ISSN 2186-7437

NIl Shonan Meeting Report

No. 2016-13

Bidirectional Transformations

Anthony Anjorin
Zinovy Diskin
Meng Wang
Yingfei Xiong

September 26-29, 2016

<O\ HETE
NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan



Bidirectional Transformations

Organizers of the meeting:
Anthony Anjorin (University of Paderborn)
Zinovy Diskin (McMaster University and the University of Waterloo)
Meng Wang (University of Kent)
Yingfei Xiong (Peking University)

September 26-29, 2016

Bidirectional transformations (BX) represent a common pattern of comput-
ing: transforming data from one format to another, and requiring a transfor-
mation in the opposite direction that is in some sense an inverse. The most
well-known instance is the view-update problem from relational database de-
sign: a “view” represents a kind of virtual database table, computed on-the-fly
from concrete source tables rather than being represented explicitly, and the
challenge arises when mapping an update of the view back to a “corresponding”
update on the source tables. In a similar way, the problem is central to model
transformations and plays a crucial role in software evolution: having trans-
formed a high-level model into a lower-level implementation, one often needs to
restore consistency between the two parts that may evolve separately.

Giving this widespread applicability, research on BX naturally spans multi-
ple disciplines: (1) Programming Languages (PL), (2) Graph Transformations
(GT), (3) Software Engineering (SE), and (4) Databases (DB).

1. In PL research, the goal is to design languages that are suitable for pro-
gramming BX (i.e., two opposing transformations are encoded in a single
definition rather than with two separate definitions). Notable techniques
include lenses — collection of combinators, which can be read in two ways,
and bidirectionalization — program transformation that constructs bidi-
rectional programs from unidirectional ones.

2. In GT research, a rule-based approach is taken by specifying consistency
as a direction-agnostic graph grammar, i.e., a set of high-level graph trans-
formation rules that generate the language of consistent pairs of graphs.
Incremental forward and backward synchronizers with desirable properties
are then automatically derived by operationalizing this grammar.

3. In SE research, the goal is to support different software engineering ac-
tivities with BX. In software development, people usually create different
kinds of artefacts, and it has been a long-standing problem to synchronize
these artefacts and keep them consistent. By applying BX to these prob-
lems, SE researchers have contributed to different aspects of BX research,
such as synchronization of object-oriented models, delta-based BX, and
exploring the design space of BX.



4. In DB research, BX concerns the classical view-update problem of rela-
tional databases, the dual problem of incremental view maintenance, and
modern manifestations of synchronization problems such as data exchange
and provenance. XML transformations is another active research area of
BX, effectively allowing queries to be made bidirectional.

The Shonan meeting proposed in 2016 will build on the momentum and results
generated at previous meetings of similar nature (Dagstuhl 2011 and Banff 2013)
to further develop cross-disciplinary research agenda and integration effort.



List of Participants

e Faris Abou-Saleh, University of Oxford

e Anthony Anjorin, University of Paderborn

e Dominique Blouin, University of Potsdam

e Zinovy Diskin, McMaster University and the University of Waterloo
e Jeremy Gibbons, University of Oxford

e Soichiro Hidaka, Hosei University

e Frédéric Jouault, ESEO

e Michael Johnson, Macquarie University

e Fkkart Kindler, Technical University of Denmark

e Hsiang-Shang Ko, NII

e Yngve Lamo, Bergen University College

e Ralf Lammel, University of Koblenz-Landau

e Erhan Leblebici, Technische Universitat Darmstadt
e Kazutaka Matsuda, Tohoku University

e James McKinna, University of Edinburgh

e Keisuke Nakano, University of Electro-Communications, Japan
e Andy Schiirr, Technische Universitdt Darmstadt

e Tarmo Uustalu, Tallin University of Technology

e Meng Wang, University of Kent

e Jens Weber, University of Victoria

e Bernhard Westfechtel, University of Bayreuth

e Yingfei Xiong, Peking University

e Vadim Zaytsev, Raincode

e Haiyan Zhao, Peking University

e Hao Zhong, Shanghai Jiao Tong University

e Albert Ziindorf, University of Kassel



Meeting Schedule

e Oct.

e Oct.

o QOct.

e QOct.

e Oct.

e Oct.

e Oct.

e Oct.

e Oct.

e Oct.

