2008. Том 49, № 2

Март – апрель

C. 341 – 347

УДК 544.023.2+544.022.3+542.943+544.72+546.55

ИССЛЕДОВАНИЕ НАНОСТРУКТУРИРОВАННЫХ ПЛЕНОК ОКСИДА МЕДИ СиО МЕТОДАМИ РФЭС, УФЭС И СТМ

© 2008 А.И. Стадниченко¹, А.М. Сорокин¹, А.И. Боронин^{1,2}*

¹Институт катализа им. Г.К. Борескова СО РАН, Новосибирск ²Новосибирский государственный университет, Новосибирск

Статья поступила 8 июня 2007 г.

Методом низкотемпературного окисления металлической меди в плазме кислорода получена оксидная пленка состава Cu₁O_{1,7}, содержащая значительное количество сверхстехиометрического кислорода. Исследование методом CTM структуры полученной оксидной пленки показало формирование нанокристаллитов оксида меди плоской структуры с размерами ~10 нм с упаковкой частиц параллельно поверхности исходного металла. Метод РФЭС позволил установить, что спектральные характеристики линий Cu2*p* и O1*s* указывают на образование частиц с решеткой оксида меди CuO (E_{cB} (Cu2 $p_{3/2}$) = = 933,3 эВ и наличие shake-up сателлита, E_{cB} (O1*s*) = 529,3 эВ). Дополнительный сверхстехиометрический кислород локализуется в межблочном пространстве в местах контакта наночастиц и характеризуется состоянием с энергией связи E_{cB} (O1*s*) = 531,2 эВ. Установлено, что вследствие наноструктурирования пленок при низкотемпературном плазменном окислении полученный оксид меди обладает существенно более низкой термической стабильностью по сравнению с обычным кристаллическим оксидом CuO.

Ключевые слова: оксид меди, кислород, поверхность, РФЭС, УФЭС, СТМ, плазма, наночастица, оксидная пленка.

введение

Медь-оксидные катализаторы в течение длительного времени широко применяются в различных каталитических процессах, но наибольшее применение получили катализаторы, используемые в окислительном катализе [1,2]. В частности, катализаторы, имеющие в своем составе оксид меди CuO в качестве активного компонента, являются одними из наиболее из перспективных для дожигания СО при получении сверхчистого водорода для топливных элементов [3]. Для этого процесса важными являются не только высокие активность и селективность катализатора, но также высокая активность при относительно низких температурах < 400-500 К. Как правило, оксил мели, как активный компонент, наносится на носители для максимального диспергирования, при этом наночастицы оксида меди модифицируются при взаимодействии с носителем или промоторами типа CeO₂, ZrO₂, что в совокупности приводит к сильному каталитическому эффекту низкотемпературного окисления СО. Считается, что низкотемпературное окисление возможно только при диспергировании активных компонентов на носители. Однако в недавно опубликованной работе Пилая и Диви [4] была показана чрезвычайно высокая каталитическая активность нанопорошков оксида меди CuO без их какой-либо модификации промоторами или нанесения на носители. В этой работе порошки были получены разложением гидроксида меди контролируемым образом. В этом же направлении опубликованы работы [5,6], продемонстрировавшие эффект резкого увеличения реакционной способности решеточного кислорода CuO за счет формы и размера наночастиц оксида меди. В этих ра-

^{*} E-mail: boronin@catalysis.ru

ботах авторы обсуждают, что размер и геометрическая форма наночастиц оксида меди напрямую должна быть связана с состоянием решеточного или адсорбированного кислорода, проявляющего высокую реакционную способность при низких температурах. К сожалению, в цитированных работах устанавливается только кинетический эффект и не представлены данные о состоянии и природе связи реакционноспособного кислорода в наноразмерных структурах CuO.

