SIPp

S| Pp reference documentation

by Richard GAYRAUD [initial code], Olivier JACQUES [code/documentation], Charles P. Wright [code], Many contributors [code]

Table of contents

I 0] = o SRR 5
P2 1S | = 1 oo OSSP 7
228 R <11 T 1 o S SOSSSRPN 7
B = o Lo = = S S 7
P B LS o) L= = 1= SR 7
P N = T = o LT o= 0 TSRS 7
B2 R 107 = T a0 TS oSSR 8
2.6 INCIrEaSiNg FIl@ DESCIPLOIS LIMT........ciuieieiiiieeiteeee st e e s et e et e st e st e e te s e e s te e teeaeesteeaseese e seeaseeseesseassease e seenseaseeaseenseeseeaseeaseeseesseenseesseseenseaneeaseenseaneeaseenseennesreensennnans 9
TS g o TS o TSRS 10
0 AV = T g T = - SS S SSSSR 10
I A 010= 0 = 0 o IR o g oSOV 10
K 357204 1 OSSR 10
A 0) N O { g T 0 1= o = TSRS 11

K 2 T 1 TSRS 12
I = o[T PSPPSR 12

3.2.6 UAC OUL-OF-Call IMESSAGES. ... eeueeiteeieiieieesteeieeteesteetesseesseesteaseesseastesseesseasseaseesseassesseeaseanseaseeaseesseaseesseenseaneesseenseaseeaseenseaseenseenseeneeaseenseaneeaseenseensesneenseensenneensen 13
K 2 A S 13
KT I O O T 1= 10 = SR 16
30 @] (o 1T o TS TSRS 17
I 5 I =1 Lo o (o OSSPSR 19
B (< 11010) (=3 oo o USSR 20
KIS (0 10T 1o TS o TR T T 7= o2 (o 0o S 21
3.6 Create YOUP OWI XIML SCENMAITOS.cuiiterterterteeueeueeeessessessessessessessesseessesessessesseaseeaeeseeaeaaseseeaeeebe£EeeReeh e e R e eaeemsea e e AE e b e HE e e Re AR e e aeea s e s e b e AE e e b e e b e eR e e heeaeenb e s et e nbeebenbeenenneennan 21
3.6.1 Structure Of ClIENt (UAC 1TKE) XIML SCENGITOS........ciueiuirueeieeueeeeterteste sttt stease e e e esesse st sseabeebeeseeseesseas e seeeeE e R e oE e £Re SR £ 2R e e s e e s s e e e nEeeb e eE e eh e eheeaeens e s e b e neeabenbenneaneennas 30
3.6.2 SIrUCIUre Of SEIVEr (UAS I1KE) XIML SCENGITOS.iiueeiteeeesieeteetesteesieseesseessesseesseessesseesseesesseesseaseaseesseesseameesseanseaaeeaseanseaaeeabe et e eaeeaaeanbeameenbeenbeeneeabeensesneenreenes 35
I 0 BN o 1] 1 T PRSP 36
I Y= = o -SSP 45
3.6.5 Injecting values from an external CSV AUING CaIS........ooiiiiiieiieiece ettt et e st e st e et e s ae e teeseesse e seeseeaseenseeseesseenseeseeaseensenseesseenseeneeseenseenennsennsens 46
X SR @ ol aTe 1 ol gT= I o] =T ot a1 oo TH PSSP 49
I IS 1 = 111001 1 oo 53
I RS Lo LU= [z (o] IS = - TSR 55
S o < TSP PRPUPPRURPTOPRRPRN 55
IR T I =S 0 1 A 00T =SSOSR 59
R U B L 1070 0 JE=eTox (= F TSRS RSP PP PR 59
RIS 7 0 1 1 00 S o (= O 60
3.8.3 UDP With 0NE SOCKEL PEI [P @OAIESS...... ..ottt sttt h st e e et e s e e bt s e e eh e e h e e ae e s e e s a8 e 48 e b e AE £ 4R £ £ E £ £h £ 2R e e a e e s e R e e b e AR e e R £ eae e heeae e e e e e e e abeneeenenbeeneennens 60
KIS IO 3000 TS ox (= PR 61
3.8.5 TCP MUILE SOCKEL.........eeteeieiitieiteete sttt sttt ettt e s b e et e st e sbe e besaeeshe e e e e aeeehe e s ee e st e eE e e et eaeeeR e e a b e ea e e Sh e e e e 4o e e eEeea b e e Rt e A E e e m b e e e e e oA e e b e oAt e nE e e b e ea e e eRe et e e aeenbeenbeentesneebennnas 61
I I O e = o] 1= o SRRSO 62
I A SR 1110 o TR o ot <. TSRS 62

R T IS 1 100 Tox (= SO PRPUPPRR 62
R I | o VIS o oo TSP PRSPPTUS PR OPP PR 62
KIS 0 0T S o S T P 63
R = oo L aTo T 0= 0= T S o PRSP 63
T N T I = o SRRSO 63

e T O L o - SO SRTPRSRSSRR 63
I O 0 L= TSRS 64
I TS =1 0SSP 64
B.11.1 RESPONSE THTIES......eetitieteeiieieeieetet et sttt steeaeeae e e e e e eese e beee e eaeeheeaeea e e e e s e nE e R £ £E £ 4R e eh £ £ REea s e a e 2 s £ 8 e R e AE e HE £ AR £ 2R £ 2R e e a s e e e e e R e AE £ AR £ eh £ e R £ £ R £ oA e e e e e e b e nE e e b e ebeeneeneenn e s e e e e e neennis 64

I I N 7= T = o] ox0 1 1= £ SRR 65
3.11.3 DEtall €0 MESSAGE COUNES.eiiiieitieeiteeiteeiteesttseteesseeeteesseeaseessesasseeaseeaaseeaseeaaseeaseeaaseeaseeaaseesseeaaseeaseeeaseeeaeeanse e seeeaseenaeeoaseeeseeenseeaReeenseeeseeenteenneeenbeeaneeenseesnnnans 66
3.11.4 Importing statisticS iN SPreadShEEt QDPIICALIONS.ciiiiiiieieeie ettt e e e e e s teeee e e e teaseesaeesseeaseaseeseessesseesseenseaseenseansesseeaseanseaseesseenseeaeenseenseaneessennns 66
KI5 2 1 o o [o 66
3.12.1 UNEXPECTEU IMESSAGES.c.veverterterierieeseessestessestessessesseeseassesassesaeasesseaaeaseaseesseas e seseeeheeE e eaeea e eaeea e e s e b e HE e eheeE £ eR e e R e e A e e a e e e e b e AE e AR e e h e e R e e R e e s e e e nE e benEeeheeheeaeensenbenbeneenbenreas 66
3.12.2 REtranSMISSIONS (UDP ONTY).....uiitiitiitiiieie ettt b bbbkt eae e e e s e e e e e eE £ 4R e eh e e R £ 2R e 2R e e a e e s e R £ A E £ R e HE £ SR e £h £ 2a e e R s e s e e e AR e b e eE e eh e ehe e et ent e s et e neeabenbeeneeneennas 67

I 1220 T I oo [1= TTSRN 67
IR I @ 01 1T gL o1 o TN) TSRS 68
4 PerformanCe tESHING WITN SIPD......oiciiiiii ettt st e st e e e et e s te e teeseesaeeaseeseesaeesseeseeaseeaseeaeeaseeaseeseeaseenseaseeaseesseeneeaseenseeneeaseenseeneeaReenseenseeseeteensesneenseensenneensen 77
4.1 Advices to run PerformanCe tESES WITI SIPP........cui ettt e st te st e e s aeeaeeese e teeaeesse e seeasease e seeneeeseeseenseeseeeeeneeeaeeseenseaseensennsesneensennenns 77
A RS a1z 7= S o 1< o] oo OSSPSR 77
U LTI oo 3= s o LIS o TSRS PSP PRTURPRPRURN 78
ST o[RSP S 78
LI VAV S = O 7= PRSP 78
ST IR o o SRR 78
(SR a0 TS oo o 79

SIPp

Ao 1] 01U (] o (T o TS 79

Page 4

SIPp

This version of the documentation is for SIPp 3.2 branch. To access the latest version of the documentation, go to this page (../doc/reference.ntml) .

SIPp is a performance testing tool for the SIP protocol. It includes afew basic SipStone user agent scenarios (UAC and UAS) and establishes and releases multiple
callswith the INVITE and BY E methods. It can also reads XML scenario files describing any performance testing configuration. It features the dynamic display of
statistics about running tests (call rate, round trip delay, and message statistics), periodic CSV statistics dumps, TCP and UDP over multiple sockets or multiplexed
with retransmission management, regular expressions and variables in scenario files, and dynamically adjustable call rates.

SIPp can be used to test many real SIP equipements like SIP proxies, B2BUAS, SIP media servers, SIP/x gateways, SIP PBX, ... It is also very useful to emulate
thousands of user agents calling your SIP system.

Want to seeit?

Hereis a screenshot

Page 5

../doc/reference.html

SIPp

o ocadmin@vistaz-fsipp

e Zcenario 3creen [1-4]: Change Screen --
lel—rateilengthﬁ Total-time Total-calls Remote-host
10 cp=si0 m=) Losl 4. 01 = : b 0. 1: E0s0(ULE)

10 new calls during 1.000
0 concurrent calls (limit
0 out-of-call msg (discarded)

1l open sockets

Timeouat Thexpected-M=qg
1]

INVITE
1and
1s0

UL

And hereisavideo (Windows Media Player 9 codec or above required) of SIPp in action:

Eﬂw (images/sipp-01.wmv)

Page 6

images/sipp-01.wmv

o
=]

SIPp isreleased under the GNU GPL license (http://www.gnu.org/copyleft/gpl.html) . All the terms of the license apply. It is provided to the SIP community by
Hewlett-Packard (http://www.hp.com) engineersin hope it can be useful.

We receive some support from our company to work on this tool freely, but HP does not provide any support nor warranty concer ning Sl Pp.

Like many other "open source" projects, there are two versions of SIPp: a stable and unstable release. Stable release: before being labelled as "stable”, a SIPp release
isthoroughly tested. So you can be confident that all mentioned features will work :)

Use the stable release for your everyday use and if you are not blocked by a specific feature present in the "unstable release” (see below).

Sl Pp stable download page (http://sourceforge.net/project/showfiles.php?group_id=104305)

Unstable release: all new features and bug fixes are checked in SIPp's SVN (http://sipp.svn.sourceforge.net/viewvc/sipp/sipp/trunk/) repository as soon asthey are
available. Every night, an automatic extraction is done and the source code of this release is made available.

Use the unstable release if you absolutely need a bug fix or afeature that is not in the stable release.

SIPp "unstable" download page (http://sipp.sourceforge.net/snapshots/)

SIPpisavailable on aimost all UNIX platforms: HPUX, Tru64, Linux (RedHat, Debian, FreeBSD), Solaris/SunOS.

http://www.gnu.org/copyleft/gpl.html
http://www.hp.com
http://sourceforge.net/project/showfiles.php?group_id=104305
http://sipp.svn.sourceforge.net/viewvc/sipp/sipp/trunk/
http://sipp.sourceforge.net/snapshots/

SIPp

A Windows port has been contributed. Y ou can now compile SIPp under Cygwin. A binary package with aWindows installer is also available. Check the download
page (http://sourceforge.net/project/showfiles.php?group _id=104305) to download it and run SIPp under Windows.

| SIPp works only over Windows XP and will not work on Win2000. Thisis because of |Pv6 support. The Windows installer should prevent someone to install SIPp on Win2000. |

On Linux, SIPpis provided in the form of source code. Y ou will need to compile SIPp to actually useit.
Pre-requisites to compile SIPp are (see Compilation tips (http://sipp.sourceforge.net/wiki/index.php/Compilation)):

C++ Compiler

curses or ncurses library

For authentication and TLS support: OpenSSL >= 0.9.8

For pcap play support: libpcap and libnet

For distributed pauses. Gnu Scientific Libraries (http://www.gnu.org/software/gsl/)

Y ou have four options to compile Sl Pp:

Without TLS (Transport Layer Security) and authentication support: Thisisthe recommended setup if you don't need to handle SIP authentication and/or
TLS. Inthis case, there are no depenciesto install before building SIPp. It is straight forward:

gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp

make

With TL Sand authentication support, you must have installed OpenSSL library (http://www.openssl.org/) (>=0.9.8) (which may come with your system).
Building SIPp consist only in adding the "osd" option to the make command:

gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp

make oss

With PCAP play and without authentication support:

gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp

make pcappl ay

With PCAP play and authentication support:

gunzip sipp-xxx.tar.gz

Page 8

http://sourceforge.net/project/showfiles.php?group_id=104305
http://sourceforge.net/project/showfiles.php?group_id=104305
http://sipp.sourceforge.net/wiki/index.php/Compilation
http://www.gnu.org/software/gsl/
http://www.openssl.org/

SIPp

tar -xvf sipp-xxx.tar
cd sipp
make pcappl ay_oss

To enable GSL (http://www.gnu.org/software/gsl/) at compile time, you must install GSL and its include files, as well as un-comment the linesin the local.mk file of SIPp distribution.
Then, re-compile SIPp.

