2008. Том 49, № 2

Март – апрель

C. 316 – 323

УДК 541,49+546,98+547,442+548,737

НОВЫЕ ЛЕТУЧИЕ КОМПЛЕКСЫ Ni(II) И Pd(II) НА ОСНОВЕ 2,2,6,6-ТЕТРАМЕТИЛ-3-АМИНО-4-ГЕПТЕН-5-ОНА: СВОЙСТВА, СТРУКТУРА

© 2008 Г.И. Жаркова*, И.А. Байдина, П.А. Стабников

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 25 июля 2007 г.

Получены новые летучие β -иминокетонатные комплексы Ni(L)₂ и Pd(L)₂. В качестве HL использован β -аминовинилкетон — C(CH₃)₃C(NH₂)CHC(O)C(CH₃)₃. Описан синтез, приведены данные элементного анализа, ИК спектров, ДТА. Проведено исследование комплексов методами РФА и РСА Структуры соединений молекулярные, построены из *транс*-комплексов, установлена их изоструктурность. Координация центральных атомов плоско-квадратная, реализуется координационный узел (MO₂N₂). Расстояния М—O, М—N и валентные хелатные углы N—M—O в соединениях равны, их значения составляют 1,834, 1,848 Å, 94,2° для комплекса Ni(L)₂ и 1,972, 1,975 Å, 92,4° для комплекса Pd(L)₂.

Ключевые слова: β-иминокетонаты, никель(II), палладий(II), летучесть, структура.

Интерес к исследованию летучих β-дикетонатов металлов объясняется возможностью их использования для решения технологических задач, связанных с получением металлических покрытий различного функционального назначения методом химического осаждения из газовой фазы (метод MO CVD) [1]. Важнейшим свойством соединений этого класса являются летучесть и термическая устойчивость, которые для одного и того же металла могут изменяться в значительных пределах в зависимости от состава и строения используемого лиганда. Умение прогнозировать и улучшать эти свойства путем использования для синтеза комплексов лигандов определенного состава является одной из важных задач в этой области исследований. Для летучих β-дикетонатов Ni(II) общей формулы Ni (R¹—CO—CH—CO—R²)₂ выбор соответствующих R^1 и R^2 является определяющим, так как для комплексов Ni(II) характерно образование олигомеров [2], которые не обладают заметной летучестью. Процесса димеризации можно избежать при использовании β-дикетонов с объемными концевыми заместителями. Например, комплекс Ni(dpm)₂ на основе дипивалоилметана, где $R^1 = R^2 = C(CH_3)_3$, является мономерным, имеет плоско-квадратное строение и обладает хорошими характеристиками по летучести [3,4]. Получение мономерных бис-хелатных комплексов Ni(II) возможно также при использовании в качестве лигандов β-аминовинилкетонов [5]. В этом случае имеющийся в хелатном цикле атом водорода NH-группы оказывается в непосредственной близости от центрального атома металла и создает стерические препятствия к образованию олигомерных форм. Что касается летучих β -иминокетонатных комплексов Pd(II), то они, в отличие от β -дикетонатов Pd(II), до настоящего времени практически не изучены.

В настоящей работе описан синтез, свойства и проведено рентгеноструктурное исследование двух новых летучих комплексов $Ni(L)_2$ и $Pd(L)_2$. В качестве HL использовали 2,2,6,6тетраметил-3-амино-4-гептен-5-он — $C(CH_3)_3C(NH_2)CHC(O)C(CH_3)_3$ (далее в тексте H(i-dpm)).