25th, Sunday Evening
Welcome Reception
26th, Monday Morning

Opening

Self Introduction

. 26th, Monday Afternoon

Overview of BX Approaches
Short Research Talks
Panel Discussion: State- vs. Delta-Based BX: Pros and Cons

26th, Monday Evening

Tool Demos — MOTE and BiGUL
27th, Tuesday Morning

Short Research Talks

27th, Tuesday Afternoon

Working Groups

Panel Discussion: How to Expand BX Beyond the Boundaries of the
BX Community.

27th, Tuesday Evening

Tool Demos — eMoflon, CX and Hobit
28th, Wednesday Morning

Working Groups

28th, Wednesday Afternoon
Excursion

28th, Wednesday Evening

Banquet

29th, Thursday Morning

Working Groups
Wrapping up



Overview of Talks

Introduction to BX
Jeremy Gibbons, University of Oxford

I presented an opening lecture introducing representative BX scenarios and
approaches. The scenarios included data conversions, for example between a file
format and a GUI presentation; the view-update problem in databases; model
transformation in model-driven engineering; and the simple “Composers” ex-
ample from the BX example repository. The approaches included the basic
relational model of BX by Meertens and Stevens; varieties of lens from Foster,
Pierce, Hofmann etc; generalizations to ordered updates, delta-based BX, and
categorical approaches; and Schiirr’s triple graph grammars. We discussed for-
mal models and their properties; in particular, we focused on forms of property
variously called “very well-behavedness”, “history ignorance”, and “the Put-Put
law”.

Cyber Security and other New Applications of BX

Michael Johnson, Macquarie University

We already have examples of applications of BX being used for cyber security
reasons, and to satisfy privacy and other legislative requirements. Bidirectional
transformations also have implications for reverse engineering and other funda-
mental cyber security problems. BX can be used both to “open up” systems
(by giving interconversions between different views of them) and conversely to
construct them as safely sealed modules which interact only in a controlled way
through bidirectional transformations that can be written and managed with
partitioned knowledge (supporting military style “need-to-know” while mini-
mizing the “need” for any one individual or organization). Is it not time for us
to jointly start discussing these and other novel applications?

The talk outlined three current approaches to constructing system interop-
erations via symmetric bidirectional transformations: (1) Symmetric lenses of
various kinds (defined up to an equivalence relation), (2) Spans of asymmetric
lenses of corresponding kinds (modulo an equivalence relation), and (3) Co-spans
of asymmetric lenses or weaker structures (see [Joh07], which already identified
some of the implications for confidentiality). Approach (1) involves writing
interoperations code (the bidirectional transformation) that understands and
operates upon both systems (or at least their APIs) with serious implications
for cyber security risks. Approach (2) can be seen as lifting this process (and
its negative implications) to the cloud. Approach (3) in contrast permits each
system owner to have solely its own staff write code that operates on its own
API and there is a clear narrow-band communication, at the head of the cospan,
between the programs written by each owner. (This raises new mathematical
questions including when such cospans exist.)

The talk then went on to describe a number of less developed ideas including
disciplined bug fixing (as suggested by Yingfei Xiong), information leak manage-
ment and detection, narrow bandwidth obfuscated communication, refactoring,
and the internal use of BX for communication between objects in programs to



make them more robust. There are also implications for real-time and reactive
systems (in which we develop bidirectional transformations although we can
only program one system — the other is a physical system in the real-world).

Reality Check: Does BX Really Help? Model-Code Round
Trip as a Case Study

Bernhard Westfechtel, University of Bayreuth

Bidirectional model transformation languages promise to support software
engineers in specifying bidirectional transformations concisely at a high level of
abstraction. In a bidirectional transformation language, software engineers need
to provide only a single specification which may be executed in both directions,
ensuring consistent behavior in forward and backward transformations. Fur-
thermore, several languages and tools exist which provide incremental behavior
for free, without any need to have it specified explicitly. This talk examines
a well-known scenario in model-driven software engineering: the model-code
round trip, where the model is defined by a set of UML class diagrams and
code is expressed in an object-oriented programming language (e.g., Java). In
a model-code round trip, changes may be applied at both ends, implying the
need to propagate them to the respective opposite end. Since there are no
general frameworks available supporting bidirectional model-to-text transfor-
mations, we solve the problem by representing Java code as models and pro-
viding bidirectional model-to-model transformations between UML and Java
models. We consider three alternatives: an implementation with the help of the
TGG Interpreter, based on triple graph grammars, a transformation definition
in QVT Relational, executed with the tool Medini QVT, and a hand-crafted
triple graph transformation system encoded in Xtend, an object-oriented pro-
gramming language. Surprisingly, the declarative solutions (TGG and QVT-R
based) turn out to be considerably larger than the hand-crafted solution in
Xtend, even though both transformation directions and incremental behavior
have to be programmed explicitly. In particular, this case study calls for fur-
ther improvements to the declarative approaches to reduce redundancy among
transformation rules.