* OnWindows, SIPp is provided both with the source and the pre-compiled executable. Just execute the installer to have SIPp installed.

SIPp compiles under CY GWIN, provided that you installed I1Pv6 extension for CY GWIN (http://win6.jp/Cyagwin/), as well as OpenSSL and libncurses.

» To compile SIPp on Windows with pcap (media support), you must:
» Copy the WinPcap developer package (http://www.winpcap.org/devel .htm) to " C:\cygwin\lib\WpdPack"
* Remove or rename "pthread.h” in " C:\cygwin\lib\WpdPack\Include", as it interfers with pthread.h from cygwin
» Compile using either "make pcapplay_cygwin" or "pcapplay_oss_cygwin"

If your system does not supports enough file descriptors, you may experience problems when using the TCP/TLS mode with many simultaneous calls.
Y ou have two ways to overcome this limit: either use the - max_socket command line option or change the limits of your system.
Depending on the operating system you use, different procedures allow you to increase the maximum number of file descriptors:

* OnLinux 2.4 kernels the default number of file descriptors can be increased by modifyingthe/ et c/ security/limts. conf andthe/ et c/ pam d/
| ogi nfile.

Openthe/etc/security/limts.conf fileandadd thefollowing lines:

soft nofile 1024
hard nofil e 65535

Openthe/ et c/ pam d/ | ogi n and add the following line

session required /lib/security/pamlimts.so

The system file descriptor limitissetinthe/ proc/ sys/ fs/fil e- max file. The following command will increase the file descriptor limit:

echo 65535> /proc/sys/fs/file-max

Page 9

http://www.gnu.org/software/gsl/
http://win6.jp/Cygwin/
http://www.winpcap.org/devel.htm

To increase the number of file descriptors to its maximum limit (65535) setinthe/ et ¢/ security/limts. conf file type:
ulimt -n unlimted

Logout then login again to make the changes effective.
On HP-UX systems the default number of file descriptors can be increased by modifying the system configuration with the sam utility. In the Kernel Configuration
menu, select Configurable parameters, and change the following attributes:

maxfiles : 4096
maxfiles_|lim: 4096
nfiles : 4096

ni node : 4096

max_t hread_proc : 4096
nkt hread : 4096

SIPp allows to generate one or many SIP calls to one remote system. The tool is started from the command line. In this example, two SIPp are started in front of each
other to demonstrate SIPp capabilities.

Run sipp with embedded server (uas) scenario:

./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario

./sipp -sn uac 127.0.0.1

Integrated scenarios? Y es, there are scenarios that are embedded in SIPp executable. While you can create your own custom SIP scenarios (see how to create your
own XML scenarios), afew basic (yet useful) scenarios are available in SIPp executable.

Scenario file: uac.xml ((uac.xml.html) (original XML file (uac.xml))

SI Pp UAC Renot e

Page 10

uac.xml.html
uac.xml

SIPp

Scenario file: uac_pcap.xml (uac_pcap.xml.html) (original XML file (uac_pcap.xml))

SI Pp UAC Renot e

>|
I
(8) BYE |
B EEPECRREREEPEERE >
| (9) 200 |
R e |

Page 11

uac_pcap.xml.html
uac_pcap.xml

SIPp

Scenario file: uas.xml ((uas.xml.html) (original XML file (uas.xml))

Renot e SI Pp UAS
| (1) INVITE |

Scenario file: regexp.xml (regexp.xml.html) (original XML file (regexp.xml))
This scenario, which behaves as an UAC is explained in greater detailsin this section.

SI Pp regexp Renot e
| (1) INVITE |

Page 12

uas.xml.html
uas.xml
regexp.xml.html
regexp.xml

SIPp

Scenario files: branchc.xml (branchc.xml.html) (original XML file (branchc.xml)) and branchs.xml (branchs.xml.html) (original XML file (branchs.xml))
Those scenarios, which work against each other (branchc for client side and branchs for server side) are explained in greater detailsin this section.

In SIPp 3.2, thisfeature is only enabled when the -aa (auto-answer) command-line parameter is used.

Scenario file: ooc_default.xml (ooc_default.xml.html) (original XML file (ooc_default.xml))

When a SIPp UAC receives an out-of-call request, it instantiates an out-of-call scenario. By default this scenario simply replies with a 200 OK response. This scenario
can be overridden by passing the - oocsf or - oocsn command line options.

SI Pp UAC Renot e
(1) .* I

3PCC stands for 3rd Party Call Control. 3PCC is described in RFC 3725 (http://www.ietf.org/rfc/rfc3725.txt) . While this feature was first developped to allow 3PCC
like scenarios, it can aso be used for every case where you would need one SIPp to talk to several remotes.

In order to keep SIPp simple (remember, it's atest tool!), one SIPp instance can only talk to one remote. Which is an issue in 3PCC call flows, like call flow | (SIPp
beeing a controller):

Page 13

branchc.xml.html
branchc.xml
branchs.xml.html
branchs.xml
ooc_default.xml.html
ooc_default.xml
http://www.ietf.org/rfc/rfc3725.txt

SIPp

A Controller
| (1) INVITE no SDP |

I
I
|
I | (5) ACK
I
I
I

Scenario file: 3pcc-A.xml (3pcc-A.xml.html) (original XML file (3pcc-A.xml))
Scenario file: 3pcc-B.xml (3pce-B.xml.html) (original XML file (3pcc-B.xml))
Scenario file: 3pcc-C-A.xml (3pcc-C-A.xml.html) (original XML file (3pcc-C-A.xml))
Scenario file: 3pcc-C-B.xml (3pce-C-B.xml.html) (original XML file (3pcc-C-B.xml))

The 3PCC feature in SIPp allowsto have two SIPp instances launched and synchronised together. If we take the example of call flow I, one SIPp instance will take
care of the dialog with remote A (thisinstanceis called 3PCC-C-A for 3PCC-Controller-A-Side) and another SIPp instance will take care of the dialog with remote B
(thisinstanceis called 3PCC-C-B for 3PCC-Controller-B-Side).

The 3PCC call flow | will, in reality, look like this (Controller has been divided in two SIPp instances):

A Controller A Controller B B
| (1) INVITE no SDP | |

I

I

I
R >| | |
sendCmd (offerl)		
R >		
	recvCnd	
		(3) INVITE offerl
N [vttt >		
		(4) 200 OK answerl
		==2ee00s00c00000002
	sendCrrd	
	(answer 1)	
[20s00s0m0c00200s		
recvCnd	(5) ACK	
	R >	
I I I

(6) ACK answerl

Page 14

3pcc-A.xml.html
3pcc-A.xml
3pcc-B.xml.html
3pcc-B.xml
3pcc-C-A.xml.html
3pcc-C-A.xml
3pcc-C-B.xml.html
3pcc-C-B.xml

SIPp

Asyou can see, we need to pass information between both sides of the controller. SDP "offerl" is provided by A in message (2) and needs to be sent to B sidein
message (3). This mechanism isimplemented in the scenarios through the <sendCmd> command. This:

<sendCnd>
<! [CDATA[
Call-1D: [call_id]
[$1]

11>
</ sendCd>

Will send a"command” to the twin SIPp instance. Note that including the Call-1D is mandatory in order to correlate the commands to actual calls. In the same manner,
this:

<r ecvCnd>
<action
<ereg regexp="Content-Type:.*"
sear ch_i n="nsg"
assign_to="2"/>
</ action>
</ recvCnmd>

Will receive a"command" from the twin SIPp instance. Using the regular expression mechanism, the content is retrieved and stored in acall variable ($2 in this case),
ready to be reinjected

<send>
<! [CDATA[

ACK sip:[service] @renote_ip]:[renpte_port] SIP/2.0

Via: SIP/2.0/[transport] [local _ip]:[l|ocal_port]

From sipp <sip:sipp@I|ocal _ip]:[local _port]>;tag=[call_nunber]
To: sut <sip:[servicel]@renote_ip]:[renote_port]>[peer_tag_parani
Call-1D: [call_id]

CSeq: 1 ACK

Contact: sip:sipp@Iocal _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

[$2]

11>

</ send>

In other words, sendCmd and recvCmd can be seen as synchronization points between two SIPp instances, with the ability to pass parameters between each other.

Page 15

SIPp

Another scenario that has been reported to be do-able with the 3PCC feature is the following:

e A cdlsB. B answers. B and A converse

e BcadlsC. Canswers. C and B converse

* B "REFER"sA to C and asksto replace A-B call with B-C call.
* A accepts. A and C talk. B drops out of the calls.

An extension of the 3pcc mode isimplemented in sipp. This feature allows n twin sipp instances to communicate each other, each one of them being connected to a
remote host.

The sipp instance which initiates the call is launched in "master" mode. The others are launched in "slave" mode. Twin sipp instances have names, given in the
command line (for example, sl, s2...sn for the slaves and m for the master) Correspondances between instances names and their addresses must be stored in afile
(provided by -dave cfg command line argument), in the following format:

s1;127.0.0. 1: 8080
s2;127.0.0. 1: 7080
m 127. 0. 0. 1: 6080

Each twin sipp instance must access a different copy of thisfile.
sendCmd and recvCmd have additional attributes:

<sendCnd dest="sl1">
<! [CDATA[
Call-1D: [call_id]
From m
[$1]

11>
</ sendCrd>

Will send acommand to the "s1" peer instance, which can be either master or slave, depending on the command line argument, which must be consistent with the
scenario: a slave instance cannot have a sendCmd action before having any recvCmd. Note that the message must contain a"From" field, filled with the name of the
sender.

<recvCrd src="m'">
<action
<ereg regexp="Content-Type:.*"
sear ch_i n="nsg"
assign_to="2"/>
</action>

Page 16

SIPp

</ recvCrd>

Indicates that the twin command is expected to be received from the "m" peer instance.
Note that the master must be the launched at last.
There is no integrated scenarios for the 3pcc extended mode, but you can easily adapt those from 3pcc.

Example: the following drawing illustrate the entire procedure. The arrows that are shown between SIPp master and slaves depict only the synchronization commands
exchanged between the different SIPp instances. The SIP message exchange takes place as usual.