^{*} E-mail: zharkova@che.nsk.su

Используемый для синтеза β-аминовинилкетон является (O,N)-хелатным аналогом такого β-дикетона как дипивалоилметан (Hdpm) и впервые использован нами в работе [6] для синтеза летучего комплекса Cu(i-dpm)₂. Структура лиганда депонирована в Кембриджскую базу структурных данных (CCD C 249230) [7].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез Ni(i-dpm)₂ — Ni[C(CH₃)₃C(NH)CHC(O)C(CH₃)₃]₂ — бис(2,2,6,6-тетраметил-3-имино-4-гептен-5-онато)никеля(II). Навеску NiCl₂·6H₂O (1 г, 4,2 ммоля) растворяли в 50 мл этанола и приливали к нему раствор калиевой соли лиганда, предварительно полученный из 0,47 г (8,4 ммоля) КОН и 1,64 г (8,4 ммоля) лиганда H(i-dpm) в 20 мл этанола. Реакционную смесь нагревали на водяной бане при 60 °C при постоянном перемешивании. Постепенно раствор обесцвечивался и выделялся осадок темно-красного цвета. Растворитель выпаривали полностью, сухой остаток растворяли в хлороформе. Продукт, выделенный из хлороформа, очищали сублимацией в вакууме ($P = 10^{-2}$ мм рт. ст.) при температуре 180 °C. Выход сублимированного продукта составлял 1,47 г (83 %). Комплекс представляет собой темно-красный мелкокристаллический порошок, $T_{пл} = >260$ °C, хорошо растворяется в обычных органических растворителях. Данные химического анализа: найдено, %: С 62,24, Н 9,61, N 6,54; для Ni C₂₂H₄₀N₂O₂ вычислено, %: С 62,41, Н 9,45, N 6,61.

Синтез Рd(i-dpm)₂ — Pd[C(CH₃)₃C(NH)CHC(O)C(CH₃)₃]₂ — бис(2,2,6,6-тетраметил-3имино-4-гептен-5-онато)палладия(II). Навеску PdCl₂ (1 г, 5,6 ммоля) помещали в аммиачный раствор (25 мл воды и 25 мл концентрированного раствора аммиака), по мере растворения PdCl₂ окраска раствора менялась от розовой до желтой. Раствор нагревали на водяной бане до полного обесцвечивания, следя за тем, чтобы pH раствора оставался сильно щелочным. После этого в реакцию добавляли калиевую соль лиганда, приготовленную из 0,63 г (11,2 ммоля) KOH и 2,07 г (11,2 ммоля) лиганда H(i-dpm) в 20 мл этанола и продолжали нагревание. Образование хелатного комплекса происходит медленно, появление осадка начиналось при pH 7—8, реакция в этих условиях длится не менее 5 ч. Осадок отфильтровывали, промывали водой, сушили на воздухе и растворяли в бензоле. Продукт, выделенный из бензола, очищали сублимацией в вакууме ($P = 10^{-2}$ мм рт. ст.) при T = 160 °C. Выход сублимированного продукта составлял 1,85 г (70 %). Комплекс представляет собой кристаллический порошок желто-оранжевого цвета, $T_{пл} = 270$ °C, хорошо растворяется в обычных органических растворителях. Данные химического анализа: найдено, %: С 56,29, H 8,42, N 6,22; для Pd C₂₂H₄₀N₂O₂ вычислено, %: C 56,10, H 8,56, N5,95.

ИК спектры комплексов в области 400—3800 см⁻¹записывали на спектрометре Scimitar FTS-2000 в таблетке KBr.

Термическое исследование проводили при нагревании комплексов в атмосфере гелия на дериватографе Q-1000 (F.PAULIK, J.PAULIK, L.Erdey).Условия съемки: нагрев до 500 °C ($\Delta T = \pm 5$ °C), скорость 10 °C/мин, ток газа 150 мл/мин, навеска 100 мг, тигель стандартный открытый.

Рентгенографическое исследование полученных соединений проведено на дифрактометре ДРОН-3М (R = 192 мм, Cu K_{α} -излучение, Ni-фильтр, детектор сцинтилляционный с амплитудной дискриминацией) в области углов 20 от 5 до 50° при комнатной температуре. Индицирование дифрактограмм, выполненное по данным исследования монокристаллов, свидетельствует об однофазности полученных соединений.

Рентгеноструктурное исследование. Монокристаллы соединений Pd(i-dpm)₂ и Ni(i-dpm)₂ для PCA выращены медленной сублимацией в вакууме.