Profunctor Optics

Jeremy Gibbons, University of Oxford

I summarized the work undertaken by my former student Matthew Pickering
for his undergraduate project, which itself was an investigation into the design
of lens-like libraries for compositional data access by Edward Kmett, Shachaf
Ben-Kiki, Eric Mertens, and Twan van Laarhoven.

A (very well-behaved, asymmetric) lens onto a component of type A within a
larger structure of type S can be represented as a pair of functions, get : S — A
and put : S x A — S, satisfying three laws (GetPut, PutGet, PutPut). For
example, with S = A x B, the get function projects the left component from a
pair, and the put function updates the left component. Dually, a prism provides
access to data A in a sum type S = A + B, via functions match : S — A+ S
and build : A — S, again subject to certain laws. Specializing both of these,



an iso provides access to a view A of an isomorphic source S, via functions
from : S — A and to : A — S. And generalizing both, a traversal provides
access to some number of elements of type A in a container of type S = T'(4),
via functions contents : T(A) — A™ and refill : T(A) x B — T(B). (To be
precise, the contents and refill functions should be combined, and the common
size n existentially quantified.)

However, those four data access mechanisms all have different structures, and
they do not compose easily: it is not straightforward to express the composite
data accessor “the left component B of the right variant B x C in the type
A+ Bx(C”, and similarly for other heterogeneous combinations. The key insight
for resolving this incompatibility is to observe that they all have equivalent
representations as higher-order functions of type

VP. Profunctor P=VY ST AB. PAB—PST

fully polymorphic in the type parameters S, T, A, B, but with various specializa-
tions of the profunctor parameter P. Here, one can think of the type P A B for
profunctor P as representing “a process that consumes As and produces Bs”,
so having a functorial action

dimap :: (A’ - A) - (B—B)—-PAB—PA B

In particular, the function arrow (—) is a profunctor. Isos are precisely equiva-
lent to this type; lenses add the constraint that the profunctor should be strong,
i.e. coherent with product; prisms that it should be a choice profunctor, i.e.
coherent with sum; and traversals that it should be both. But because all four
kinds of data access are now simply functions, of the same structure, they now
compose in a completely straightforward way.

Synchronizing Feature Models and Use Cases

Haiyan Zhao, Peking University

Models are widely used in software development to manage complexity and
communicate information to various stakeholders. To manage the diverse mod-
els used across the whole life cycle for business processes, system requirements,
architecture, design, and tests, we have proposed a feature model centric frame-
work with the idea of adopting feature models as core artefacts to organize and
manage reusable requirements, constructing traceability relationships between
feature models and other models/artefacts in the process. Based on the feature
models and the traces between feature models and other artefacts, requirements
reuse can be achieved by configuring the feature models first, and deriving the
other corresponding artefacts automatically from the feature model configura-
tion.

One of the most challenging aspects of our proposed framework is how to
maintain the consistency among the heterogeneous models considering the con-
tinuous evolution of artefacts. Bidirectional transformation techniques provide
a good opportunity for implementing this kind of maintenance. As a first at-
tempt, this talk investigates how to achieve synchronization between use cases
and feature models by programming in BiGUL, a putback-based bidirectional
programming language.



Inter-Model Consistency Checking using Triple Graph Gram-
mars and Linear Optimization Techniques

Erhan Leblebici, Technische Universitat Darmstadt

Triple Graph Grammars (TGGs) are a rule-based BX language used to de-
scribe the consistency of two models together with correspondence links. While
TGGs are promising not only for forward/backward transformations but also
for consistency checking between two models, the substantial search space in-
volved in determining the “optimal” set of rule applications in a consistency
check has arguably prevented mature tool support so far. In this talk, I present
the idea of combining TGGs with linear optimization techniques to circumvent
this problem. Formalizing decisions between single rule applications of a con-
sistency check as integer inequalities, consistency checking with TGGs can be
formulated as a linear optimization problem. Experimental evaluation results
with respective tool support show that the approach is applicable to consistency
checking between real-world models.