Master (m) TCP Slave (s1) -slave_cfg <file>
192.168.0.5 192.168.0.2 s1;192.168.0.2:8080
£2;192.168.0.3:8080

J

Slave (s2) =3;192 168.0.4:8080
192.168.0.3 m;192 168.0.5:B080

—
Slave (s3)
192.168.0.4

m/'/z ,53

‘—-—-—-_______-_ recviCrmd sre=m
recvCmd sro=el g ——— sendCmd dest=m

sendCmd dest=g2

sendCmd dest=s1

| recuCmd sre=m
sandCmd dest=g3

—_—
| recvCmid srz=m

sendCmd dest=m

recvCmd sre=sd |of

SIPp can be controlled interactively through the keyboard or viaa UDP socket. SIPp supports both 'hot' keys that can be entered at any time and also asimple
command mode. The hot keys are:

Page 17

=

A WN

5

6-9

SIPp

Increasethe call rate by 1 * rate scale

Increase the call rate by 10 * rate scale

Decrease the call rate by 1 * rate_scale

Decrease the call rate by 10 * rate scale

Enter command mode

Quit SIPp (after al calls complete, enter a second time to quit immediately)
Quit SIPp immediately

Dump screensto thelog file (if -trace_screen is passed)
Pause traffic

Display the scenario screen

Display the statistics screen

Display the repartition screen

Display the variable screen

Display the TDM screen

Display the second tdrough fifth repartition screen.

In command mode, you can type a single line command that instructs SIPp to take some action. Command mode is more versatile than the hot keys, but takes more

time to input some common actions. The following commands are available:

dump tasks
set rate X
set rate-scale X

set users X

Printsalist of active tasks (most tasks are calls) to the error log. dunp t asks

Setsthe cdll rate.

set rate 10

Setsthe rate scale, which adjusts the speed of '+, -, ™", and'/'. set rate-scale 10

Sets the number of users (only valid when - user s is set rate 10

specified).

Page 18

SIPp

set limit X Sets the open call limit (equivalentto - | option) set limt 100

set hide <truejfalse> Should the hide XML attribute be respected? set hide fal se

set index <truelfalse> Display message indexes in the scenario screen. set index true

set display <main|ooc> Changes the scenario that is displayed to either themainorthe set di spl ay nain
out-of-call scenario. set display ooc

trace <log> <on|off> Turnslog on or off a runtime. Valid valuesfor log are"error", | trace error on

"logs’, "messages’, and "shortmessages'.

Table 2: List of Interactive Commands

SIPp generates SIP traffic according to the scenario specified. Y ou can control the number of calls (scenario) that are started per second. If you passthe- user s
option, then you need to control the number of instantiated users. Y ou can control the rate through:

* Interactive hot keys (described in the previous section)
* Interactive Commands
o Startup Parameters

There are two commands that control rates. set rat e Xsetsthe current call rateto X. Additionally, set rat e-scal e Xsetstherate scale parameter to X.
This enablesyou to usethe '+, '-', "', and /' keysto set the rate more quickly. For example, if youdo set rat e-scal e 100, then each time you press'+', the call
rate isincreased by 100 calls and each time you press *', the call rate isincreased by 1000 calls. Similarly, for a user based benchmark you canrunset users X

At starting time, you can control the rate by specifying parameters on the command line:
e "-r" to specify the cal rate in number of calls per seconds
o "-rp" to specify the "rate period” in milliseconds for the call rate (default is 1000ms/1sec). This alows you to have n calls every m milliseconds (by using-r n

-rp m.

| Example: run SIPp at 7 calls every 2 seconds (3.5 calls per second) |

./sipp -sn uac -r 7 -rp 2000 127.0.0.1

Page 19

SIPp

Y ou can aso pause the traffic by pressing the 'p' key. SIPp will stop placing new calls and wait until al current calls go to their end. Y ou can resume the traffic by
pressing 'p' again.
To quit SIPp, pressthe'q’ key. SIPp will stop placing new calls and wait until al current calls go to their end. SIPp will then exit.

You can aso force SIPp to quit immediatly by pressing the 'Q' key. Current callswill be terminated by sending aBY E or CANCEL message (depending if the calls
have been established or not). The same behaviour is obtained by pressing 'q' twice.

| TIP: you can place adefined number of calls and have SIPp exit when thisis done. Use the - moption on the command line. |

SIPp can be "remote-controlled" through a UDP socket. This allows for example

» To automate a series of actions, like increasing the call rate smoothly, wait for 10 seconds, increase more, wait for 1 minute and loop
» Have afeedback loop so that an application under test can remote control SIPp to lower the load, pause the traffic, ...

Each SIPp instanceis listening to a UDP socket. It starts to listen to port 8888 and each following SIPp instance (up to 60) will listen to base port + 1 (8889,
8890, ...).

It isthen possible to control SIPp like this:

echo p >/ dev/udp/x.y.z.t/8888 -> put SIPp in pause state (p key)
echo g >/ dev/udp/x.y.z.t/8888 -> quit SIPp (g key)

| All keys available through keyboard are also available in the remote control interface |

Y ou could also have asmall shell script to automate a serie of action. For example, this script will increase the call rate by 10 more new calls/s every 5 seconds, wait
at this call rate for one minute and exit Sl Pp:

#! / bi n/ sh

echo "*" >/dev/udp/127.0.0.1/ 8889
sleep 5
echo "*" >/dev/udp/127.0.0.1/ 8889
sleep 5

echo "*"
sleep 5
echo "*"
sl eep 60

>/ dev/ udp/ 127. 0. 0. 1/ 8889

>/ dev/ udp/ 127. 0. 0. 1/ 8889

Page 20

SIPp

echo "qg" >/dev/udp/127.0.0.1/8889

To send acommand to SIPp, prefaceit with'c'. For example: echo "cset rate 100" >/ dev/udp/127.0.0. 1/ 8888 setsthe call rate to 100.

SIPp can be launched in background mode (- bg command line option).

By doing so, SIPp will be detached from the current terminal and run in the background. The PID of the SIPp processis provided. If you didn't specify a number of
calls to execute with the - moption, SIPp will run forever.

There is a mechanism implemented to stop SIPp smoothly. Thecommand ki | | - SI GUSR1 [SI Pp_PI D] will instruct SIPp to stop placing any new calls and
finish all ongoing calls before exiting.

When using the background mode, the main sipp instance stops and a child process will continue the job. Therefore, the log files names will contain another PID than
the actual sipp instance PID.

Of course embedded scenarios will not be enough. So it's time to create your own scenarios. A SIPp scenario iswritten in XML (aDTD that may help you write SIPp
scenarios does exist and has been tested with jEdit - thisis described in alater section). A scenario will always start with:

<?xm version="1.0" encodi ng="|SO 8859-1" ?>
<scenari o nanme="Basi c Si pstone UAC'>

And end with:

</ scenari o>

Easy, huh? Ok, now let's see what can be put inside. Y ou are not obliged to read the whole table now! Just go in the next section for an example.

There are many common attributes used for flow control and statistics, that can be used for all of the message commands (i.e., <send>, <recv>, <nop>, <pause>,
<sendCmd>, and <recvCmd>).

start_rtd Starts one of the "Response Time Duration" timer. (see <send start_rtd="invite">:thetimer named "invite"
statistics section). will start when the message is sent.
rtd Stops one of the 5 "Response Time Duration” timer. <send rtd="2">;thetimer number 2 will stop when the
message is sent.

Page 21

repeat_rtd

crif

test

Used with artd attribute, it allows the corresponding "Response
Time Duration™ timer to be counted more than once per call

(useful for loop call flows).

Displays an empty line after the arrow for the messagein main

SIPp screen.

You can put a"next" in any command element to go to another
part of the script when you are done with sending the message.
For optional receives, the next is only taken if that message was

received. See conditional branching section for more info.

You can put a"test" next to a"next" attribute to indicate that
you only want to branch to the label specified with "next" if the
variable specified in "test" is set (through regexp for example).

See conditional branching section for more info.

<send rtd="1" repeat_rtd="true">:thetimer
number 1 value will be printed but the timer won't stop.

<send crlf="true">

Example to jump to label "12" after sending an ACK:

<send next="12">
<!'[CDATA]

ACK sip:[servicel]@renote_ip]:[renpte_port]

SIP/2.0
Vi a:
From
To: ...
Call-1D:
Cseq: ..
Cont act :
Max- For war ds:
Subj ect :
Content-Length: 0

11>

</ send>

Example to jump to label "5" when receiving a 403 message:

<recv response="100"
optional ="true">
</recv>
<recv response="180" optional ="true">
</recv>

<recv response="403" optional ="true" next="5">

</recv>
<recv response="200">
</recv>

Example to jump to label "6" after sending an ACK only if

variable 4 is set:

<send next="6" test="4">
<! [CDATA|

SIPp

Page 22

chance

condexec

condexec_inverse

counter

Table 1: List of attributes common to all commands
Each command also has its own unique attributes, listed here:

<send>

retrans

lost

In combination with "test", probability to actually branch to
another part of the scenario. Chance can have a value between
0 (never) and 1 (always). See conditional branching section for
more info.

Executes an element only if the variable in the condexec
attribute is set. This attribute allows you to write complex XML
scenarios with fewer next attributes and labels.

If condexec is set, condexec_inverse inverts the condition in
condexec. This allows you to execute an element only when a
variableis not set.

Increments the counter given as parameter when the messageis
sent. The counters are saved in the statistic file.

SIPp

ACK sip:[servicel] @renpte_ip]:[renpte_port]
SIP/2.0

Vi a:

From

To: ...

Call-1D:

Cseq:

Cont act :

Max- For war ds:

Subject: ...

Content-Length: 0O

11>

</ send>

<recv response="403" optional ="true" next="5"
test="3" chance="0.90">
</recv>

90% chanceto go to label "5" if variable 3" is set.

<nop condexec="executethis">

<nop condexec="ski pthis"
condexec_i nverse="true">

<send count er =" MsgA" >: Increments counter "MsgA"
when the message is sent.

Used for UDP transport only: it specifies the <send retrans="500">: will initiate T1
T1timer value, asdescribed in SIPRFC 3261, | timer to 500 milliseconds (RFC3261 default).

section 17.1.1.2.

Emulate packet lost. The valueis specifiedasa <send | ost =" 10" >: 10% of the message

percentage.

sent are actually not sent :).

Page 23

<recv>

start_txn

ack txn

response

request

optional

Irs

auth

lost

Records the branch ID of this sent message

so that responses can be properly matched
(without this element the transaction matching
is done based on the CSeq method, which is
imprecise).

Indicates that the ACK being sent corresponds
to the transaction started by a start_txn
attribute. Every INVITE with a start_txn tag
must have a matching ACK with an ack_txn
attribute.

Indicates what SIP message code is expected.

Indicates what SIP message request is
expected.

Indicates if the message to receiveis optional.
In case of an optional message and if the
message is actually received, it is not seen as

a unexpected message. When an unexpected
message is received, Sipp looksif this message
matches an optional message defined in the
previous step of the scenario.

If optional isset to "global", Sipp will look
every previous steps of the scenario.

Record Route Set. if this attributeis set to
"true", then the "Record-Route:" header of the
message received is stored and can be recalled
using the [routes] keyword.

Authentication. if this attribute is set to "true”,
then the "Proxy-Authenticate:" header of the
message received is stored and is used to build
the [authentication] keyword.

Emulate packet lost. The valueis specified asa
percentage.

SIPp

<send start_txn="invite">: Stores
the branch ID of this message in the transaction
named "invite".

<send ack_txn="i nvite">: References
the branch ID of the transaction named
"invite".

<recv response="200">: SIPp will
expect a SIP message with code "200".

<recv request="ACK">: SIPp will expect
an"ACK" SIP message.

<recv response="100"

optional ="t rue">: The 100 SIP message
can be received without being considered as
"unexpected".

<recv response="100"
rrs="true">.

<recv response="407"
auth="true">.

<recv | ost="10">: 10% of the message
received are thrown away.

Page 24

<pause>

timeout

ontimeout

action

regexp_match

response_txn

milliseconds

Specify atimeout while waiting for a message.
If the message is not received, the call is
aborted, unless an ontimeout |abel is defined.

Specify alabel to jump to if the timeout popped
before the message to be received.

Specify an action when receiving the message.
See Actions section for possible actions.

Boolean. Indicates if 'request’ (‘'response’ is not
available) is given as aregular expression. If
S0, the recv command will match against the
regular expression. This allowsto catch several
cases in the same receive command.

Indicates that thisis aresponse to a transaction
that was previoudly started. To match, the
branch ID of the first via header must match
the stored transaction ID.