Параметры элементарных ячеек и экспериментальные интенсивности для расшифровки кристаллических структур Ni(i-dpm)₂ и Pd(i-dpm)₂ измерены на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 Арех, оснащенном двухкоординатным CCD-детектором (Мо K_{α} -излучение, графитовый монохроматор). Кристаллографические характеристики исследованных соединений и параметры проведенных экспериментов приведены в табл. 1. Структу-

Параметр	(Pd(i-dpm) ₂	Ni(i-dpm) ₂		
Эмпирическая формула	C22H40N2O2Pd	C20H40N2O2Ni		
Формульный вес	470.96	423.3		
Температура. К	100(2)	150(2)		
Сингония	Моноклинная	Моноклинная		
Пространственная группа	$P2_1/n$	$P2_1/n$		
<i>a</i> , <i>b</i> , <i>c</i> , Å	9,8957(3), 11,9288(4), 11,2420(3)	9,937(2), 11,889(2), 11,040(2)		
α, β, γ, град.	90, 110,3210(10), 90	90, 110,18(3), 90		
Объем, Å ³	1244,46(7)	1224,2(4)		
Z	2	2		
$d_{\rm BbHy}, \Gamma/{\rm CM}^3$	1,257	1,148		
Коэффициент поглощения, мм ⁻¹	0,762	0,809		
<i>F</i> (000)	496	460		
Размер кристалла, мм	$0,17 \times 0,16 \times 0,09$	$0,20 \times 0,16 \times 0,15$		
Область съемки, θ, град.	2,37—30,93,97	2,38—28,26		
Диапазон <i>h</i> , <i>k</i> , <i>l</i>	$-13 \le h \le 11, -15 \le k \le 16,$	$-13 \le h \le 13, -14 \le k \le 15,$		
	<i>−</i> 15 <i>≤l≤</i> 13	<i>−</i> 11 <i>≤l≤</i> 14		
<i>I_{hkl}</i> измер. / <i>I_{hkl}</i> независ.	$9283 / 3417 [R_{int} = 0.025]$	$5031 / 1593 [R_{int}] = 0.0237$]		
Полнота сбора данных по по $\theta = 25,00^{\circ}$	99,5 %	52,7 %		
Макс. и мин. пропускание	0,9346 и 0,8814	0,8883 и 0,8549		
Метод уточнения	Полноматричный МНК по F^2	Полноматричный МНК по F^2		
Число рефл. / огр. / параметров	3417 / 0 / 204	1593 / 0 / 135		
GOOF для $F^2 hkl$	1,037	1,083		
$R(I > 2\sigma_I)$	R1 = 0,0291, wR2 = 0,0691	R1 = 0,0270, wR2 = 0,0716		
R (I _{изм})	R1 = 0,0459, wR2 = 0,0740	R1 = 0,0282, wR2 = 0,0722		
Макс. и мин. остаточной электронной плотности, е/Å ³	0,734 и –0,435	0,398 и -0,221		

Кристаллографические данные и параметры рентгеноструктурного эксперимента

ры решены прямым методом и уточнены в анизотропном (изотропном для H) приближении. Позиции атомов водорода для комплекса Ni(II) взяты из разностного синтеза, для комплекса Pd(II) заданы геометрически. Координаты базисных неводородных атомов приведены в табл. 2, основные межатомные расстояния и валентные углы исследованных комплексов — в табл. 3. Все расчеты проведены по комплексу программ SHELX-97 [8].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез. Комплексы получены по оригинальным вышеописанным методикам, в условиях, исключающих процесс гидролиза используемого β -аминовинилкетона, который легко подвергается кислотному гидролизу уже при pH 2, превращаясь при этом в β -дикетон [6]. Поэтому для синтеза Ni(i-dpm)₂ использовали не свободный лиганд, а его калиевую соль. Комплекс Pd(i-dpm)₂ получали по вновь разработанной методике. В качестве исходной соли палладия использован PdCl₂, реакция идет в аммиачной среде через стадию образования промежуточного тетрамминпалладохлорида, который далее взаимодействует с лигандом с образованием хелатного комплекса Pd(L)₂.

ИК спектры комплексов имеют большое сходство как по числу полос, так и по соотношению их интенсивностей, что косвенно подтверждает принадлежность этих бис-хелатных ком-