Taking updates seriously

Tarmo Uustalu, Institute of Cybernetics at TUT, Estonia

I will show how “taking updates seriously” takes us from state-based lenses
to update lenses and further; we will witness a hierarchy of types of lens that
arises in a systematic way. Lenses of each type are characterized either as co-
algebras of certain types of co-monads or morphisms between certain types of
co-monads. In each case a lens is simulation between two transition systems for
suitable notions of transition system and simulation.

Summaries of Tool Demos

MoTE

Dominique Blouin, University of Potsdam

In this demo, I presented the MoTE bidirectional model transformation tool.
MoTE takes as input Triple Graph Grammars which are compiled to story dia-
grams and used as operational specifications for batch and incremental bidirec-
tional transformations as well as model consistency checking. Story diagrams
are interpreted at runtime to provide efficient execution of the transformation
taking into account runtime characteristics (e.g. cardinalities) of the model
elements to be transformed and serving as a guide to derive efficient pattern
matching plans. Bidirectional batch transformations were demonstrated for a
simple model transformation example and synchronization was illustrated for
a more complex language. This consists of synchronizing two models for the
AADL language that are expressed using two different metamodels exhibiting
important structural differences. This demo showed the difficulty of model syn-
chronization for the complex and rich AADL language and pointed out the need
for better expressivity of the TGG language in order to tackle the challenge of
model synchronization for industrial tools. A particular case of erroneous model



merge was also illustrated for the EMF Compare tool when only the states of
the updated and previous models are considered, while knowledge of the ac-
tual change (delta) that has been performed on the model would have provided
sufficient information for a correct merge of the models.

BiGUL (Bidirectional Generic Update Language)
Hsiang-Shang Ko, NII

This demo presented a minimalist bidirectional programming language BiGUL
(short for Bidirectional Generic Update Language), which is a small collection
of asymmetric lens combinators designed for writing put programs. Put trans-
formations are comparable with stateful computation: Implicitly, there are a
source state and a view state; using the BiGUL constructs, the programmer
gradually changes and matches the shapes of both states, and transfers all in-
formation in the view to the source. It was shown in the demo that this way
of programming works nicely for specifying list alignment strategies (for which
Barbosa et al. had to invent highly specialised “matching lenses” to express).
Even though BiGUL is asymmetric, for symmetric problems the programmer
can define a co-span by identifying the common information shared by the two
sources and writing two BiGUL programs putting the common information into
the two sources. Based on this idea, a BiGUL solution to the “cat pictures
problem” formulated by Hofmann in the Oxford BX Summer School was briefly
presented. The solution was fairly short, achieved the five goals set by Hofmann,
and could be extended to exhibit more sophisticated behaviour.

eMoflon

Erhan Leblebici, Technische Universitat Darmstadt

In this tool demo, different use cases of Triple Graph Grammars (TGGs)
with eMoflon were demonstrated including bidirectional model transformation,
model synchronization, and consistency checking based on a small but non-
trivial example. Furthermore, the new textual syntax for TGGs as well as
different visualization components for models, TGG rules, and other TGG-
related data structures were shown. These components are implemented with
TGGs as well and make the new eMoflon a completely Eclipse-based and open
source tool in contrast to its predecessors.

Logic-Based, Executable Megamodels of Coupled Transfor-
mations

Ralf Lammel, University of Koblenz-Landau

Coupled transformations (CX) are concerned with keeping collections of soft-
ware artefacts consistent in response to changes of individual artefacts. We
capture patterns (scenarios) of CX as megamodels; we enable the instantiation
of these patterns for the purpose of testing concrete CX implementations. The
approach is implemented in the Prolog-based software language repository YAS.
There is a higher-level logic-based megamodeling language LAL which is used



for representing CX patterns including consistency relationships. There is a
lower-level logic-based megamodeling language Ueber which is used for repre-
senting test cases for CX. The LAL models are translated into Ueber models
automatically, subject to configuration for pattern instantiation. The tool demo
exercised all relevant aspects of YAS; in particular, illustrative CX examples as
well as the underlying megamodels.

HOBIT
Kazutaka Matsuda, Tohoku University

In this tool demonstration, we presented our on-going implementation of
the bidirectional programming language HOBiIT, which mixes unidirectional
programming and bidirectional programming. This not only enables us to com-
pose bidirectional transformations via unidirectional higher-order functions but
also gives us more control over robustness. The latter advantage is especially
useful for implementing bidirectional versions of certain program transforma-
tions that involve complex multiple traversals of long-living but intermediate
data structures. An example of such program transformations is alpha renam-
ing; it uses a mapping between old and new variables, which is traversed and
updated frequently during the transformation but does not appear in the final
result. The idea underlying HOBIT is the Yoneda lemma, which, for instance,
gives us a bijective mapping between (well-behaved) lenses and a certain class
of ordinary functions [MW15]. Thanks to this underlying theory, we can guar-
antee well-behavedness of bidirectional transformations defined in HOBiT. We
demonstrate the power of HOBIT by using a simplified version of alpha renam-
ing transformation.