Specify the pause delay, in milliseconds.
When this delay is not set, the value of the - d
command line parameter is used.

SIPp

<recv tinmeout="100000">

Example to jump to label "5" when not
receiving a 100 message after 100 seconds:

<recv response="100"
ti meout =" 100000" onti neout ="5">
</recv>

Example of a"regular expression” action:

<recv response="200">
<action>
<ereg regexp="([0-9]{1,3}\.){3}
[0-9]{1,3}:[0-9]*"
sear ch_i n="mnsg"
check_it="true"
assign_to="1, 2"/>
</ action>
</recv>

Example of arecv command that matches
MESSAGE or PUBLISH or SUBSCRIBE
requests:

<recv request =" MESSAGE

PUBLI SH| SUBSCRI BE" crl f="true"

regexp_mat ch="true">
</recv>

<recv response="200"

response_t xn="invite" />:Matches
only responses to the message sent with
start_txn="invite" attribute.

<pause nilliseconds="5000"/>:
pause the scenario for 5 seconds.

Page 25

variable

distribution

Indicates which call variable to use to
determine the length of the pause.

Indicates which statistical distribution to use
to determine the length of the pause. Without
GSL, you may useuni f or mor f i xed. With
GSL, normal, exponential, gamma, lambda,

lognormal, negbin, (negative binomial), pareto,

and weibull are available. Depending on the
distribution you select, you must also supply
distribution specific parameters.

SIPp

<pause vari abl e="1" /> pausesfor
the number of milliseconds specified by call
variable 1.

The following examples show the various types
of distributed pauses:

<pause distribution="fixed"
val ue="1000" /> pausesfor 1
second.

<pause

di stribution="unifornt

nm n="2000" max="5000"/ > pauses
between 2 and 5 seconds.

The remaining distributions require GSL. In
genera The parameter names were chosen to
be as consistent with Wikipedia's distribution
description pages.

<pause distribution="normal"
nmean="60000" stdev="15000"/

> provides a normal pause with amean of
60 seconds (i.e. 60,000 ms) and a standard
deviation of 15 seconds. The mean and
standard deviation are specified asinteger
milliseconds. The distribution will look
like:

|

N
N Y

<pause
di stribution="1ognormal "
nmean="12. 28" stdev="1" />

Page 26

SIPp

creates a distribution's whose natural
logarithm has a mean of 12.28 and a
standard deviation of 1. The mean and
standard deviation are specified as double
values (in milliseconds). The distribution
will look like:

<pause

di stribution="exponential "
nmean="900000"/ > creates an
exponentially distributed pause with a
mean of 15 minutes. The distribution will
look like:

<pause

di stribution="weibull"

| ambda="3" k ="4"/> createsa
Weibull distribution with a scale of 3 and
a shape of 4 (see Weibull on Wikipedia

Page 27

http://en.wikipedia.org/wiki/Weibull

<nop>

<sendCmd>

sanity_check

action

<I[CDATA[]]>

By default, statistically distributed pauses

are sanity checked to ensure that their 99th
percentile values are lessthan INT_MAX.

Setting sanity_check to false disablesthis
behavior.

The nop command doesn't do anything at
SIP level. It isonly there to specify an action
to execute. See Actions section for possible
actions.

Content to be sent to the twin 3PCC SIPp
instance. The Call-1D must be included in the

SIPp

(http://en.wikipedia.org/wiki/Weibull) for
adescription of the distribution).

* <pause distribution="pareto"
k="1" x_n¥"2"/ > createsa
Pareto distribution with k and xm, of
1 and 2, respectively (see Pareto on
Wikipedia (http://en.wikipedia.org/wiki/
Pareto_distribution) for a description of
the distribution).

e <pause distribution="gamm"
k="3" theta="2"/>creaesa
Gamma distribution with k and theta of
9 and 2, respectively (see Gammaon
Wikipedia (http://en.wikipedia.org/wiki/
Gamma_distribution) for a description of
the distribution).

e <pause distribution="negbin"
p="0. 1" n="2"/> createsaNegative
binomial distribution with p and n of 0.1
and 2, respectively (see Negative Binomial
on Wikipedia (http://en.wikipedia.org/
wiki/Negative binomial_distribution) for a
description of the distribution).

<pause di stribution="1ognormal"
nmean="10" stdev="10"
sanity_check="fal se"/ > disables
sanity checking of the lognormal distribution.

Execute the play_pcap_audio/video action:

<|’]Op>
<action>
<exec pl ay_pcap_audi o="pcap/
g711a. pcap"/ >
</ acti on>
</ nop>

<sendCrrd>
<! [CDATA[

Page 28

http://en.wikipedia.org/wiki/Pareto_distribution
http://en.wikipedia.org/wiki/Pareto_distribution
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Negative_binomial_distribution

<recvCmd>

<label>

<Response Time Repartition>

<Call Length Repartition>

<Globals>

dest

action

Src

vaue

value

variables

CDATA. In 3pcc extended mode, the From
must be included to.

3pcc extended mode only: the twin sipp
instance which the command will be sent to

Specify an action when receiving the
command. See Actions section for possible
actions.

3pcc extended mode only: indicate the twin
sipp instance which the command is expected
to be received from

A label is used when you want to branch to
specific partsin your scenarios. The "id"
attribute is an integer where the maximum
valueis 19. See conditional branching section
for more info.

Specify the intervals, in milliseconds, used to
distribute the values of response times.

Specify the intervals, in milliseconds, used
to distribute the values of the call length
measures.

Specify the name of globally scoped variables.

SIPp

Call-1D: [call id]
[$1]

11>
</ sendCrrd>

<sendCmd dest ="s1">: the command will
be sent to the "s1" twin instance

Example of a"regular expression" to retrieve
what has been send by a sendCmd command:
<r ecvCrd>
<action
<ereg regexp="Content-Type:.*"
search_i n="nsg"
assign_to="2"/>
</action>
</ recvCrd>

<recvCmd src = "s1">:thecommand
will be expected to be received from the "s1"
twin instance

Example: set label number 13:
<l abel id="13"/>

<ResponseTi neRepartition

val ue="10, 20, 30"/ >:responsetime
values are distributed between 0 and 10ms, 10
and 20ms, 20 and 30ms, 30 and beyond.

<Cal | Lengt hRepartition

val ue="10, 20, 30"/ >:cal length
values are distributed between 0 and 10ms, 10
and 20ms, 20 and 30ms, 30 and beyond.

<d obal s vari abl es="f oo, bar" />.

Page 29

SIPp

<User> variables Specify the name of user-scoped variables. <User vari abl es="foo, bar" />.
<Reference> variables Suppresses warnings about unused variables. <Ref erence vari abl es="dumy" />

Table 2: List of commands with their attributes

There are not so many commands:. send, recv, sendCmd, recvCmd, pause, ResponseTimeRepartition, CallLengthRepartition, Globals, User, and Reference. To make
things even clearer, nothing is better than an example...

A client scenario is a scenario that starts with a"send" command. So let's start:

<scenari o nane="Basi c Si pstone UAC'>
<send>
<! [CDATA[

INVITE sip:[servicel]@renpote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local _ip]:[local_port]

From sipp <sip:sipp@Ilocal __ip]:[local _port]>;tag=[call_nunber]
To: sut <sip:[servicel]@renote_ip]:[renmte_port]>
Call-1D: [call_id]

Cseq: 1 INVITE

Contact: sip:sipp@Ilocal _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

Cont ent - Type: application/sdp

Content-Length: [len]

v=0

o=user1 53655765 2353687637 IN | P[local _ip_type] [local _ip]
S=-

t=0 0

c=IN I P[nedia_ip_type] [nedia_ip]

mFaudi o [nedi a_port] RTP/AVP 0

a=rtpmap: 0 PCMJ 8000

11>
</ send>
Inside the "send" command, you have to enclose your SIP message between the "<!/[CDATA" and the "]]>" tags. Everything between those tags is going to be sent
toward the remote system. Y ou may have noticed that there are strange keywords in the SIP message, like [service], [remote_ip], Those keywords are used to
indicate to SIPp that it has to do something with it.

Page 30

Hereisthelist:

[service]
[remote ip]

[remote port]

[transport]

[local _ip]
[local_ip_type]

[local_port]

[len]

[call_number]

[cseq]

[call_id]

service

5060

UbDP

Primary host |P address

Chosen by the system

SIPp

Servicefield, aspassedinthe-s servi ce_nane
Remote | P address, as passed on the command line.

Remote | P port, as passed on the command line. Y ou can add a
computed offset [remote_port+3] to this value.

Depending on the value of -t parameter, thiswill take the values
"UDP" or "TCP".

Will take the value of -i parameter.

Depending on the address type of -i parameter (1Pv4 or |Pv6),
local_ip_typewill have value"4" for IPv4 and "6" for |Pv6.

Will take the value of -p parameter. Y ou can add a computed
offset [local_port+3] to this value.

Computed length of the SIP body. To be used in "Content-
Length" header. Y ou can add a computed offset [len+3] to this
value.

Index. The call_number starts from "1" and isincremented by 1
for each call.

Generates automatically the CSeq number. The initial value
is 1 by default. It can be changed by using the - base_cseq
command line option.

A cal_ididentifiesacall and is generated by SIPp for each

new call. In client mode, it is mandatory to use the value
generated by SIPp in the" Call-ID" header. Otherwise, SIPp
will not recognise the answer to the message sent as being part
of an existing call.

Note: [call_id] can be pre-pended with an arbitrary string using
'II'. Example: Call-ID: ABCDEFGHIJ//[cdll_id] - it will still be
recoghized by SIPp as part of the same call.

Page 31

[media_ip]

[media ip_type]

[media_port]

[auto_media port]

[last_*]

[fieldO-n file=<filename> line=<number >]

[file name=<filename>]

[timestamp]

SIPp

Depending on the value of -mi parameter, it isthe local IP
address for RTP echo.

Depending on the address type of -mi parameter (IPv4 or IPv6),
media_ip_type will have value "4" for IPv4 and "6" for IPv6.
Useful to build the SDP independently of the media | P type.

Depending on the value of -mp parameter, it set the local RTP
echo port number. Default is none. RTP/UDP packets received
on that port are echoed to their sender. Y ou can add a computed
offset [media_port+3] to this value.

Only for pcap. To make audio and video ports begin from
the value of -mp parameter, and change for each call using
aperiodical system, modulo 10000 (which limits to 10000
concurrent RTP sessions for pcap_play)

The Tlast_*]' keyword is replaced automatically by the specified
header if it was present in the last message received (except if

it was aretransmission). If the header was not present or if no
message has been received, the [last_*]' keyword is discarded,
and all bytes until the end of the line are also discarded. If the
specified header was present several times in the message, all
occurences are concatenated (CRLF separated) to be used in
place of the [last_*]" keyword.

Used to inject values from an external CSV file. See "Injecting
values from an external CSV during calls' section. The optional
file and line parameters allow you to select which of the
injection files specified on the command line to use and which
line number from that file.

Inserts the entire contents of filename into the message.
Whitespace, including carriage returns and newlines at the end
of thelinein the file are not processed as with other keywords;
thus your file must be formatted exactly as you would like the
bytes to appear in the message.

The current time using the same format as error |og messages.

Page 32

[last_message]

[$n]

[authentication]

[pid]

[routes]

[next_url]

[branch]

[msg_index]
[cseq]

[clock _tick]
[sipp_version]

[tdmmap]

SIPp

The last received message.

Used to inject the value of call variable number n. See
"Actions" section

Used to put the authentication header. Thisfield can
have parameters, in the following form: [authentication
username=myusername password=mypassword)]. If no
username is provided, the value from -s command line
parameter (service) isused. If no password is provided,
the value from -ap command line parameter is used. See
"Authentication” section

Provide the process ID (pid) of the main SIPp thread.