Таблица 2

коороинаты атомов и изотропные параметры атомных смещении, к						
Атом	x/a	y/b	z/c	$U_{ m _{3KB}}$		
Комплекс Pd(i-(dpm) ₂						
Pd(1)	0,5000	0,0000	1,0000	0,01352(7)		
O(1)	0,37523(16)	0,00740(11)	1,10366(15)	0,0193(3)		
N(1)	0,3743(2)	0,11471(14)	0,88881(17)	0,0157(4)		
C(1)	0,3944(2)	-0,05048(16)	1,20648(19)	0,0171(4)		
C(3)	0,5045(2)	-0,12655(17)	1,2598(2)	0,0186(4)		
C(2)	0,3849(2)	0,15811(16)	0,78693(19)	0,0174(4)		
C(4)	0,2781(2)	-0,02635(17)	1,2640(2)	0,0196(4)		
C(5)	0,2746(2)	0,24716(17)	0,7128(2)	0,0198(4)		
C(41)	0,2748(3)	0,1010(2)	1,2850(3)	0,0273(5)		
C(42)	0,3007(3)	-0,0860(2)	1,3901(2)	0,0275(5)		
C(43)	0,1332(3)	-0,0639(2)	1,1667(3)	0,0276(5)		
C(51)	0,3562(3)	0,3553(2)	0,7040(3)	0,0433(7)		
C(52)	0,1645(3)	0,2781(3)	0,7771(3)	0,0402(7)		
C(53)	0,1908(4)	0,2027(3)	0,5801(3)	0,0473(8)		
Комплекс Ni(i-(dpm) ₂						
Ni(1)	1,0000	0,0000	1,0000	0,01600(14)		
O(1)	1,11403(16)	0,0113(14)	0,90063(15)	0,0194(18)		
N(1)	1,1192(2)	0,10727(16)	1,10432(18)	0,0182(4)		
C(1)	1,0997(2)	-0,0462(2)	0,7945(2)	0,0192(4)		
C(2)	1,1151(3)	0,1530(2)	1,2106(2)	0,0193(4)		
C(3)	1,0073(3)	0,1227(2)	1,2622(2)	0,0220(5)		
C(4)	1,2182(2)	-0,0190(3)	0,7398(2)	0,0176(11)		
C(41)	1,2015(3)	-0,0771(2)	0,6127(3)	0,0291(5)		
C(42)	1,2178(3)	0,1097(3)	0,7194(3)	0,0342(6)		
C(43)	1,3619(3)	-0,0539(3)	0,8416(3)	0,0349(6)		
C(5)	1,2290(3)	0,2419(3)	1,2816(3)	0,0247(6)		
C(51)	1,1504(4)	0,3501(3)	1,2932(5)	0,0613(12)		
C(52)	1,3140(5)	0,1969(4)	1,4152(3)	0,0671(14)		
C(53)	1,3300(5)	0,2705(4)	1,2136(4)	0,0446(10)		

Координаты атомов и изотропные параметры атомных смещений, $Å^2$

 Π р и м е ч а н и е. U_{eq} определяется как одна треть следа ортогонализованного U_{ii} тензора.

плексов Ni и Pd к одной пространственной изомерной форме. Характерной особенностью спектров является наличие двух сильных полос поглощения, подтверждающих хелатный тип связи металла с бидентатно-связанным лигандом. В спектре комплекса Ni(i-dpm)₂ эти полосы лежат в области 1587 и 1497 см⁻¹, а в случае комплекса Pd(i-dpm)₂ – в области 1592 и 1513 см⁻¹, они ответственны за колебания v(C—O) координированной карбонильной группы. Менее интенсивные полосы в области 1470—1430 см⁻¹ для этих комплексов следует отнести к валентному колебанию связи (С—C) хелатного кольца [9]. В каждом спектре имеется очень интенсивная пирокая полоса в области 2960 см⁻¹, ответственная за валентные колебания C—H *трет*бутильных групп лиганда. Сильная узкая полоса поглощения в области 3366 см⁻¹ для Ni(i-dpm)₂ и в области 3372 см⁻¹ для Pd(i-dpm)₂ ответственна за валентные колебания NH-группы в каждом из этих соединений [10].