Overview of Panels

Panel 1: State- vs. Delta-Based BX: Pros and Cons.

Any sync tool necessarily uses deltas. These deltas can be represented and
managed in very different ways, but they should be there (unless the tool in-
vokes some magic). Hence, the state-based setting is a rather abstract math
model of the delta-based one. Formally, the former can be seen as a specializa-
tion of the latter, in which deltas are pairs of states with a trivial composition
(a,b);(b,c)=(a,c). This is a very special specialization, which does not make too
much sense for some, but is considered reasonable and useful by others.

Either way, the state-based framework is a math model of inherently delta-
based tooling. The goal of the panel was to discuss the pros and cons of this
model, and come to a reasonable conclusion on where and when this model
should be used (if at all). Each of the panelists was asked to prepare a short 3-4
minute statement with a couple of slides (if needed), and share it with the other
panelists and the audience. The first round of presentations was followed by a
discussion between the panelists, followed by a discussion with the audience.

Panelists: Ekkart Kindler, Frédéric Jouault, James McKinna, Josh Ko, Soichiro
Hidaka, Vadim Zaytsev

Moderator: Zinovy Diskin

10



Summary.

The panel agreed that deltas are inherent to any BX tool and are somehow
detected and managed by the tool. But what part of this internal work is to be
accessible, controlled by the user, and governed by well-behavedness laws is a
different story.

The discussion additionally revealed the need for a common understanding of
basic terminology used in BX. Even the term “‘delta” appears to be confusing,
especially when compared with other related but different terms such as “diffs”,
“updates”, “edits”, “rule applications”, and “changes”.

Different advantages and disadvantages of abstracting from “internal details
of delta handling” were also discussed including;:

e Providing, or better, ensuring that explicit deltas are available and acces-
sible can have a positive effect on scalability.

e Stating expectations based on perfect deltas can be misleading and unrea-
sonable, as long as this is not yet the case in practical scenarios. Currently,
most tools and technology we have to interface with are state-based, and
expecting to get access to explicit deltas is not yet realistic. Doing this
can lead to tools that should work well theoretically, but don’t in practice.

Panel 2: Yes, we can, but maybe we shouldn’t: How to
expand BX beyond the boundaries of the BX community.

Synchronization of several artefacts is a practical problem of extreme impor-
tance for software engineering and databases. However, not only practitioners,
but also researchers developing methodologies and experimenting with tools,
manage this problem in ad-hoc ways ignoring the basic ideas and terminology
(not to mention methods and results) developed by the BX community. Its not
quite clear why this is the case. Maybe the models BX employs are inadequate,
and/or the math is too complex, and/or the advertisement is too subtle. Or
perhaps its just normal, as the adoption of a new framework takes time.

How should the BX community react to this? One position, arguably wise,
is to leave the situation as is, hoping that at some later time BX methods will be
recognized and acknowledged by the wider community. Another position is to
consider the status quo as something wrong, and try to fix it. Then the question
is how: Should we develop a few pilot applications, achieving a breakthrough in
some easily marketable domains such as security or healthcare? Or should we
develop a series of tutorial papers and tutorials for major conferences? Publish
a textbook? Or/and ?

The goal of the panel is to discuss the problem in any relevant context not
necessarily limited to the ideas above. Each of the panelists (listed below) was
asked to prepare a short 3-4 minute statement with a couple of slides if needed,
and share it with the other panelists and the audience. The first round of
presentations was followed by a discussion between the panelists, followed by a
discussion with the audience.

Panelists: Andy Schiirr, Jens Weber, Jeremy Gibbons, Mike Johnson, Ralf
Lammel, Yingfei Xiong

Moderator: Zinovy Diskin

11



Summary.

The BX Expansion Problem (let’s refer to it this way) consists of the following
components:

e Enlightening (Teaching and Advertising — “Let them know about BX”).

e Developing the BX framework beyond the boundaries of lenses as we un-
derstand them now (either state- or delta-based) towards better/wider
applicability to practical synchronization scenarios.

e Finding new applications for BX (e.g., cyber-security, healthcare).
e Improving our tools.