If the "rrs" attribute in arecv command is set to "true”, then the
"Record-Route:" header of the message received is stored and
can be recalled using the [routes] keyword

If the"rrs" attribute in arecv command is set to "true”, then the
[next_url] contains the contents of the Contact header (i.e within
the'<' and ">' of Contact)

Provide a branch value which is a concatenation of magic
cookie (z9hG4bK) + call number + message index in scenario.
An offset (like [branch-N]) can be appended if you need to have
the same branch value as a previous message.

Provide the message number in the scenario.

Provides the CSeq value of the last request received. Thisvalue
can be incremented (e.g. [cseg+1] adds 1 to the CSeq value of
the last request).

Includes the internal SIPp clock tick value in the message.
Includes the SIPp version string in the message.

Includes the tdm map values used by the call in the message
(see -tdmmap option).

Page 33

[fill] -

[userq] -

[userid] -

Table 1: Keyword list
Now that the INVITE message is sent, SIPp can wait for an answer by using the "recv" command.

<recv response="100"> optional ="true"
</recv>

<recv response="180"> optional ="true"
</recv>

<recv response="200">
</recv>

SIPp

Injectsfiller characters into the message. The length of the fill
text is equal to the call variable stored inthevar i abl e=N
parameter. By default the text is a sequence of X's, but can be
controlled with thet ext ="t ext " parameter.

If the - user s command line option is specified, then this
keyword contains the number of users that are currently
instantiated.

If the - user s command line option is specified, then this
keyword containst he integer identifier of the current user
(starting at zero and ending at [user s- 1]).

100 and 180 messages are optional, and 200 is mandatory. In a " recv" sequence, there must be one mandatory message.

Now, let's send the ACK:

<send>
<! [CDATA[

ACK sip:[service] @renote_ip]:[renpte_port] SIP/2.0

Via: SIP/2.0/[transport] [local _ip]:[local_port]

From sipp <sip:sipp@I|ocal _ip]:[local _port]>;tag=[call_nunber]
To: sut <sip:[service]l]@renote_ip]:[renote_port]>[peer_tag_parani
Call-1D: [call_id]

Cseq: 1 ACK

Contact: sip:sipp@Iocal _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

Content -Length: O

11>

Page 34

SIPp

</ send>

We can also insert a pause. The scenario will wait for 5 seconds at this point.

<pause milliseconds="5000"/>

And finish the call by sending a BY E and expecting the 200 OK:

<send retrans="500">
<!'[CDATA[

BYE sip:[service] @renpte_ip]:[renpte_port] SIP/2.0

Via: SIP/2.0/[transport] [local _ip]:[local_port]

From sipp <sip:sipp@!|ocal _ip]:[local_port]>;tag=[call_nunber]
To: sut <sip:[servicel]@renote ip]:[renote_port]>[peer_tag_parani
Call-1D: [call_id]

Cseq: 2 BYE

Contact: sip:sipp@Ilocal _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

Content-Length: O

11>

</ send>

<recv response="200">
</recv>

And thisis the end of the scenario:
</ scenari 0>

Creating your own SIPp scenariosis not abig deal. If you want to see other examples, use the - sd parameter on the command line to display embedded scenarios.

A server scenario is ascenario that starts with a"recv" command. The syntax and the list of available commandsis the same asfor "client" scenarios.
But you are more likely to use [last_*] keywords in those server side scenarios. For example, a UAS example will ook like:

<recv request="INVI TE">
</recv>

<send>
<! [CDATA[

SIP/2.0 180 Ringing
[last_Via:]

Page 35

SIPp

[last_From]

[last_To:];tag=[cal | _nunber]

[last_Call-1D:]

[l ast _CSeq:]

Contact: <sip:[local _ip]:[local _port];transport=[transport]>

Cont ent - Length: 0

11>

</ send>

The answering message, 180 Ringing in this case, is built with the content of headers received in the INVITE message.

Ina"recv" or "recvCmd" command, you have the possibility to execute an action. Several actions are available:

Regular expressions (ereg)

Log something in aalog file (1og)

Execute an external (system), internal (int_cmd) or pcap_play_audio/pcap_play video command (exec)
Manipulate double precision variables using arithmetic
Assign string values to avariable

Compare double precision variables

Jump to a particular scenario index

Store the current time into variables

Lookup akey in an indexed injection file

Verify Authorization credentials

Change a Call's Network Destination

Using regular expressionsin SIPp allowsto

» Extract content of a SIP message or a SIP header and store it for future usage (called re-injection)
» Check that a part of a SIP message or of an header is matching an expected expression

Regular expressions used in SIPp are defined per Posix Extended standard (POSIX 1003.2) (http://www.opengroup.org/onlinepubs/007908799/xbd/re.html) . If you
want to learn how to write regular expressions, | will recommend this regexp tutorial (http://analyser.oli.tudelft.nl/regex/index.html.en) .

Here is the syntax of the regexp action:

Page 36

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://analyser.oli.tudelft.nl/regex/index.html.en

regexp

search_in

header

variable

case_indep

occurence

start_line

check_it

check_it_inverse

assign_to

None

msg

None

None

false

false

false

false

None

SIPp

Contains the regexp to use for matching the received message or
header. MANDATORY .

can have four values: "msg" (try to match against the entire
message); "hdr" (try to match against a specific SIP header);
"body" (try to match against the SIP message body); or
"var" (try to match against a SIPp string variable).

Header to try to match against. Only used when the search_in
tag isset to hdr. MANDATORY IF search_inisequal to hdr.

Variableto try to match against. Only used when the search_in
tag is set to var. MANDATORY |F search_inisequal to var.

To look for aheader ignoring case . Only used when the
search_intagisset to hdr.

To find the nth occurence of a header. Only used when the
search_intagisset to hdr.

Tolook only at start of line. Only used when the search_in tag
isset to hdr.

if set totrue, the call is marked asfailed if the regexp doesn't
match. Can not be combined with check_it_inverse.

Inverse of check it. iff set to true, the call is marked asfailed if
the regexp does match. Can not be combined with check_it.

contain the variableid (integer) or alist of variable id which
will be used to store the result(s) of the matching process
between the regexp and the message. Those variables can be
re-used at alater time either by using '[$n]' in the scenario to
inject the value of the variable in the messages or by using the
content of the variables for conditional branching. The first
variablein the variable list of assign_to contains the entire
regular expression matching. The following variables contain
the sub-expressions matching. Example;

<ereg regexp="o=([[:alnum]]*) ([[:alnum]]*)
([[:alnum]]*)"
sear ch_i n="nsg"

Page 37

SIPp

check_it=i"true"
assign_to="3,4,5,8"/>
If the SIP message contains the line
o=user 1l 53655765 2353687637 IN | P4 127.0.0.1
variable 3 contains "o=userl 53655765 2353687637", variable 4

contains "userl", variable 5 contains "53655765" and variable 8
contains "2353687637".

Table 1: regexp action syntax
Note that you can have several regular expressionsin one action.
The following exampleis used to:

» First action:
» Extract thefirst IPv4 address of the received SIP message
» Check that we could actually extract this IP address (otherwise call will be marked as failed)
» Assign the extracted | P address to call variables 1 and 2.
» Second action:
» Extract the Contact: header of the received SIP message
» Assign the extracted Contract: header to variable 6.

<recv response="200" start_rtd="true">
<action>
<ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*" search_in="nsg" check_it="true" assign_to="1,2" />
<ereg regexp=".*" search_in="hdr" header="Contact:" check_it="true" assign_to="6" />
</ action>
</recv>

The "log" action allows you to customize your traces. Messages are printed in the <scenario file name>_<pid>_logs.log file. Any keyword is expanded to reflect the
value actually used.

‘ Logs are generated only if -trace logs option is set on the command line. i

Page 38

SIPp

Example:

<recv request="INVITE" crlf="true" rrs="true">
<action>
<ereg regexp=".*" search_in="hdr" header="Some- New Header:" assign_to="1" />
<l og message="Fromis [last_Fron]. Custom header is [$1]"/>
</ action>
</recv>

Y ou can use the alternative "warning" action to log a message to SIPp's error log. For example:

<war ni ng nessage="Fromis [last_Fronj. Custom header is [$1]"/>

The "exec" action allows you to execute "internal”, "external”, "play_pcap_audio" or "play_pcap_video" commands.

Internal commands (specified using int_cmd attribute) are stop_call, stop_gracefully (similar to pressing 'q’), stop_now (similar to ctrl+C).
Example that stops the execution of the script on receiving a 603 response:

<recv response="603" optional ="true">
<action>
<exec int_cnmd="stop_now'/>
</ action>
</recv>

External commands (specified using command attribute) are anything that can be executed on local host with a shell.
Example that execute a system echo for every INVITE received:

<recv request="INVI TE">
<action>
<exec command="echo [last_Fronj is the from header received >> fromlist.log"/>
</ action>
</recv>

Page 39

SIPp

PCAP play commands (specified using play_pcap_audio / play_pcap_video attributes) allow you to send a pre-recorded RTP stream using the pcap library (http://
www.tcpdump.org/pcap3_man.html) .

Choose play_pcap_audio to send the pre-recorded RTP stream using the "m=audio" SIP/SDP line port as a base for the replay.
Choose play_pcap_video to send the pre-recorded RTP stream using the "m=video" SIP/SDP line port as a base.

The play_pcap_audio/video command has the following format: play_pcap audio="[file_to_play]" with:

» file_to_play: the pre-recorded pcap file to play

The action is non-blocking. SIPp will start alight-weight thread to play the file and the scenario with continue immediately. If needed, you will need to add a pause to wait for the end of the
pcap play.

Example that plays a pre-recorded RTP stream:

<nop>
<acti on>
<exec play_pcap_audi o="pcap/ g71la. pcap"/>
</action>
</ nop>

Y ou may also perform simple arithmetic (add, subtract, multiply, divide) on floating point values. The "assign_to" attribute contains the first operand, and is also
the destination of the resulting value. The second operand is either an immediate value or stored in avariable, represented by the "value" and "variable" attributes,
respectively.

SIPp supports call variables that take on double-precision floating values. The actions that modify double variables all write to the variable referenced by the
assign_to parameter. These variables can be assigned using one of three actions. assign, sample, or todouble. For assign, the double precision value is stored in the
"value' parameter. The sample action assigns values based on statistical distributions, and uses the same parameters as a statistically distributed pauses. Finally, the
todouble command converts the variable referenced by the "variable" attribute to a double before assigning it.

For example, to assign the value 1.0 to $1 and sample from the normal distribution into $2:

<nop>
<action>
<assi gn assign_to="1" val ue="1" />
<sanpl e assign_to="2" distribution="normal" nmean="0" stdev="1"/>
<I-- Stores the first field in the injection file into string variable $3

Page 40

http://www.tcpdump.org/pcap3_man.html

SIPp

You may al so use regul ar expressions to store string variables. -->
<assignstr assign_to="3" value="[fieldO]" />
<l-- Converts the string value in $3 to a doubl e-preci sion value stored in $4. -->
<t odoubl e assi gn_to="4" variable="3" />
</ acti on>

</ nop>

Simple arithmetic is aso possible using the <add>, <subtract>, <multiply>, and <divide> actions, which add, subtract, multiply, and divide the variable referenced
by assign_to by the value in value. For example, the following action modifies variable one as follows:

<n0p>

<acti on>
<assign assign_to="1" value="0" /> <l-- $1 == 0 -->
<add assign_to="1" value="2" /> <!-- $1 == 2 -->
<subtract assign_to="1" value="3" /> <I-- $1 == -1 -->
<mul tiply assign_to="1" value="4" /> <l-- $1 == -4 -->
<di vi de assign_to="1" value="5" /> <!-- $1 == -0.8 -->

</ action>

Rather than using fixed values, you may also retrieve the second operand from avariable, using the <variable> parameter. For example:

<nop>
<acti on>
<l-- Multiplies $1 by itself -->
<multiply assign_to="1" variable="1" />
<!-- Divides $1 by $2, Note that $2 nust not be zero -->
<multiply assign_to="1" variabl e="2" />
</ action>
</ nop>

Y ou can create string variables by using the <assignstr> command, which accepts two parameters: assign_to and value. The value may contain any of the same
substitutions that a message can contain. For example:

<n0p>
<acti on>
<l-- Assign the value in field0 of the CSV file to a $1. -->
<assignstr assign_to="1" value="[fieldO]" />
</action>
</ nop>

A string variable and a value can be compared using the <strcmp> action. The result is adouble value, that is less than, equal to, or greater than zero if the variableis
lexographically less than, equal to, or greater than the value. The parameters are assign_to, variable, and value. For example:

<nop>

Page 41

SIPp

<action>
<!-- Conpare the value of $strvar to "Hello" and assign it to $result.. -->
<strcnp assign_to="result" variable="strvar" val ue="Hello" />
</ acti on>
</ nop>

Variable testing alows you to construct loops and control structures using call variables. THe test action takes four arguments: variable which is the variable that
to compar e against value, and assign_to which is aboolean call variable that the result of the test is stored in. Compare may be one of the following tests: equal,
not_equal, greater_than, less than, greater_than_equal, or less than_equal.