В связи с этим приобретают особую значимость исследования уникальных каталитических свойств наноразмерных частиц оксида меди во взаимосвязи с их электронной и геометрической структурой, а также состоянием решеточного и адсорбированного кислорода. В этом отношении наиболее информативными методами являются методы фотоэлектронной спектроскопии (РФЭС, УФЭС) и метод сканирующей туннельной микроскопии (СТМ). Так как применение этих методов требует высоковакуумных условий, то необходимо получение наноструктурированных образцов непосредственно в вакуумных камерах приборов. В качестве такого метода нами применен метод воздействия на поверхность поликристаллической меди активированного кислорода, возбуждаемого радиочастотным разрядом. Применение этого метода возможно при низких температурах, что позволяет получать метастабильные наноструктурированные объекты, в отличие от методов, связанных с высокотемпературной прокалкой [7, 8].

В данной работе с применением методов РФЭС, УФЭС и СТМ нами исследованы электронные состояния меди и кислорода, а также структура поверхности поликристаллической медной фольги после различных термических и плазменных воздействий кислородом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты проводили на фотоэлектронном спектрометре "VG ESCALAB HP" производства фирмы VG Scientific (Thermoelectron, Великобритания). Вакуумная система прибора включает в себя камеру анализатора и камеру подготовки. Величина остаточного давления фоновых газов в ходе экспериментов не превышала 1×10^{-9} мбар. В камере подготовки проводили очистку и обработку образцов газами и активированным кислородом. Очистку поверхности образов проводили при помощи последовательных циклов аргонового травления и отжига образцов при 1000 К. Чистоту использованных в ходе экспериментов газов контролировали с помощью масс-спектрометра. В качестве образцов была использована медная поликристаллическая фольга чистотой 99,99 % толщиной 20 мкм. В ходе проведения экспериментов на поверхности образцов не было обнаружено примесей на уровне чувствительности метода РФЭС. Образцы размером 8×23 мм закрепляли на держателе при помощи точечной сварки. Держатель специальной конструкции обеспечивал возможность контролируемого нагрева образцов до 1100 К с точностью до 1 К. Образцы нагревали с помощью тока, пропускаемого через образец. Температуру измеряли с помощью Pt—Pt/Rh термопары. Управляли температурой образца с помощью терморегулятора, соединенного с компьютером IBM PC.

Для возбуждения фотоэлектронов использовали первичное излучение линий Al K_{α} (hv = 1486,6 эВ) и He II (hv = 40,8 эВ). Спектрометр был откалиброван по линиям Au4f с $E_{cB} = 84,0$ эВ и Cu2 $p_{3/2}$ с $E_{cB} = 932,6$ эВ [9]. Окисление меди проводилось как в атмосфере чистого кислорода термическим образом, так и в радиочастотной плазме (ВЧ разряд). Термическое окисление проводилось при 620 К и $P(O_2) = 500$ Па в течение 2—4 ч. Радиочастотная активация O_2 проводилась при 300 K, амплитуду возбуждающего излучения варьировали в пределах 600—800 В, диапазон частот 7—12 МГц, держатель с образцом заземляли, давление кислорода устанавливали в пределах 10—30 Па, время плазменной обработки меняли от 1—10 мин.

Исследование термической стабильности оксидных пленок меди было проведено методом РФЭС в режиме спектрокинетического варианта (метод динамической фотоэлектронной спектроскопии (DXPS)). В этом варианте используется запись интенсивности на максимуме линии (в данном случае O1s) от времени с нормировкой либо на остовную линию субстрата, либо на район фона.

СТМ изображения всех образцов были получены на высоковакуумном сканирующем туннельном микроскопе GPI-300.02 (разработки ИОФ РАН, Москва) при комнатной температуре

