethen cy else co; ¢,m, F) ~~

(whileedoc; ¢/,m F) ~

(whileedoc; ¢/,m F) ~

(x—e€e c,mF) ~
(x&d e,mF) ~

unit
unit
unit
unit

nil, m,[])
c, (I, m.glob){[e] m/x},F)

/—\/\/\/\

ci; ¢,m,F)
if [e] m = true

unit (c2; ¢, m, F)

if [e] m = false
unit (¢; while edo c; ¢/, m, F)

if [e] m = true
unit (¢’, m, F)
if [e] m = false

unit (¢, m{[e] m/x} F)

INR,

E(p).body, (0{[€] m/E(p).params},

7]

Denotation

[Slo%funitS [S]hy1 & bind [S], []
[c] m: M(M) EAE. sup {[(c,m, [D)]n fliinar | N € N}