Example that sets $2 to true if $1 isless than 10:

<nop>
<acti on>
<test assign_to="2" variabl e="1" conpare="I|ess_than" val ue="10" />
</action>
</ nop>

The lookup action is used for indexed injection files (see indexed injection files). The lookup action takes afile and key as input and produces an integer line number
as output. For example the following action extracts the username from an authorization header and uses it to find the corresponding line in users.csv.

<recv request="REG STER">

<action>
<ereg regexp="Digest .*username=\"([M\"]*)\"" search_in="hdr" header="Aut hori zati on:" assi gn_to="j unk, usernane" />
<l ookup assign_to="line" file="users.csv" key="[$usernane]" />
</ acti on>
</ nop>

Injection files, particularly when an index is defined can serve as an in-memory data store for your SIPp scenario. The <insert> and <replace> actions provide a
method of programmatically updating SIPp's in-memory version of an injection file (there is presently no way to update the disk-based version). The insert action
takes two parameters: file and value, and the replace action takes an additional line value. For example, to inserting a new line can be accomplished as follows:

<nop display="Insert User">
<acti on>
<insert file="usersdb.conf" value="[$user];[$calltype]" />
</ action>
</ nop>

Page 42

SIPp

Replacing alineis similar, but aline number must be specified. Y ou will probably want to use the lookup action to obtain the line number for use with replace as
follows:

<nop di spl ay="Update User">

<acti on>
<l ookup assign_to="index" file="usersdb.conf" key="[$user]" />
<l-- Note: This assunes that the | ookup al ways succeeds. -->
<repl ace fil e="usersdb. conf" |ine="[$i ndex]" val ue="[$user];[$calltype]" />
</ action>

</ nop>

Y ou can jump to an arbitrary scenario index using the <jump> action. This can be used to create rudimentary subroutines. The caller can save their index using the
[msg_index] substitution, and the callee can jump back to the same place using this action. If thereisa special label named "_unexp.main” in the scenario, SIPp will
jump to that label whenever an unexpected message is received and store the previous address in the variable named "_unexp.retaddr".

Example that jumps to index 5:

<n0p>
<acti on>
<junmp val ue="5" />
</ acti on>
</ nop>

Example that jJumps to the index contained in the variable named _unexp.retaddr:

<nop>
<acti on>
<junp vari abl e="_unexp.retaddr" />
</action>
</ nop>

The gettimeofday action alows you to get the current time in seconds and microseconds since the epoch. For example:

<n0p>
<action>
<get ti meof day assi gn_t o="seconds, m croseconds" />
</ acti on>
</ nop>

Page 43

SIPp

The setdest action allows you to change the remote end point for a call. The parameters are the transport, host, and port to connect the call to. There are certain
limitations baed on SIPp's design: you can not change the transport for a call; and if you are using TCP then multi-socket support must be selected (i.e. -t t n must
be specified). Also, be aware that frequently using setdest may reduce SIPp's capacity as name resolution is a blocking operation (thus potentially causing SIPp to stall
while looking up host names). This example connects to the value specified inthe[next _url] keyword.

<nop>
<acti on>
<assignstr assign_to="url" value="[next_url]" />
<ereg regexp="sip:.*@[0-9A-Za-z\.]+):([0-9] +);transport=([A-Z]+)" search_in="var" check_it="true" assign_to="dumy, host, port,transport" variable="url" />
<set dest host="[$host]" port="[$port]" protocol ="[$transport]"” />
</ action>
</ nop>

The verifyauth action checks the Authorization header in an incoming message against a provided username and password. The result of the check isstored in a
boolean variable. This allows you to simulate a server which requires authorization. Currently only simple MD5 digest authentication is supported. Before using the
verifyauth action, you must send a challenge. For example:

<recv request="REG STER' />
<send><! [CDATA[

SIP/2.0 401 Authorizati on Required

[last_Via:]

[last _From]

[last _To:];tag=[pid] SI PpTag01[cal | _nunber]

[last_Call-1D:]

[l ast _CSeq:]

Contact: <sip:[local _ip]:[local_port];transport=[transport]>

WAV Aut hent i cat e: Di gest real n¥"test. exanpl e. cont’, nonce="47ebe028cdal19c¢35d4877b383027d28da013815"
Content-Length: [Ien]

11>

</ send>

After receiving the second request, you can extract the username provided and compare it against alist of user names and passwords provided as an injection file, and
take the appropriate action based on the result:

<recv request="REG STER' />
<acti on>
<ereg regexp="Digest .*usernane=\"([M\"]*)\"" search_in="hdr" header="Aut hori zation:" assign_to="junk, usernane" />
<l ookup assign_to="line" file="users.conf" key="[$usernane]" />
<verifyauth assign_to="authvalid" username="[fieldO line=\"[$line]\"]" password="[field3 line=\"[$line]\"]" />

Page 44

SIPp

</ acti on>
</recv>

<nop hide="true" test="authvalid" next="goodauth" />
<nop hi de="true" next="badauth" />

For complex scenarios, you will need to store bits of information that can be used across messages or even calls. Like other programming languages, SIPp's XML
scenario definition allows you to use variables for this purpose. A variablein SIPp is referenced by an alphanumeric name. In past versions of SIPp, variables names
were numeric only; thusin this document and the embedded scenarios, you are likely to see lots of variables of theform 1", "2", etc.; although when creating new
scenarios you are encouraged to assign meaningful names to your variables.

Aside from aname, SIPp's variables are also loosely typed. The type of avariableis not explicitly declared, but isinstead inferred from the action that set it. There are
four types of variables: string, regular expression matches, doubles, and booleans. All mathematical operations take place on doubles. The <test> and <verifyauth>
actions create boolean values. String variables and regular expression matches are similar. When a string's value is called for, aregular expression match can be
substituted. The primary difference isrelated to the test attribute (see Conditional Branching). If a string has been defined, atest is evaluated to true. However, for
aregular expression variable, the regular expression that set it must match for the test to evaluated to true. Values can be converted to strings using the <assignstr>
action. Values can be converted to doubles using the <todouble> action.

Variables a'so have a scope, which is one of global to al calls, per-user, or the default per-call. A global variable can be used, for example to store scenario
configuration parameters or to keep a global counter. A user-variable when combined with the - user s option allows you to keep per-user state across cals (e.g.,
if this user has already registered). Finally, the default per-call variables are useful for copying values from one SIP message to the next or controlling branching.
Variables can be declared globally or per-user using the following syntax:

<d obal vari abl es="f o0, bar" />
<User vari abl es="baz, quux" />

Local variables need not be declared. To prevent programming errors, SIPp performs very rudimentary checks to ensure that each variable is used more than once
in the scenario (this helps prevent some typos from turning into hard to debug errors). Unfortunately, this can cause some complication with regular expression
matching. The regular expression action must assign the entire matched expression to avariable. If you are only interested in checking the validity of the expression
(i.e. the check_it attribute is set) or in capturing a sub-expression, you must still assign the entire expression to avariable. Asthisvariableislikely only referenced
once, you must inform SIPp that you are knowingly using this variable once with a Reference clause. For example:

<recv request="1NVITE">
<acti on>
<ereg regexp="<sip:(["; @*)" search_in="hdr" header="To:" assign_to="dummy,uri" />
</ action>
</recv>
<Ref erence vari abl es="dumy" />

Page 45

SIPp

Youcanuse"-inf file_name" asacommand line parameter to input values into the scenarios. Thefirst line of the file should say whether the datais to be read
in sequence (SEQUENTIAL), random order (RANDOM), or in auser based manner (USER). Each line corresponds to one call and has one or more*;" delimited data
fields and they can be referred as [field0], [field1], ... in the xml scenario file. Example:

SEQUENTI AL

#This line will be ignored
Sar ah; si pphone32

Bob; si pphonel2

#This line too

Fr ed; si pphone94

Will beread in sequence (first call will usefirst line, second call second line). At any place where the keyword "[field0]" appears in the scenario file, it will be
replaced by either "Sarah”, "Bob" or "Fred" depending on the call. At any place where the keyword "[field1]" appears in the scenario file, it will be replaced by either
"sipphone32" or "sipphonel2" or "sipphone94" depending on the call. At the end of thefile, SIPp will re-start from the beginning. The fileisnot limited in size.

Y ou can override the default line selection strategy with the optional line argument. For example:
[fieldO |ine=1]

Selects the second line in the file (the first line isline zero. The line parameters support keywords in the argument, so in conjunction with alookup action it is possible
to select values based on a key.
The CSV file can contain comment lines. A comment lineis alinethat starts with a"#".

As apicture says more than 1000 words, here is one:

Page 46

SIPp

SCEnanoxml |
=setd=
<! [CDDATA[

INVITE =ip: [servite]@[remote ip]: [remote port] EIPSZ_0
Via: BEIP/Z. 0/ [tfamn=port] [local ip]: [local port]
From: [field0]f<=ip:[HAeldl]

[local ip]: [local port]s;tag=[call mmber]
- ipl:[remote port] =
Call-ID: [call idl daabaze ooy |

To: =uat <=sip: [service]ld [remo
Czeq: 1 INVITE
Contact: sip: [HBeldll@[local ip]: EQUENTIAL
arah;sipphones32
Eobh:sipphonelz

Max-Forward=s: 70
Fred:;sipphoneS4

Suhject: Performamce Te

ocal port]

Content—Type: applicati
Content—-Length: 136

=0
o=ua=serl E3I6EL7EL E3EIEE763T IN IP4 1
o=—

t=0 0

c=IN IP4 [media ip]

m=audio [media port] BETPSAVE O
asrtpmap -0 PCMITA 2000

11=
=/ =ernd=-

Think of the possibilities of thisfeature. They are huge.

It is possible to use more than one injection file, and is necessary when you want to select different types of datain different ways. For example, when running a user-
based benchmark, you may have a caler.csv with "USER" asthefirst line and a callee.csv with "RANDOM" asthefirst line. To specify which CSV fileis used, add
the file= parameter to the keyword. For example:

INVITE sip:[fieldO file="callee.csv"] SIP/2.0
From sipp user <[fieldO file="caller.csv"]>;tag=[pid] Sl PpTag00[cal | _nunber]
To: sut user <[fieldO file="callee.csv"]>

Page 47

SIPp

Will select the destination user from callee.csv and the sending user from caller.csv. If no file parameter is specified, then the first input file on the command lineis
used by default.