In each of these directions, we should be careful not to promise too much!
It would be more effective and practical to proceed with a series of small useful
steps, which Michael Johnson nicely coined as hammering (of course, making
bold steps is not prohibited).

A special issue addressed by the panelists was the name “bidirectional trans-
formation”, which only captures a part of the problems the BX community deals
with, and thus sometimes seems to be hindering rather than promoting. A good
name encompassing the entire range of BX problems would be consistency man-
agement (suggested by Ralf Lammel). But after an extensive discussion, it was
decided to stick with the current name as it is already well branded, and finding
a name that “fits all purposes” is hopeless anyway.

A special highlight of the panel was a BX emblem proposed by Jens Weber:
a claw hammer that manages nails in a BX way :).

Summaries of Working Groups

Adequate Synchronization of Models after Performing Con-
current Changes

Vadim Zaytsev, Ekkart Kindler

Goal.

When a set of related models which are consistent with respect to some BX are
changed concurrently by different people, the set of models needs to be made
consistent again after these change. We refer to this as model synchronization.

This is a natural application domain for bidirectional transformations (BX)
and is a practical issue in engineering. Still, it turns out that most of the
synchronizations in theory as well as in tool implementations are done for two
models only. Moreover in the setting with two models, making models consistent
after changes is achieved by updating one model only and leaving the other
unchanged. A more symmetric setting where synchronization would be achieved
by possibly updating all involved models is very often excluded by the general
mathematical settings, which would require one model to be the master (which
is not changed) and the other the slave (which is changed for making models
consistent again).

12



This working group was supposed to raise the awareness for this blind spot
of BX research, and define a more general framework, which does not rule out
more symmetric synchronization scenarios, and scenarios in which more than
two models are involved.

Summary.

The working group was very successful in raising awareness. There seemed to
be general agreement that there is a gap between some important engineering
scenarios and what BX theory and tools can actually support.

Even though there exists some theory for symmetric synchronizations — we
briefly discussed Triple Graph Grammars and the work of Xiong [Xio09] — there
are still many limitations and the actual tool support falls behind the theory.
Many other theoretical frameworks such as lenses and co-spans exclude the
symmetric setting up-front.

In the working group, we discussed some scenarios, where symmetric syn-
chronization would be needed, e.g., MDA [Coo14] and extended TGGs [KS05].
Moreover, we discussed different mathematical formulations of the problem that
would not a priori exclude symmetric and multi-model synchronizations. This
would help encourage tool developer and theoreticians alike to fill in this gap.

Some participants of the working group agreed to work on a report that
works out some details of the general mathematical framework (and a clarifi-
cation of terminology) which includes symmetric and multi-model synchroniza-
tions.

BenchmarX Reloaded: Concrete Steps Towards an Exe-
cutable Benchmark for BX Tools

Anthony Anjorin, Ralf Lammel, Bernhard Westfechtel

Goal.

A BX benchmark (a “BenchmarX”) is a standardized problem or test suite
that serves as a basis for evaluation and comparison of BX languages and tools.
In December 2013 at the Banff BX Seminar, requirements for and the basic
structure of a BX benchmark (called a benchmarx) were discussed at the seminar
and then proposed in form of a joint publication [ACGT14]. This paper was
meant to inspire concrete benchmarx proposals, but up until today there is still
no satisfactory benchmarx for even a single example.

Summary.

In this working group, we discussed concrete steps towards an executable bench-
mark for BX tools, based on the previous conceptual work on benchmarx. A
benchmark is executable if a technical infrastructure is provided including test
data as well as support for automated tests such that solution providers may
plug in their transformations and run them on the provided infrastructure. A
major challenge concerning the design and implementation of an executable
benchmark is posed by the heterogeneity of BX languages and tools, which