342

и давлении остаточных газов в камере микроскопа ~ 10^{-7} Торр. Зона анализа составляла поле размером 1×1 мм примерно в центре каждого образца, и ее точное положение определялось геометрическими особенностями применяемой иглы (использовались платиновые иглы диаметром 0,02 мм и длиной 6÷10 мм). Изображения регистрировали в режиме постоянно-токовой топографии в диапазоне значений туннельного тока $I_{\rm T} = 0,2407$ нА и напряжении туннельного промежутка $U_{\rm T} = -5004$ —2500 мВ. Для каждого образца было получено 50÷70 изображений при двух размерах поля сканирования: 1 мкм и 100 нм (шаг сканирования: 20 и 2 Å соответственно).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование остовных уровней. Использование стандартного способа окисления поверхности меди молекулярным кислородом при повышенных температурах позволило через 1 ч воздействия сформировать слой оксида меди Cu₂O толщиной более 100 Å, что определялось по изменению интенсивностей фотоэлектронных и Оже-линий. При дальнейшем воздействии кислорода в течение 2-4 ч происходило значительно более медленное формирование оксида меди CuO. Непосредственно определение состояния меди в виде Cu(0), Cu(1+), Cu(2+) производили по линиям Cu2p, O1s и Cu-LMM. Следует отметить, что на самых начальных этапах формирования оксида меди(II) частицы CuO были неустойчивы к воздействию рентгеновского излучения. Даже после незначительного времени воздействия рентгеновского излучения (20 мин) происходило полное разложение оксида меди(II) в оксид меди(I). В дальнейшем, при формировании толстого слоя пленки оксида меди CuO, этот слой был индифферентен к воздействию рентгеновского излучения. В данных экспериментах воздействие рентгеновского излучения в течение 4—5 ч не приводило к восстановлению оксида меди. Таким образом, обсуждаемая в литературе неустойчивость CuO при воздействии рентгеновского излучения, скорее всего, относится к кластерам малых размеров, а крупные частицы CuO достаточно устойчивы к воздействию излучения.

При термическом способе окисления формируется оксид меди CuO, характеризуемый одним состоянием меди (дублет Cu2 $p_{3/2-1/2}$ с расщеплением 19,9 эВ, $E_{cb}(Cu2p_{3/2}) = 933,3$ эВ) и практически одним состоянием кислорода $E_{cb}(O1s) = 529,3$ эВ (рис. 1, *a*, *b*, кр. *l*). В спектре Cu2*p* присутствует характерный для состояния Cu²⁺ "shake-up" сателлит, отстоящий на ~9 эВ от основного пика (E_{cb} ~942 эВ и ~962 эВ для компонент Cu2 $p_{3/2}$ и Cu2 $p_{1/2}$ соответственно). В спектре O1*s* кроме основного пика наблюдается небольшое плечо со стороны бо́льших энергий связи. Представленные на рис. 1 спектры Cu2*p* и O1*s* являются типичными для образцов оксида CuO и хорошо совпадают с литературными данными [10, 11].

Метод активации кислорода высокочастотным разрядом в газовой фазе O_2 успешно применяется для окисления металлов [7, 8, 12] и позволяет проводить интенсивное окисление поверхности при комнатной температуре и при существенно более низких давлениях кислорода.

Рис. 1. Спектры O1s с их разложением на компоненты (a) и спектры Cu2p (δ) поверхности оксидных пленок меди, полученных окислением медной фольги в атмосфере кислорода $P(O_2) = 500 \ {\rm Ta}$, $T = 620 \ {\rm K}$, $t = 4 \ {\rm y}$ (кривая 1) и окислением в кислороде, активированном высокочастотным разрядом при $T = 300 \ {\rm K}$, $t = 10 \ {\rm мин}$ (кривая 2) и $t = 30 \ {\rm мин}$ (кривая 3)

Так, в наших экспериментах уже через 5 мин воздействия активированным кислородом при 300 К образуется слой оксида CuO, толщина которого превышает 100 Å. Получение промежуточного оксида меди(I) при данном способе окисления практически невозможно, так как процесс окисления идет слишком быстро и остановить процесс на стадии образования Cu₂O трудно. Получить оксид Cu₂O удается только при помощи термического разложения CuO в Cu₂O или при воздействии активированным кислородом при повышенной температуре образца, большей, чем температура перехода Cu(II) в Cu(I) (T > 800 K).