An extension of the standard injection fileisa"PRINTF" injection file. Often, an input file will has a repetitive nature such as:

USERS
user 000; passwor d000
user 001; passwor d001

user 999; passwor d999

SIPp must maintain this structure in memory, which can reduce performance for very large injection files. To eliminate this problem, SIPp can automatically generate
such a structured file based on one or more template lines. For example:

USERS, PRI NTF=999
user 993d; passwor d%©3d

Has the same logical meaning as the original example, yet SIPp only needs to store one entry in memory. Each time alineis used; SIPp will replace %d with the
requested line number (starting from zero). Standard printf format decimal specifiers can be used. When more than one template lineis available, SIPp cycles through
them. This example:

USERS, PRI NTF=4
user ¥93d; passwor d%©3d; Foo
user ¥93d; passwor d¥93d; Bar

Is equivalent to the following injection file:

USERS

user 000; passwor dO0O; Foo
user 001; passwor d001; Bar
user 002; passwor d002; Foo
user 003; passwor d003; Bar

The following parameters are used to control the behavior of printf injection files:

Page 48

SIPp

PRINTF How many virtual lines exist in thisfile. PRINTF=10, creates 10 virtual lines

PRINTFMULTIPLE Multiple the virtual line number by this value before generating = PRINTF=10,PRINTFMULTIPLE=2 creates 10 virtual lines
the substitutions used. numbered 0,2,4,...,18.

PRINTFOFFSET Add this value to the virtual line number before generatingthe = PRINTF=10,PRINTFOFFSET=100
substitutions used (applied after PRINTFMULTIPLE). creates 10 virtua lines numbered 100-109.

PRINTF=10,PRINTFMULTIPLE=2,PRINTFOFFSET=10
creates 10 users numbered 10,12,14,...28.

Table 1: Printf Injection File Parameters

The-i nfi ndex option allows you to generate an index of an injection file. The argumentsto - i nf i ndex aretheinjection file to index and the field number that
should be indexed. For exampleif you have an injection file that contains user names and passwords (as the following):

USERS

al i ce, pass_A
bob, pass_B
carol, pass_C

Y ou may want to extract the password for a given user in the file. To do this efficiently, SIPp must build an index for the first field (0). Thus you would pass the
argument - i nf i ndex users. csv 0 (assuming the fileis named users.csv). SIPp will create an index that contains the logical entries{"alice" => 0, "bob" => 1,
"carol" => 2}. To extract a particular password, you can use the lookup action to store the line number into a variable (say $line) and then use the keyword[fi el d1
line="[$line]"].

It is possible to execute a scenario in anon-linear way. Y ou can jump from one part of the scenario to another for example when a messageisreceived or if acall
variable is set.

You definealabel (inthexml) as<l abel i d="n"/>Wherenisanumber between 1 and 19 (we can easily have more if needed). The label commands go
anywhere in the main scenario between other commands. To any action command (send, receive, pause, etc.) you add a next="n" parameter, where n matches the id of

Page 49

SIPp

alabel. When it has done the command it continues the scenario from that label. This part is useful with optional receives like 403 messages, because it allows you
to go to adifferent bit of script to reply to it and then rejoin at the BY E (or wherever or not).

Alternatively, if you add atest="m" parameter to the next, it goesto the label only if variable [$m] is set. This alows you to look for some string in areceived packet
and alter the flow either on that or alater part of the script. The evaluation of atest varies based on the type of call variable. For regular expressions, at |east one match
must have been found; for boolean variables the value must be true; and for all others avalue must have been set (currently this only appliesto doubles). For more
complicated tests, see the <test> action.

I If you add special cases at the end, don't forget to put alabel at the real end and jump to it at the end of the normal flow. I

Example:
The following example corresponds to the embedded 'branchc' (client side) scenario. It has to run against the embedded 'branchs' (server side) scenario.

Page 50

SIPp

Branch_client Branch_server

@ Send REGISTER

H@ Receive 200 OK
_,-”f
J_.-"'
Anways ski
vs skip
27 200 OK Receive 200 OK
5,
™,
O o
@ Send INVITE
A
N T
r Receive 100 Trying
H"-. :
A
L -
@ -.:"' Receive 180 Ringing
hY I

Page 51

SIPp

® Receive 200 COK
Send ACK
For 25_"‘ call @ Pause
.,
10 B
@ Send BYE
Feceive 200 QK

To have SIPp behave somewhat more like a"normal” SIP client being used by a human, it is possible to use "statistical branching". Wherever you can have a
conditional branch on avariable being set (test="4"), you can also branch based on a statistical decision using the attribute "chance" (e.g. chance="0.90"). Chance can
have a value between 0 (never) and 1 (always). "test" and "chance" can be combined, i.e. only branching when the test succeeds and the chance is good.

Page 52

SIPp

With this, you can have avariable reaction in a given scenario (e.g.. answer the call or reject with busy), or run around in aloop (e.g. registrations) and break out of it
after some random number of iterations.

SIPp supports SIP authentication. Two authentication algorithm are supported: Digest/MD5 ("algorithm="MD5"") and Digest/AKA ("agorithm="AKAv1-MD5"", as
specified by 3GPP for IMS).

‘ To enable authentication support, SIPp must be compiled in a special way. See SIPp installation for details i

Enabling authentication is simple. When receiving a 401 (Unauthorized) or a 407 (Proxy Authentication Required), you must add auth="true" in the <recv> command
to take the challenge into account. Then, the authorization header can be re-injected in the next message by using [authentication] keyword.

Computing the authorization header is done through the usage of the "[authentication]” keyword. Depending on the algorithm ("MD5" or "AKAv1-MD5"), different
parameters must be passed next to the authentication keyword:

* Digest/MD5 (example: [authentication username=joe password=schmo])

e username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter

» password: password: if no password is specified, the password is taken from the -ap' (authentication password) command line parameter
* Digest/AKA: (example: [authentication username=HappyFeet aka OP=0xCDC202D5123E20F62B6D676AC72CB318

aka_K=0x465B5CE8B199B49FAA5F0A2EE238A6BC aka AMF=0xB9B9])

e username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter

o aka K: Permanent secret key. If no aka K is provided, the "password" attributed is used as aka K.

» aka OP: OPerator variant key

» aka AMF: Authentication Management Field (indicates the algorithm and key in use)

In case you want to use authentication with a different username/password or aka K for each call, you can do this:
» MakeaCSsV likethis:

SEQUENTI AL

User 0001; [aut henti cati on user nane=j oe passwor d=schno]
User 0002; [aut henti cati on user nane=j ohn passwor d=snit h]
User 0003; [aut henti cati on usernane=betty password=boop]

* Andan XML likethis (the [field1] will be substituted with the full auth string, which is the processed as a new keyword):

<send retrans="500">
<! [CDATA[

Page 53

SIPp

REG STER sip:[renmote_ip] SIP/2.0

Via: SIP/2.0/[transport] [local _ip]:[l|ocal_port]

To: <sip:[field0] @ip.com[renote_port]>

From <sip:[fieldO]@renote_ip]:[renmote_port]>

Contact: <sip:[field0] @I ocal _ip]:[local_port]>;transport=[transport]
[fieldl]

Expires: 300

Call-1D: [call_id]

CSeq: 2 REd STER

Content -Length: O

11>

</ send>

Example:

<recv response="407" auth="true">
</recv>

<send>
<! [CDATA[

ACK sip:[service] @renpte_ip]:[renpte_port] SIP/2.0

Via: SIP/2.0/[transport] [local _ip]:[local _port]

From sipp <sip:sipp@Ilocal __ip]:[local _port]>;tag=[call_nunber]
To: sut <sip:[servicel]@renote_ip]:[renmpte_port]>[peer_tag_ parani
Call-1D: [call _id]

CSeq: 1 ACK

Contact: sip:sipp@Ilocal _ip]:[local_port]

Max- Forwar ds: 70

Subj ect: Performance Test

Content-Length: O

11>

</ send>

<send retrans="500">
<! [CDATA[

INVITE sip:[servicel]@renpote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local _ip]:[local_port]

From sipp <sip:sipp@Ilocal __ip]:[local _port]>;tag=[call_nunber]
To: sut <sip:[servicel]@renote_ip]:[remte_port]>
Call-1D: [call_id]

CSeq: 2 INVITE

Contact: sip:sipp@Ilocal _ip]:[local_port]

[aut henti cati on user nane=f oouser]

Max- For war ds: 70

Subj ect: Performance Test

Cont ent - Type: application/sdp

Page 54

SIPp

Cont ent - Length: [Ien]

v=0

o=user1 53655765 2353687637 IN | P[| ocal _i p_type] [l ocal _ip]
S=-

t=0 0

c=IN I P[media_i p_type] [nedia_ip]

mraudi o [medi a_port] RTP/ AVP O

a=rtpmap: 0 PCMJ 8000

11>

</ send>

Some complex scenarios require setting appropriate global variables at SIPp startup. Theinitialization stanza allows you do do just that. To create an initialization
stanza, simply surround a series of <nop> and <label> commands with <init> and </init>. These <nop>s are executed once at SIPp startup. The variables within the
init stanza, except for globals, are not shared with calls. For example, thisinit stanza sets STHINKTIME to 1 if it isnot already set (e.g., by the -set command line
parameter).

<init>
<!-- By Default THINKTIME is true. -->
<nop>
<acti on>
<strcnp assign_to="enpty" variabl e="TH NKTI ME" val ue="" />
<test assign_to="enpty" conpare="equal" variabl e="enpty" val ue="0" />
</ action>
</ nop>
<nop condexec="enpty">
<acti on>
<assi gnstr assign_to="THI NKTI ME" val ue="1" />
</ action>
</ nop>
</init>

Several screens are available to monitor SIP traffic. Y ou can change the screen view by pressing 1 to 9 keys on the keyboard.
» Key 'l Scenario screen. It displays acall flow of the scenario as well as some important informations.

Page 55

SIPp

£ ocadmin@vista:--fsipp. 2004-07-05 E]E]E]
s

Scenario [1-4]: Change
Call-rateilangtl) 5.0 Total-time . Bemote-host
120 |:I;|-_=.|:I:I ms) E0& Q.01 = =] 5 127.0.0_1: 58050 (TP
120 new calls during 1000 = period 2 m= scheduler resolution
Z05 concurrent calls (limit 570) =¥ TELS * calls, after
0 out-of-call msg (discarded)
1 apen :

Timeout
0

Key '2": Statistics screen. It displays the main statistics counters. The "Cumulative" column gather all statistics, since SIPp has been launched. The "Periodic”
column gives the statistic value for the period considered (specified by - f f r equency command line parameter).

Page 56

SIPp

b:--' ocadmin@yvista:-fsipp.2004-07-05

[1-4]: Change Screen —-

1
-1 ot
|_I

Ly it

I
b
|
[N B Th]

|

=

1

1 2
e I

Elap=sed Time
Call Bate

Incoming call created
OutZoing call created
Total Call created
Current Call

Time
Call Length
[+1-1*1/]1: Adjust

» Key '3 Repartition screen. It displays the distribution of response time and call length, as specified in the scenario.

Page 57

SIPp

,;-' ocadminayvista:-fsipp.2004-07-05 E]@E]
s

Pepartition Scresn [1-4]: Change
Time PRepartition
n = loaan
1000 m=s <= n =
1040 m=s <= n =
1080 m=s <= n =
1120 m=s <= n =
1160 ms <= n <
n = 1lz00
Call Length Pepartition
0 m=s == n = loon
1000 ms <= 1 = 1l1la0
1100 m=s == 1 =
1200 m=s == nn = 200
1300 m=s == n = 1400
1400

o Lo
-]
i

g

[
(¥]
(]

R e i

i
'_I .
it

Key '4": Variables screen. It displays informations on actions in scenario as well as scenario variable informations.

Page 58

SIPp

,—f‘ ocadmin@yvista:-fsipp.2004-07-05

Variahles [1-4]: Chatge
defined Per Mess=s:
ge[32] e Ma==sage) [2] actioni=s) defined :
F action[d] = Type[l - checkIt[l] - warId[l]
- action[l] = Typel[l] - where[Full M=g] - checkIt[l] - warId[Z]
- action[] Typel[l] - where[Header-Contact:] - checkIt[l] - warId[eg]

ed Wariable Li:

In}
1]

cegExp [([0-2]{1, 3%) {3} [0-3]{1,2}:[0-2]%*]
gExp [([0-F1 {1,350 {3} [0-2]{1,3}:[0-2]%]

JE xp

T
it

1) L-h [N
r

it
it

m M
B

e M M M

L]

O LR | [1]

O ¥
[N

fr. exit —---- [pl:

[
L e B
o
n
it
=

R e i

3.8 Transport modes

SIPp has several transport modes. The default transport mode is "UDP mono socket".