Термическое исследование показало, что в условиях съемки оба комплекса ведут себя практически одинаково. На кривых ДТА при температуре ~270 °C наблюдаются эндо-эффекты,

Таблица З

Расстояние	d	Расстояние	d	Угол	ω
Комплекс Pd(i-dpm) ₂					
Pd(1)—O(1)	1,9722(16)	C(1)—C(3)	1,384(3)	O(1)Pd(1)—N(1)#1	92,46(7)
Pd(1) - N(1)	1,9754(17)	C(1)—C(4)	1,531(3)	C(1) - O(1) - Pd(1)	124,91(14)
O(1)—C(1)	1,302(3)	C(3)—C(2)#1	1,419(3)	C(2) - N(1) - Pd(1)	127,63(16)
N(1)—C(2)	1,294(3)	C(2)—C(5)	1,543(3)	O(1) - C(1) - C(3)	125,6(2)
				C(1)—C(3)—C(2)#1	127,3(2)
				N(1)—C(2)—C(3)#1	122,10(19)
Комплекс Ni(i-dpm) ₂					
Ni(1)—O(1)	1,834(2)	C(1)—C(3)#1	1,375(3)	O(1)#1—Ni(1)—N(1)	94,2(4)
Ni(1)—N(1)	1,848(2)	C(1)—C(4)	1,532(3)	C(1) - O(1) - Ni(1)	126,3(7)
O(1)—C(1)	1,322(9)	C(2)—C(3)	1,423(3)	C(2) - N(1) - Ni(1)	129,43(17)
N(1)—C(2)	1,306(3)	C(2)—C(5)	1,549(4)	O(1)—C(1)—C(3)#1	125,2(4)
				N(1) - C(2) - C(3)	121,1(2)
				C(1)#1-C(3)-C(2)	123,7(2)

Основные межатомные расстояния d, Å и валентные углы ω, град.

Примечание. Операторы симметрии используемые для генерации эквивалентных атомов: #1 -*x*+1, -*y*, -*z*+2.

связанные с плавлением этих комплексов. С целью проведения сравнительного анализа летучести и термической устойчивости исследуемых комплексов Ni(i-dpm)₂ и Pd(i-dpm)₂, а также ранее изученного нами комплекса Cu(i-dpm)₂ [6] с их (O,O)-хелатными аналогами, на рис. 1 приведены также кривые TГ для комплексов Ni(dpm)₂, Pd(dpm)₂ и Cu(dpm)₂, полученные в тех же условиях съемки. Анализ термогравиметрических кривых показал, что процесс испарения всех комплексов начинается только после 220 °C, независимо от типа хелатного узла. β-Дикетонатные комплексы Cu, Ni, Pd (см. рис. 1, кривые 1, 2, 3) испаряются на 100 % в температурном интервале ~220—320 °C. Комплексы Ni(i-dpm)₂ и Pd(i-dpm)₂ начинают испаряться при более высокой температуре. Для комплекса Ni(i-dpm)₂ в интервале 250—350 °C происходит 100%-я потеря массы образца за счет сублимации. Однако для комплекса Pd(i-dpm)₂ потеря массы навески составила лишь 88 % из-за частичного разложения, что характерно также и для комплекса Cu(i-dpm)₂, хотя он из рассматриваемых β-иминокетонатов является наиболее летучим (см. рис. 1, кривые 4, 5, 6). Проведенное термоаналитическое исследование показало, что исследуемые новые β-иминокетонаты Ni(II), и Pd(II) обнаруживают хорошие характеристики по термической устойчивости, но менее летучи, чем их O,O-хелатные аналоги.

Описание кристаллических структур *mpaнc*-Pd(i-dpm)₂ и *mpaнc*-Ni(i-dpm)₂. Оба соединения изоструктурны, поэтому ниже мы приводим подробное описание структуры только для комплекса палладия.

Структура исследованного соединения молекулярная, основной строительной единицей является изолированный *транс*-комплекс Pd(i-dpm)₂, строение которого с нумерацией атомов приведено на рис. 2. Атом палладия, расположенный в центре симметрии, имеет слабо искаженную квадратную координацию PdO₂N₂, образованную двумя атомами кислорода и двумя атомами азота двух лигандов. Различие длин связей Pd—O и Pd—N незначительно (соответственно 1,972 и 1,975 Å) и составляет только 0,003 Å, для комплекса Ni разница составляет 0,014 Å. Разница связей O—C и N—C для Pd(i-dpm)₂ также незначительна и составляет 0,008 Å, для комплекса Ni она в два раза больше (0,016 Å). Наибольшее различие (0,035 и 0,048 Å) отмечено для симметричных связей С—Су в металлоциклах. В группах C(CH₃)₃ лигандов среднее

Рис. 1. Термогравиметрические кривые комплексов: Cu(dpm)₂ (1), Ni(dpm)₂ (2), Pd(dpm)₂ (3), Cu(i-dpm)₂ (4), Ni(i-dpm)₂ (5), Pd(i-dpm)₂ (6)

