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What’s wrong with cryptographic proofs?

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway.
Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)
S. Halevi
Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in taming
the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly
impossible to verify
V. Shoup
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Game-based cryptographic proofs
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Game-based proofs: essence and problems

Independent events

PrG0 [A0] ≤ h(PrG[A])× h′(PrG′ [A′])
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Essence: relate the probability of events in consecutive games
But,

How do we represent games?
What adversaries are feasible?
How do we make a proof hold for any feasible adversary?
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Language-based proofs

What if we represent games as programs?

Games =⇒ programs
Probability space =⇒ program denotation
Game transformations =⇒ program transformations
Generic adversary =⇒ unspecified procedure
Feasibility =⇒ Probabilistic Polynomial-Time



PWHILE: a probabilistic programming language

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Measure monad: M(X ) def
= (X → [0, 1])→ [0, 1]

J·K : C →M→ M(M)

Jx $← {0, 1}; y $← {0, 1}K m =

+ +
+

Probability: PrG,m[A] def
= JGK m 1A
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Untyped vs. typed language

1st attempt: untyped language, lots of problems
No guarantee that programs are well-typed
Had to deal with ill-typed programs

2nd attempt: typed language (dependently typed syntax!)
Programs are well-typed by construction

Inductive I : Type :=
| Assign : ∀t , Vt → Et → I
| Rand : ∀t , Vt → Dt → I
| Cond : EBool → C → C → I
|While : EBool → C → I
| Call : ∀l t ,P(l,t) → Vt → E?

l → I
where C := I?.

Parametrized semantics: J·K : ∀η, C →M→ M(M)
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Characterizing feasible adversaries

A cost model for reasoning about program complexity

J·K′ : ∀η, C → (M× N)→ M(M× N)

Non-intrusive:

JGK m = bind (JGK′ (m, 0)) (λmn. unit (fst mn))

A program G runs in probabilistic polynomial time if:

It terminates with probablity 1 (i.e. ∀m, PrG,m[true] = 1)
There exists a polynomial p(·) s.t. if (m′, n) is reachable
with positive probability, then n ≤ p(η)
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Program equivalence

Definition (Observational equivalence)
f =X g def

= ∀m1 m2, m1(X ) = m2(X ) =⇒ f m1 = g m2

� G1 'I
O G2

def
= ∀m1 m2 f g, m1(I) = m2(I) ∧ f =O g =⇒

JG1K m1 f = JG2K m2 g

Generalizes information flow security.
But is not general enough...

???

� if x = 0 then y ← x else y ← 1 '{x}
{x ,y} if x = 0 then y ← 0 else y ← 1
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Program equivalence

Definition (Observational equivalence, generalization)

� G1 ∼ G2 : Ψ⇒ Φ def
=

∀ m1 m2. m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2
Where ∼Φ is the lifting of relation Φ from memories to
distributions.

(x = 0) ∼{x} (x = 0)

� y ← x ∼ y ← 0 : ={x} ∧ (x = 0)〈1〉 ⇒ ={x ,y}
� y ← 1 ∼ y ← 1 : ={x} ∧ (x 6= 0)〈1〉 ⇒ ={x ,y}
if x = 0 then y ← x else y ← 1 ∼
if x = 0 then y ← 0 else y ← 1 : ={x}⇒ ={x ,y}



From program equivalence to probability

Let A be an event that depends only on variables in O

To prove PrG1,m1 [A] = PrG2,m2 [A] it suffices to show

� G1 'I
O G2

m1 =I m2



Proving program equivalence

Goal

� G1 'I
O G2

A Relational Hoare Logic

� c1 ∼ c2 : Φ⇒ Φ′ � c′
1 ∼ c′

2 : Φ′ ⇒ Φ′′

� c1; c′
1 ∼ c2; c′

2 : Φ⇒ Φ′′ [R-Seq]

. . .