В случае окисления молекулярным кислородом при температуре T > 620 К толщина оксидного слоя на поверхности фольги может быть весьма существенной. При образовании CuO наблюдалось почернение поверхности фольги, что говорит о формировании оксидного слоя толщиной не менее 1 мкм. В случае окисления в ВЧ разряде цвет фольги не изменялся, свидетельствуя о формировании достаточно тонкого слоя оксида. Однако сопоставление спектров Cu2*p*, полученных от толстых и тонких оксидных пленок, показывает (см. рис. 1, *б*, кр. *1*, *2*), что в обоих случаях спектры практически идентичны, т.е. в обоих случаях медь находится в состоянии (2+), а толщина оксида, получаемого при воздействии ВЧ разряда, не менее 100 А.

В спектрах O1s, полученных от двух типов оксида меди, наблюдается существенно более значительное различие (см. рис. 1, а). При окислении активированным кислородом в спектре O1s присутствует основная компонента, соответствующая кислороду в составе оксида CuO, характеризуемая энергией связи $E_{cb}(O1s) = 529,3$ эВ, а также наблюдается вторая компонента в виде хорошо выраженного плеча с энергией связи $E_{cb}(O1s) = 531,2$ эВ. Отметим, что незначительная по интенсивности данная компонента наблюдалась также в случае оксида CuO, полученного термическим окислением в O₂ (см. рис. 1, *a*, кр. *1*) Однако в случае окисления в высокочастотном разряде вклад данной компоненты существенно увеличивается (см. рис. 1, а, кр. 2, 3). При увеличении времени воздействия активированным кислородом происходит увеличение вклада компоненты с большей $E_{cs}(O1s)$. Количественные расчеты показывают, что при стандартном термическом окислении стехиометрия полученной оксидной пленки меди составляет Cu:O = 1:1, то в случае окисления в высокочастотном разряде в течение 5 мин соотношение Си:О составляет уже 1:1,3. Если взять в расчет стехиометрии только компоненту кислорода с $E_{cB}(O1s) = 529,3$ эВ, то полученное соотношение медь-кислород будет близко к 1, то есть практически стехиометрия оксида CuO сохраняется. При увеличении времени воздействия активированным кислородом до 30 мин вклад компоненты с энергией связи $E_{cb}(O1s) = 531,3$ эВ возрастает до ~50 % и выше от суммарного количества решеточного кислорода CuO с $E_{cB}(O1s) = 529,3$ эВ (см. рис. 1, *a*, кр. 3), так что расчет стехиометрии приводит к составу $Cu_1O_{1.7}$.

Повышенное значение энергии связи второй компоненты по сравнению с энергией связи кислорода в составе CuO означает уменьшение эффективного отрицательного заряда на атоме кислорода и образование более ковалентных связей. Образование более ковалентных связей кислорода, находящегося вне структуры решетки CuO, может быть объяснено по аналогии с данными для серебра, при окислении которого в высокочастотном разряде образуются квазимолекулярные или ассоциативные формы кислорода типа пероксидных или озонидных [7, 13—15]. В данном случае химический сдвиг уровня O1s составляет 1,9—2,0 эВ, что вполне может быть описано в рамках диссоциативности—молекулярности кислорода, находящегося в решетке CuO и межблочном пространстве соответственно.