Рис. 2. Строение комплекса Pd(i-dpm)₂

значение длин связей С—С равно 1,537 Å, валентные углы С—С—С меняются в интервале 107,3—114,5°. Хелатный угол О—Рd—N равен 92,4° (для Ni(i-dpm)₂ — 94,2°), угол перегиба металлоцикла по линии О…N составляет 1,1°. Торсионные углы N(1)C(2)C(5)C(52) и C(3)C(1)C(4)C(42), характеризующие развороты заместителей, равны 2,8 и 4,6° соответственно. В целом молекула комплекса за исключением концевых CH₃-групп имеет практически плоское строение, $\Delta = 0,01$ Å.

Упаковка молекул в кристалле вдоль направления оси *Y* представлена на рис. 3, все межмолекулярные взаимодействия в структуре относятся к ван-дер-ваальсовым. Квадратное окружение атома Pd дополняется до тетрагонально-бипирамидального атомами водорода CH₃-групп соседних комплексов, расстояния Pd...H_{Me} составляют 2,88 Å. Каждый комплекс в структуре окружен четырьмя идентичными: на расстояниях между центрами Pd...Pd 8,505 Å (для Ni(idpm)₂ — 8,460 Å). В целом кристаллические структуры исследованных β-иминокетонатов *mpaнc*-Pd(i-dpm)₂ и *mpaнc*-Ni(i-dpm)₂ близки к структурам их β-дикетонатных аналогов.

В сводной табл. 4 приведены литературные данные основных кристаллохимических характеристик для Cu(dpm)₂, Ni(dpm)₂, Pd(dpm)₂ и наши данные для Cu(i-dpm)₂, полученные ранее в работе [6], а также аналогичные характеристики для *mpaнc*-Pd(i-dpm)₂ и *mpaнc*-Ni(i-dpm)₂, полученные в настоящей работе. Сравнительный анализ этих данных позволяет сделать следующие выводы. Комплексы M(i-dpm)₂ и M(dpm)₂, где M = Cu, Ni, Pd — изоструктурны, все соединения относятся к моноклинной сингонии и кристаллизуются в пространственная группа

Р2₁/с (или Р2₁/n). Замена в лиганде одного атома кислорода на азот не приводит к значительным изменениям стереохимичеких характеристик комплексов. Расстояние М—О, М—N и хелатный угол О—М—N остаются практически неизменными (см. табл. 4). Несмотря на близкое строение молекул комплексов упаковки их в кристалле несколько отличаются. Угол между нормалями к плоскостям молекул в Ni(dpm)₂

Рис. 3. Упаковка комплексов Pd(i-dpm)₂ (проекция на плоскость 010)

321

Таблица 4

Комплекс	<i>a, b, c,</i> Å	β, град.	Пр. гр., Z	<i>V/Z</i> , Å ³ <i>d</i> _{выч} , г/см ³	М—О, Å О—М—О _{ср} , град.	MM, Å	Литература
Cu(dpm) ₂	10,355(6)	113,00(2)	$P2_{1}/c$	618,2	1,891(2)	8,062 × 4;	[7]
	11,019(3) 11,772(6)		2	1,16	1,901(2) 92 8(1)	$10,355 \times 2$	
Ni(dpm) ₂	10,215(2)	112,327(6)	$P2_1/c$	589,0	1,832(7)	7,900 × 4;	Наши
	10,888(2)		2	1,199	1,838(8)	$10,215 \times 2$	данные**
	11,450(2)				94,6(1)		
$Pd(dpm)_2$	11,245(3)	110,17(3)	$P2_1/n$	624,0	1,966(2)	8,534 × 4;	[11]
	12,008(8)		2		1,977(2)	10,39 × 2;	
	9,851(3)				93,8(1)		
Cu(i-dpm) ₂	9,7748(2)	110,029(1)	$P2_1/n$	612,85	1,907(1)	$8,486 \times 4;$	[6]
	11,9246(3)		2	1,160	1,910(1)*	$9,775 \times 2$	
	11,1926(3)				91,8(1)		
Ni(i-dpm) ₂	9,937(2)	110,18(3)	$P2_1/n$	612,1	1,834(2)	8,460 × 4;	Наст. раб.
	11,889(2)		2	1,148	1,848(2)*	$9,937 \times 2$	
	11,040(2)				94,2(4)		
Pd(i-dpm) ₂	9,8957(3)	110,321(1)	$P2_{1}/n$	622,23	1,972(2)	8,505 × 4;	Наст. раб.
	11,9288(4)		2	1,257	1,975(2)*	$9,896 \times 2$	
	11,2420(3)				92,5(1)		