Proving program equivalence

Goal

� G1 'I
O G2

Mechanized program transformations

Transformation: T (G1, G2, I, O) = (G′
1, G′

2, I′, O′)

Soundness theorem

T (G1, G2, I, O) = (G′
1, G′

2, I′, O′) � G′
1 'I′

O′ G′
2

� G1 'I
O G2

Reflection-based Coq tactic



Proving program equivalence

Goal

� G1 'I
O G2

Mechanized program transformations

Dead code elimination
Constant folding and propagation
Procedure call inlining
Instruction reordering
Common suffix/prefix elimination



Proving program equivalence

Goal

� G1 'I
O G2

A semi-decision procedure for self-equivalence

Does � G 'I
O G hold?

Analyze dependencies to compute I′ s.t. � G 'I′
O G

Check that I′ ⊆ I



Example

'∅
{d}

inline r B;
ep;
deadcode;
eqobs in

Game ElGamal0 :
x $← Zq; y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy, ζ);
d← b = b′

Procedure B(α, β, γ) :
(m0,m1)← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ ×mb);
return b = b′

Game DDH0 :
x $← Zq;
y $← Zq;
d← B(gx, gy, gxy)



The Fundamental Lemma of Game-Playing

Fundamental lemma
If two games G1 and G2 behave identically in an initial memory
m unless a failure event A fires, then

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2 [F ]



The Fundamental Lemma of Game-Playing

Game G1 :
. . .
bad← true; c1

. . .

Game G2 :
. . .
bad← true; c2

. . .

PrG1,m[A ∧ ¬bad] = PrG2,m[A ∧ ¬bad]

PrG1,m[bad] = PrG2,m[bad]

Corollary

|PrG1,m[A]− PrG2,m[A]| ≤ PrG1,2 [bad]



Wrapping up

Contributions
Formal semantics of a probabilistic programming language
Characterization of probabilistic polynomial-time programs
A Probabilistic Relational Hoare logic
Mechanization of common program transformations
Formalized emblematic proofs: ElGamal, FDH, OAEP

Perspectives
Overwhelming number of applications: IB, ZK proofs, ...
Computational soundness of symbolic methods and
information flow type systems
Verification of randomized algorithms



Some statistics

6 persons involved
CertiCrypt: 30,000 lines of Coq, 48 man-months
Full Domain Hash: 2,500 lines of Coq, 4 man-months
(for a person without experience in CertiCrypt)



Questions



ElGamal encryption

∣∣∣∣PrElGamal[b = b′]− 1
2

∣∣∣∣ = |PrDDH0 [d ]− PrDDH1 [d ]|



Observational equivalence

� G1 ∼ G2 : Ψ⇒ Φ def
= m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2

Lifting

range P µ def
= ∀f , (∀a, P a⇒ f a = 0)⇒ µ f = 0

µ1 ∼Φ µ2
def
= ∃µ, π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ range Φ µ



Small-step semantics

(nil, m, [ ])  unit (nil, m, [ ])

(nil, m, (x , e, c, l) :: F )  unit (c, (l , m.glob){JeK m/x}, F )

(x ← p(~e); c, m, F )  unit (E(p).body, (∅{J~eK m/E(p).params}, m.glob), (x , E(p).re, c, m.loc) :: F )

(if e then c1 else c2; c, m, F )  unit (c1; c, m, F )

if JeK m = true
(if e then c1 else c2; c, m, F )  unit (c2; c, m, F )

if JeK m = false
(while e do c; c′, m, F )  unit (c; while e do c; c′, m, F )

if JeK m = true
(while e do c; c′, m, F )  unit (c′, m, F )

if JeK m = false

(x ← e; c, m, F )  unit (c, m{JeK m/x}, F )

(x $← d ; c, m, F )  bind (JdK m)(λv . unit (c, m{v/x}, F ))



Denotation

JSK0
def
= unit S JSKn+1

def
= bind JSKn J·K1

JcK m : M(M) def
= λf . sup {J(c, m, [ ])Kn f |final | n ∈ N}