3.8.1 UDP mono socket
In UDP mono socket mode (-t ul command line parameter), one IP/UDP socket is opened between SIPp and the remote. All calls are placed using this socket.

Thismode is generally used for emulating arelation between 2 SIP servers.

Page 59

SIPp

In UDP multi socket mode (-t un command line parameter), one IP/UDP socket is opened for each new call between SIPp and the remote.
This mode is generally used for emulating user agents calling a SIP server.

In UDP with one socket per IP addressmode (-t ui command line parameter), one IP/UDP socket is opened for each |P address given in the inf file.

In addition to the "-t ui" command line parameter, one must indicate which field in the inf file isto be used aslocal |P address for this given call. Use "-ip_field <nb>"
to provide the field number.

There are two distinct cases to use this feature:

Client side: when using -t ui for aclient, SIPp will originate each call with adifferent |P address, as provided in the inf file. In this case, when your IP addresses
areinfield X of theinject file, then you have to use [fieldX] instead of [loca_ip] in your UAC XML scenario file.

Server side: when using -t ui for aserver, SIPp will bind itself to all the IP addresses listed in the inf fileinstead of using 0.0.0.0. Thiswill have the effect SIPp
will answer the request on the same IP on which it received the request. In order to have proper Contact and Viafields, a keyword [server_ip] can be used and
provides the | P address on which areguest was received. So when using this, you have to replace the [local_ip] in your UAS XML scenario file by [server_ip].

In the following diagram, the command line for a client scenario will look like: . / si pp -sf nyscenario.xm -t ui -inf database.csv -
ip_field 2 192.168.1.1
By doing so, each new call will come sequentially from IP 192.168.0.1, 192.168.0.2, 192.168.0.3, 192.168.0.1, ...

Page 60

SIPp

acenano.xml |
=z ehd =
= [CDATA [

From: [fieldd]1F==ip:[Heldl]@f[local ip]: [local port]=;tag=[call mmbher]
- ip]: [remote port] >
databaze oy |
C=zeq: 1 INVITE
ocal port]
Subject: Performanice Te
Fred:;zipphone9d4:192 . 168.0.3

INVITE =ip: [servite]@[remote ip]: [remote port] SIPSZ 0

Via: SIP/Z. 0/ [tfansport] [local ip]:[local port]

To: =ut <=ip: [serwice]ld [remo

Call-In: [call id]

Contact: =sip: [Heldll@[local ip]: EEQUENTIAL

Hax-Forwards: 70 arah;sipphone3z;192.165.0.1
Bob:sipphonels:192.165.0.2

Content-Type: applicati

Content-Length: 1326 -

=0
omuzerl L365576L 2353687637 IN IP4 1
o=

t=0 0

c=IN IP4 [media ip]

m=audio [media port] RIPAAVE O
a=rtpmap -0 PCMIT 2000

11=
=S =arnid=

Thismode is generally used for emulating user agents, using on | P address per user agent and calling a SIP server.

In TCP mono socket mode (-t t 1 command line parameter), one |P/TCP socket is opened between SIPp and the remote. All calls are placed using this socket.
This mode is generally used for emulating arelation between 2 SIP servers.

In TCP multi socket mode (-t t n command line parameter), one |P/TCP socket is opened for each new call between SIPp and the remote.
This mode is generally used for emulating user agents calling a SIP server.

Page 61

SIPp

SIPp handles TCP reconnections. In case the TCP socket islost, SIPp will try to reconnect. The following parameters on the command line control this behaviour:

* -max_reconnect: Set the maximum number of reconnection attempts.
» -reconnect_close true/false: Should calls be closed on reconnect?
* -reconnect_sleep int: How long to sleep (in milliseconds) between the close and reconnect?

In TLS mono socket mode (-t | 1 command line parameter), one secured TL S (Transport Layer Security) socket is opened between SIPp and the remote. All calls
are placed using this socket.

Thismode is generally used for emulating arelation between 2 SIP servers.

When using TLS transport, SIPp will expect to have two filesin the current directory: a certificate (cacert.pem) and akey (cakey.pem). If oneis protected with a password, SIPp will ask for
it.

SIPp supports X509's CRL (Certificate Revocation List). The CRL isread and used if -t | s_cr| command line specifiesa CRL file to read.

In TLS multi socket mode (-t | n command line parameter), one secured TL S (Transport Layer Security) socket is opened for each new call between SIPp and the
remote.

This mode is generally used for emulating user agents calling a SIP server.

SIPp includes IPv6 support. To use IPv6, just specify the local |P address (-i command line parameter) to be an IPv6 IP address.
The following example launches a UAS server listening on port 5063 and a UAC client sending | Pv6 traffic to that port.

./sipp -sn uas -i [fe80::204: 75ff:fedd: 19d9] -p 5063
.Isipp -sn uac -i [fe80::204: 75ff:fedd: 19d9] [fe80::204: 75ff:fedd: 19d9]: 5063

Page 62

The Pcap play feature may currently not work on |Pv6.

When using one of the "multi-socket" transports, the maximum number of sockets that can be opened (which corresponds to the number of simultaneous calls)
will be determined by the system (see how to increase file descriptors section to modify those limits). Y ou can also limit the number of socket used by using the -
max_socket command line option. Once the maximum number of opened sockets is reached, the traffic will be distributed over the sockets already opened.

SIPpisoriginally asignalling plane traffic generator. There is alimited support of media plane (RTP).

The "RTP echo" feature allows SIPp to listen to one or two local 1P address and port (specified using - m and - mp command line parameters) for RTP media.
Everything that is received on this address/port is echoed back to the sender.

RTP/UDP packets coming on this port + 2 are al'so echoed to their sender (used for sound and video echo).

The PCAP play feature makes use of the PCAP library (http://www.tcpdump.org/pcap3_man.html) to replay pre-recorded RTP streams towards a destination. RTP
streams can be recorded by tools like Wireshark (http://www.wireshark.org/) (formerly known as Ethereal) or tcpdump (http://www.tcpdump.org/) . This alows you
to:

Play any RTP stream (voice, video, voicetvideo, out of band DTMFs/RFC 2833, T38 fax, ...)

Use any codec as the codec is not handled by SIPp

Emulate precisely the behavior of any SIP equipment as the pcap play will try to replay the RTP stream as it was recorded (limited to the performances of the
system).

Reproduce exactly what has been captured using an IP sniffer like Wireshark (' http://www.wireshark.org/) .

A good example is the UAC with media (uac_pcap) embedded scenario.

Page 63

http://www.tcpdump.org/pcap3_man.html
http://www.wireshark.org/
http://www.tcpdump.org/
http://www.wireshark.org/

SIPp

SIPp comes with a G711 alaw pre-recorded pcap file and out of band (RFC 2833) DTMFs in the pcap/ directory.

The PCAP play feature uses pthread setschedparam calls from pthread library. Depending on the system settings, you might need to be root to allow this. Please check "man 3
pthread setschedparam™ man page for details

More details on the possible PCAP play actions can be found in the action reference section.
The latest info on this feature, tips and tricks can be found on SIPp wiki (http://sipp.sourceforge.net/wiki/index.php/Pcapplay) .

To ease automation of testing, upon exit (on fatal error or when the number of asked calls (- mcommand line option) is reached, sipp exits with one of the following
exit codes:

* 0 All callswere successful

* 1: Atleast onecal faled

» 97: exitoninterna command. Calls may have been processed. Also exit on global timeout (see -timeout_global option)
* 99: Normal exit without calls processed

» -1: Fatal error

Depending on the system that SIPp is running on, you can echo this exit code by using "echo ?" command.

Response times can be gathered and reported. Response time names can be arbitrary strings, but for backwards compatibility the value "true" istreated asif it were
named "1". Each response time can be used to compute time between two SIPp commands (send, recv or nop). Y ou can start atimer by using the start_rtd attribute
and stop it using the rtd attribute.

Y ou can view the value of those timersin the SIPp interface by pressing 3, 6, 7, 8 or 9. You can also save the valuesin a CSV file using the -trace_stat option (see
below).

If the -trace_rtt option is set, the response times are also dumped in the >scenario file name<_>pid<_rtt.csv.
Each line represents a RTD measure (triggered by a message reception with artd="n" attribute). The dump frequency is tuned by the -rtt_freq parameter.

Page 64

http://sipp.sourceforge.net/wiki/index.php/Pcapplay

SIPp

The-trace_stat option dumpsall statisticsin the scenario_name_pid.csv file. The dump starts with one header line with all counters. All following lines are
‘snapshots of statistics counter given the statistics report frequency (-fd option). When SIPp exits, the last values of the statistics are al'so dumped in thisfile.

Thisfile can be easily imported in any spreadsheet application, like Excel.
In counter names, (P) means 'Periodic’ - since last statistic row and (C) means 'Cumulated’ - since sipp was started.

Avallable statistics are:

« StartTime: Date and time when the test has started.

* LastResetTime: Date and time when periodic counters where last reseted.

* CurrentTime: Date and time of the statistic row.

» ElapsedTime: Elapsed time.

» CdlRate: Call rate (calls per seconds).

* IncomingCall: Number of incoming calls.

* QutgoingCall: Number of outgoing calls.

» TotalCalCreated: Number of calls created.

* CurrentCall: Number of calls currently ongoing.

» SuccessfulCall: Number of successful calls.

* FailedCall: Number of failed calls (all reasons).

* FalledCannotSendM essage: Number of failed calls because Sipp cannot send the message (transport issue).

* FalledMaxUDPRetrans. Number of failed calls because the maximum number of UDP retransmission attempts has been reached.

* FalledUnexpectedMessage: Number of failed calls because the SIP message received is not expected in the scenario.

» FalledCallRgected: Number of failed calls because of Sipp internal error. (a scenario sync command is not recognized or a scenario action failed or a scenario
variable assignment failed).

* FailedCmdNotSent: Number of failed calls because of inter-Sipp communication error (a scenario sync command failed to be sent).

» FalledRegexpDoesntMatch: Number of failed calls because of regexp that doesn't match (there might be several regexp that don't match during the call but the
counter isincreased only by one).

» FailledRegexpShouldntMatch: Number of failed calls because of regexp that shouldn't match (there might be several regexp that shouldn't match during the call but
the counter isincreased only by one).

» FalledRegexpHdrNotFound: Number of failed calls because of regexp with hdr option but no matching header found.

* FailedOutboundCongestion: Number of failed outgoing calls because of TCP congestion.

» FaledTimeoutOnRecv: Number of failed calls because of arecv timeout statement.

» FaledTimeoutOnSend: Number of failed calls because of a send timeout statement.

* OutOfCalMsgs. Number of SIP messages received that cannot be associated with an existing call.

Page 65

Retransmissions: Number of SIP messages being retransmitted.
AutoAnswered: Number of unexpected specific messages received for new Call-ID. The message has been automatically answered by a 200 OK Currently,
implemented for 'PING' message only.

The counters defined in the scenario are also dumped in the stat file. Counters that have a numeric name are identified by the GenericCounter columns.
In addition, two other statistics are gathered:

ResponseTime (see previous section)

CallLength: thisisthe time of the duration of an entire call.

Both ResponseTime and CallL ength statistics can be tuned using ResponseTimeRepartition and CallL engthRepartition commands in the scenario.
The standard deviation (STDev) isalso available in the log stat file for these two statistics.

The SIPp screens provide detailed information about the number of messages sent or recieved, retransmissions, messages lost, and the number of unexpected
messages for each scenario element. Although these screens can be parsed, it is much simpler to parse a CSV file. To produce a CSV file that contains the per-
message information contained in the main display screen pass the -trace_counts option. Each column of the file represents a message and a particular count of interest
(eg.,"1 INVITE_ Sent" or