Отсутствие в фотоэлектронных спектрах каких-либо примесей позволяет связать образующиеся сверхстехиометрические количества кислорода только с оксидом меди. Отсутствие значительных изменений в спектрах Cu2p в зависимости от времени окислительной обработки показывает, что медь сохраняет степень окисления 2+ и в целом структуру оксида CuO. Таким образом, сверхстехиометрический кислород связать непосредственно со структурой решетки CuO не представляется возможным. Такое сильное превышение стехиометрии O/Cu в пленках, полученных в высокочастотном разряде, скорее всего, можно было бы объяснить морфологическими особенностями данных пленок. Рис. 2. СТМ изображения поверхностей чистой медной фольги (a — $1 \times 1 \text{ мкм}^2$, $I_t = 0,3 \text{ нA}$, $U_s = 1000 \text{ мB}$; δ — $100 \times 100 \text{ нм}$, $I_t = 0,3 \text{ нA}$, $U_s = 1000 \text{ мB}$) и оксида меди, полученного окислением поликристаллической медной фольги в кислороде, активированном высокочастотным разрядом при T = 300 K, t = 30 мин (s — $1 \times 1 \text{ мкм}$, $I_t = 0,5 \text{ нA}$, $U_s = 1000 \text{ мB}$; c — $100 \times 100 \text{ нm}^2$, $I_t = 0,5 \text{ нA}$, $U_s = 1000 \text{ мB}$). Изображения *в* и *с* соответствуют спектрам 3 на рис. 1)

ИССЛЕДОВАНИЕ МЕТОДОМ СТМ

С целью выявления морфологических особенностей полученных пленок нами были проведены эксперименты *ex situ* с помощью метода СТМ. Обработанную в высокочастотном разряде кислорода фольгу меди переносили через атмосферу в вакуумную камеру сканирующего туннельного микроскопа в течение не более 10 мин. Предварительная проверка на одном из образцов показала, что кратковременное воздействие атмосферы на окисленную фольгу меди не приводит к каким-либо заметным изменениям спектров РФЭС. В связи с этим мы полагаем, что эксперименты *ex situ* с помощью метода СТМ в данном случае являются достаточно адекватными с точки зрения надежности получаемых результатов.

Проведенные СТМ исследования поверхности образцов меди после наиболее интенсивного окисления в кислороде, активированном высокочастотным разрядом, показали, что по сравнению с поверхностью чистой меди (рис. 2, *a*, *б*), оксидная пленка характеризуется сильной шероховатостью (см. рис. 2, *в*, *г*): видно, что слой оксида меди состоит из отдельных частиц размерами ~10—20 нм и их конгломератов. Мы полагаем, что наблюдаемые частицы имеют состав оксида CuO. Полученные СТМ изображения позволяют предположить, что в процессе плазменного воздействия в кислородной атмосфере образование оксидных наночастиц сопровождается интенсивным массопереносом атомов и ионов меди, приводящим к интенсивному взрыхлению поверхности. При этом дополнительный кислород (состояние с $E_{cb} = 531,3$ эВ) может быть локализован в морфологических неоднородностях типа межблочных и межкристаллитных границ пленки CuO.

Кроме того, СТМ изображения поверхности обработанной меди показывают наличие ступенчатых (возможно, слоистых) структур (см. рис. 2, *в*). Мы полагаем, что они образовались в результате окисления выходящих на поверхность микрокристаллитов. Сравнение этих изображений с результатами исследования поверхности исходной меди позволяет предположить различную скорость протекания реакции окисления на разных гранях поверхности кристаллов.

ИССЛЕДОВАНИЕ ВАЛЕНТНОЙ ЗОНЫ

Для проверки высказанного выше предположения было проведено исследование методом УФЭС (рис. 3). Из рис. 3 видно, что спектр валентной зоны образца CuO, полученного методом термического окисления, характеризуется зонами с $E_{cB} = \sim 3,0, 6,0, 9,0, 12,5$ эВ, а также зоной, прилегающей к уровню Ферми. Представленный на рис. 4 спектр (кр. 1) аналогичен спектрам,

Рис. 3. УФЭ спектры валентной зоны (излучение HeII, hv = 40,8 эВ) оксидных пленок, полученных окислением медной фольги в кислороде, активированном высокочастотным разрядом при T == 300 K, t = 10 мин (кривая 1) и окислением в атмосфере кислорода при $P(O_2) = 500$ Па, T = 620 K, t = 4 ч (кривая 2). Кривая 3 — разностный спектр кривых 1 и 2.