13



were not only developed against diverging requirements, but also live in differ-
ent technological spaces. Heterogeneity impedes comparison of solutions both
at the conceptual and at the implementation level. To cope with heterogeneity
at the conceptual level, an example is needed which may be implemented in a
wide variety of BX approaches. As a candidate example, a variant of the well-
known families to persons transformation was proposed. The example may be
handled in BX tools based on trees, graphs, or models as underlying data struc-
tures. It includes several challenges such as loss of information, restructuring,
and renaming, such that it may be used as a discriminator with respect to the
capabilities of BX approaches. For some candidate example such as the families
to persons transformation, a test suite has to be developed which should be
structured carefully into groups of test cases such that compatibility levels may
be defined. The compatibility levels and respective test cases should be defined
according to the capabilities of BX approaches, e.g., batch vs. incremental, de-
terministic vs. non-deterministic, or state- vs. delta-based. Furthermore, the
test suite should be open such that new test cases can be added easily. The
designers of the test suite have to face the oracle challenge: for each test case,
the expected behavior has to be defined. To this end, general principles such
as e.g. least change may be applied. However, the expected behavior may not
always be formally deducable. In such cases, the expected behavior should be
defined as a result of a community effort, i.e., the community should agree on
a plausible result for the respective test case. Altogether, the working group
succeeded in developing initial proposals towards an executable benchmark for
BX languages and tools, based on previous work on benchmarx. This work will
be continued and elaborated, resulting in an actual executable benchmark along
the lines determined through the discussions in the working group.

Dependently Typed Edit Lenses on Containers
Jeremy Gibbons, Faris Abou-Saleh, James McKinna

Goal.

Hofmann, Pierce and Wagner introduced an edit language for container types
in their formulation for edit lenses. Recently we introduced a dependently-
typed formulation of delta-based lenses. We have a skeleton proposal for the
corresponding edit language for containers wrt such BX, but many details re-
main to be settled. We welcome discussion on appropriate language design for
compositional editing on rich data structures; similarly for consistency rela-
tions/generalized lens complements in the sense of our recent work at BX2016-
QETAPS.

Summary.

We began by reviewing the definitions of containers, and a simple class of trans-
formations between them, known as container morphisms. We expressed these
definitions in the language of dependent types, which did not seem to lead to
confusion. This suggests that the overheads of using such language is hopefully
not too problematic for the audience.

14



We identified a potential source of confusion about the terminology “con-
tainers”, which actually refers to type constructors (“lists”), as opposed to the
types they construct (“lists of integers”) or even values of those types (a partic-
ular list of integers). It may sometimes be convenient to abuse terminology and
refer to all these as “containers” or “instances of containers”, but the discussion
highlighted the need for care.

Container morphisms serve as a simple candidate for forward-transformations
(“gets”) from instances of input containers into output containers; they provide
horizontal “correspondences” which trace positions in the output back to their
source in the input.

We then asked how these morphisms might be bidirectionalized i.e. how to
define an appropriate backwards-transformation (“put”), telling us how updates
to the output can be back-propagated into updates on the input. First we have
to identify a suitable class of such updates, or “vertical deltas”. Then we have
to specify how (and when) these deltas are back-propagated.

We largely proceeded with the simplest possibility, essentially “vanilla” con-
tainer morphisms. (We did not attempt to describe a structured approach to
“shape editing” in the vertical deltas — so that the user simply overwrites the
old shape — but we identified this as an important point to explore.)

For this notion of vertical delta, we managed to sketch how bidirectional-
ization would work. The first stage is to identify every possible “new” input
shape, that would give rise to the new output shape. For each candidate shape,
by definition the forward-transformation tells us how to trace the output po-
sitions back into what the input should have been essentially, it fills the new
input shape for us. However, the resulting traces may not be consistent; for
instance, two output-positions, containing different values, might nonetheless
be traced back to the same input position. Moreover, some positions in the new
input may not even be referenced by the output meaning that we are free to fill
those positions with anything we like. Thus, there may be multiple candidate
inputs, or none. However, each candidate allows us to “fill in” a vertical delta
from the original input into this new input by following the trace-links around
the diagram, all the way back to the original input. This gives a tantalizing
sketch of how to complete the back-propagation of the change to the input.

Our working group attempted to tackle an open-ended question with several
axes of variation, and naturally we could not explore all of them. (For instance,
we could not touch on the question of how to describe sub-shapes and locality.)
However we found our way towards a simple BX scenario, by considering simple
instances of these possibilities (on each axis) — and we made good progress in
sketching how bidirectionalization might work in this scenario.

Design of Bidirectional Programming Languages

Kazutaka Matsuda

Goal.

Since the original lens framework came out, a lot of studies on bidirectional
transformations have been done; these studies include finer control on update
(edit/delta) translation and customization on backward behaviors. But how can

15



we “utilize” these results? More specifically, how can programming languages
provide us with access to such results? For example, Matsuda and Wang [MW15]
recently proposed a higher-order and applicative (non-point-free) programming
framework for classical lenses; can we have similar stories for other models of
bidirectional transformations? For example, how can a programming language
tell users what kind of update is translatable and how it is translated? Can
we use a type system or static analysis for this? Another question is: how
can we evaluate such bidirectional programming languages? In this working
group, we discussed how we can address these questions, and summarized pros
and cons of programming language features, and when they are incompatible.
Benchmarking examples/problems were also in our focus.