Основные кристаллохимические характеристики комплексов $M(dpm)_2 u$ транс- $M(i-dpm)_2$, где M = Cu, Ni, Pd

* Расстояние М—N.

** Уточнение кристаллической структуры проведено при –150 °C, все данные можно получить у авторов.

составляет 44,9°, в Ni(i-dpm)₂, — 87,7° (см. рис. 4). В структуре β-иминокетонатов увеличивается расстояние между центрами комплексов в слое с 7,90 до 8,46 Å, а межслоевое расстояние уменьшается с 10,39 до 9,36 Å. Для двух представителей этих рядов, а именно для Ni(dpm)₂ и Ni(i-dpm)₂, на основе полученных нами монокристальных данных рассчитаны теоретические дифрактограммы, приведенные на рис. 5, которые заметно различаются вследствие различной упаковки молекул комплексов в кристаллах.

Таким образом, в настоящей работе синтезированы новые летучие комплексы Ni(II) и Pd(II) на основе β-аминовинилкетона 2,2,6,6-тетраметил-3-амино-4-гептен-5-она. Использование указанного лиганда позволило избежать процесса олигомеризации, типичного для β-дикетонатных комплексов Ni(II), и получить с высоким выходом мономерный летучий комплекс. Проведенное кристаллохимическое исследование комплексов Ni(i-dpm)₂ и Pd(i-dpm)₂ показало, что в слу-

Рис. 4. Упаковка молекул комплексов в слоях: $Ni(dpm)_2 - a$, $Ni(i-dpm)_2 - \delta$

Puc. 5. Теоретические дифрактограммы для комплексов Ni(dpm)₂ и Ni(i-dpm)₂, построенные на основе полученных монокристальных данных

чае лигандов с симметричными *трет*-бутильными заместителями замена в лиганде одного атома кислорода на азот не приводит к структурному многообразию комплексов. По своим термическим характеристикам исследуемые комплексы также близки к их O,O-хелатным аналогам и могут быть использованы в процессах CVD для получения металлических покрытий никеля и палладия.

В заключение авторы выражают благодарность А.В. Алексееву за проведение РФА, Н.В. Куратьевой и Е.В. Пересыпкиной за проведение РСА.

СПИСОК ЛИТЕРАТУРЫ

- 1. *The Chemistry* of Metal CVD / Eds. T.T. Kodas, M.J. Hampden-Smith. Weinheim, N.Y., Basel, Cambridge, Tokyo: VCH, 1994.
- 2. Bullen G.J., Masin R., Pauling P. // Inorg. Chem. 1965. 4, N 4. P. 456 462.
- 3. Cotton F.A., Wise J.J. // Ibid. 1966. 5, N 7. P. 1200 1207.
- 4. Игуменов И.К., Чумаченко Ю.В., Земсков С.В. // Проблемы химии и применения β-дикетонатов металлов. М.: Наука, 1982. С. 100 120.
- 5. Novak E., Gdaniec M., Gierezyk B., Urbaniak W. // Polish J. Chem. 1999. 73, N 11. P. 1757 1762.
- 6. Stabnikov P.A., Zharkova G.I., Baidina I.A. et al. // Polyhedron. 2007. (в печати).
- 7. Allen F., Kennard O. // Chem. Design Automat. News. 1993. 8, N 1. P. 31 37.
- 8. Sheldrik G.M. // SHELX-97-1. Gottingen (Germany): Univ. of Gottingen, 1997.
- 9. Benke G.T., Nakamoto K. // Inorg. Chem. 1967. 6, N 3. P. 433 440.
- 10. Кросс А. Введение в инфракрасную спектроскопию. М.: ИЛ, 1961.
- 11. Baker G.J., Raynor J.B., Smits M.M. et al. // Chem. Soc., Dalton Trans. 1986. N 12. P. 2655 2662.