Рис. 4. Изменение количества кислорода в зависимости от температуры при прогреве оксидных пленок, полученных окислением в атмосфере кислорода при $P(O_2) = 500$ Па, T = 620 К (кривая A) и окислением в кислороде, активированном высокочастотным разрядом при $P(O_2) = 20$ Па, T == 300 К (кривая B). Кривые получены с применением РФЭС в динамическом режиме по изменению интенсивности сигнала O1s, нормированной на спектральный фон

приведенным в литературе [10, 11]. В случае высокочастотного окисления наблюдается уширение и существенное размытие существующих зон, особенно в области 0—8 эВ. Разностный спектр, представленный на рис. 3 позволяет оценить различие в структуре валентной зоны оксидов, полученных двумя разными способами. Несмотря на четко выделяемые в разностном спектре две основные зоны с максимумами плотности на 4,3 и 9,1 эВ, следует отметить, что прирост интенсивности в виде слабоинтенсивных пиков наблюдается практически во всем диапазоне валентной зоны — от 2,5 до 13 эВ. Очевидно, что структура разностного спектра 1, 2 на рис. 3 напрямую связана с наличием в пленках CuO достаточно больших количеств дополнительного кислорода. При этом, основываясь на результатах работы [10], следует сказать, что образование зон в диапазоне до 12 эВ имеет смешанный O2p—Cu3d-характер, поэтому образование дополнительного (межслоевого, межблочного) кислорода с $E_{cb}(O1s) = 531,2$ эВ связано со взаимодействием с катионами меди, т.е. координация атомов кислорода, локализованных в межблочном пространстве, с решеткой CuO осуществляется через катионы меди. Что касается того, что состояние кислорода может быть в димеризованной (квазимолекулярной) форме, то прямых указаний на это в спектрах УФЭС нет. Так, ни спектр валентной зоны пленки СиО (см. рис. 3, кр. 2), ни разностный спектр (см. рис. 3, кр. 3) не содержат пиков в диапазоне 13— 20 эВ, существование которых указывало бы на молекулярное состояние кислорода, локализованного в интерфейсных слоях. Таким образом, спектры УФЭС показывают, что дополнительный кислород формирует новые зоны в структуре валентной зоны СиО. Это позволяет предположить, что дополнительный кислород встраивается в структуру оксида CuO по поверхности контакта наночастиц CuO. Возможно, что образование широкой зоны в области валентных электронов указывает на образование единой структуры, включающей в себя как оксид меди CuO, так и дополнительный кислород с делокализацией валентных электронов по всей частице.

ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ

На рис. 4 приведены результаты экспериментов по исследованию термической стабильности пленок оксида меди, полученных термическим прогревом фольги в кислороде и с помощью высокочастотной активации. Эти результаты показывают, что пленка оксида меди, полученная с помощью ВЧ активации, обладает существенно более низкой термической стабильностью, чем оксид меди, полученный классическим способом. Из рис. 4 видно, что разложение наноструктурированного СиО начинается уже при 430 К (кр. А), в то время как кристаллический оксид меди, полученный химическим окислением, начинает разлагаться только при 785 К (кр. В). Более того, образующийся в ходе термического разложения Cu₂O также обладает различной термической стабильностью. В случае оксида, полученного высокочастотным разрядом, разложение Cu₂O наблюдалось уже при 690 К (кр. В), а при 1000 К на поверхности не наблюдается никаких окисленных состояний меди. С другой стороны, оксид Си₂О, полученный разложением кристаллического оксида CuO, не разлагается даже при 1000 К. Эти данные в совокупности с результатами, полученными методами РФЭС и СТМ, демонстрируют сильную зависимость свойств кислорода от степени диспергирования оксидов меди CuO и Cu₂O и их граничного (контактного) взаимодействия. Именно вследствие образования наноструктурированной системы термическая стабильность оксидов снижена, однако появление сверхстехиометрического кислорода, вполне вероятно, может привнести новые каталитические свойства, и не исключено, что полученный наноструктурированный оксид меди, обладающий более низкой термостабильностью, будет проявлять высокую активность в низкотемпературном катализе окисления СО.

ЗАКЛЮЧЕНИЕ

Таким образом, в настоящей работе окислением поликристаллической фольги меди кислородом, активированным высокочастотным разрядом, получен оксид меди состава Cu₁O_{1.7}, содержащий значительное количество сверхстехиометрического кислорода. Исследование структуры полученной оксидной пленки при помощи метода СТМ показало формирование нанокристаллитов оксида меди CuO слоистой структуры с размерами ~10 нм. Несмотря на высокую шероховатость поверхности, ориентация кристаллитов относительно друг друга постоянна частицы пакуются параллельными плоскостями друг к другу и параллельно поверхности исходного металла. Метод РФЭС указывает на образование частиц с решеткой оксида меди СиО $(E_{cB}(Cu2p_{3/2} = 933,3)$ эВ, shake-up сателлит, $E_{cB}(O1s) = 529,3$ эВ). Дополнительный сверхстехиометрический кислород локализуется в межблочном пространстве в местах контакта наночастиц и характеризуется состоянием с $E_{c_{\rm B}}(O1s) = 531,2$ эВ. Появление сверхстехиометрического кислорода в наноструктурированном оксиде меди приводит к сдвигу электронной плотности в валентной зоне в сторону больших энергий связи, свидетельствуя об усилении ковалентного характера связи атомов кислорода этого типа с поверхностью оксидных наночастиц. Установлено, что вследствие наноструктурирования пленок при низкотемпературном плазменном окислении полученный оксид меди обладает существенно более низкой термической стабильностью по сравнению с обычным кристаллическим оксидом CuO.

СПИСОК ЛИТЕРАТУРЫ

- Liu W., Stephanopoulos F.M. // J. Catal. 1997. 153, N 2. P. 304 316.
 Boccuzzi F., Chiorino A., Manzoli M. et al. // Catal. Today. 2002. 75. P. 169 175.
 Wang S.-P., Wang X.-Y., Zheng X.-C. et al. // React. Kinet. Catal. Lett. 2006. 89, N 1. P. 37 44.
- 4. Pillai U.R., Deevi S. // Appl. Catal. B: Environmental. 2006. 64. P. 146 151.

- 5. *Ta-Jen Huang and De-Hao Tsai.* // Catal. Lett. 2003. **87**, N 3-4. P. 173 178.
 6. *Zhou K., Wang R., Xu B., Li Y.* // Nanotechnol. 2006. **17**. P. 3939 3943.
 7. *Boronin A.I., Koscheev S.V., Murzakhmeyov K.T. et al.* // Appl. Surf. Sci. 2000. **165**, N 1. P. 9 14.
- 8. Koslowski B., Boyen H.-G., Wilderotter C. et al. // Surf. Sci. 2001. 475, N 1-3. P. 1 10.
- 9. Анализ поверхности методами Оже и рентгеновской фотоэлектронной спектроскопии. / Ред. Д. Бриггса, М. Сиха – М.: Мир. – 1987.
- 10. Ghijsen J., Tjeng L.H., van Elp J. et al. // Phys. Rev. B. 1988. 38, N16. P. 11322 11330.
- 11. Mariot J.-M., Barnole V., Hague C.F. et al. // Z. Phys. B. Condensed Matter. 1989. 75. P. 1 9.
- 12. Linsmeier C., Wanner J. // Surf. Sci. 2000. 454. P. 305 309.
- 13. Боронин А.И., Авдеев В.И., Кощеев С.В. и др. // Кинетика и катализ. 1999. 40, № 5. С. 721 741.
- 14. Zhidomirov G.M., Avdeev V.I., Boronin A.I. Molecular Mechanism of Ethylene Epoxidation on Silver: State of the Problem and Theoretical Approaches. // Computational Materials Science, Eds. C.R.A. Catlow and E.A. Kotomin. NATO Science Series III: Computer and Systems Science. - 2003. - 187. - P. 334 - 355.
- 15. Avdeev V.I., Zhidomirov G.M. // Surf. Sci. 2001. 492, N 1-2. P. 137 151.