Summary.

In the working group, we discussed three topics:

e Bx-Turing completeness
e A technique to unify some of the bidirectional programming techniques.

e Next goals of bidirectional-programming-language research

It is convenient to have a way to measure the expressive power of a pro-
gramming language independent from programming paradigms it provides, and
without using examples. The well-known notion of Turing completeness is one of
such measures. Being Turing complete, a language can express any computation.
It must also be convenient to have a similar measure for bidirectional program-
ming languages, like the reversible Turing machine and r-Turing completeness
for reversible computation. However, there is a difficulty to have such measures
for bidirectional transformations: we expect different bidirectional properties
for different purposes. Thus, we might need different measures for different
bidirectional properties. For example, for well-behaved asymmetric lenses, a
measure would be the ability to define all computable “good” puts [FHP15].

We also confirmed the idea underlying [MW15] and showed how lenses and
bidirectionalization approaches are unified by the idea. The idea itself is not
limited to asymmetric get-based lenses and would also be beneficial for put-
based or symmetric lenses.

There are three major sorts of approaches for bidirectional transformations:

e Constraint-based approaches
e Rule-based approaches

e Approaches based on functional programming techniques

Each has been researched individually and many interesting results have
come out from each area. Few studies, however, have been done towards bridging
the different approaches, even though such bridging would enable us to enjoy
the combined advantages of different approaches. In this discussion, we mainly
focused on how we can bridge the second and third sorts.

We found that there is some similarity to some program transformation
framework, in which we control where and when we apply individual program

16



transformations by using a strategy language. This similarity suggests that a
direction towards this bridging would be to make rule-based approaches able to
invoke bidirectional transformations obtained by functional programming ap-
proaches. To make this possible, functional programming approaches, or lenses
and bidirectionalization, should be able to define bidirectional transformations
that are powerful enough to be used in rule-based approaches.

Regarding bridging of the first and third sorts, we might be able to use
rich type systems (such as dependent and refinement type systems) to verify
the conformance of defined bidirectional transformations by using such type
systems. Moreover, it might be possible to create data conforming to a certain
BX by using program synthesis techniques.

Do Lenses Really Address the View-Update Problem?
Zinovy Diskin

Goal.

In a well-known series of empirical studies [WHRT13, HWRK11], Jon Whittle
et al. have shown that a major bottleneck for MDE adoption in industry is
miscommunication between tool builders and tool users. The latter often mis-
understand what a model management tool can actually do, because the former
do not have a precise language for specification of scenarios to be addressed by
the tool, nor for how these scenarios are actually processed by the tool. Model
synchronization can be especially sensitive to this sort of problems, which makes
a proper classification of synchronization scenarios an important issue for BX.

It was shown in [DGWC16] that an accurate classification of BX scenarios
requires going beyond the classical lens framework: the well-known informa-
tional (a)symmetry should be paired with another important BX parameter
called organizational symmetry. Roughly, one side of a lens organizationally
dominates the other side, if propagating updates from the former to the latter
is less restricted (if at all) than the inverse propagation. Pairing two symmetries
allows us to formally distinguish several important scenarios: view maintenance
vs. view update vs. code generation vs. model compilation vs. reverse engineer-
ing, and so on. The total number of different synchronization types formally
distinguishable by different combination of two symmetries is surprisingly large
and is equal to 24.

The goal of the working group was to discuss these results and their possible
applications to both BX theory and BX tooling. Specifically, a technically
challenging topic is how to enrich the taxonomic space with concurrent updates
(so far, the taxonomy has been built without considering concurrent updates).
As for BX tooling, the builder-user miscommunication problem seems to require
discussing both the cultural (cf. [WHR™13]) and the technical aspects of BX.
Perhaps, we need to talk about a wider-than-technical-view of BX tools.

Summary.

A better alignment between BX tool vendors and MDE users is necessary. To
accomplish this, the BX community should (a) go beyond lenses in their cur-

17



rent form and address new scenarios, and (b) develop a framework, in which
synchronization scenarios managed by a BX tool can be accurately specified.

With respect to (a), the group emphasized the need for the following sce-
narios: (al) concurrent updates (with and without conflicts), (a2) considering
“backward” updates as a possible sync solution, (a3) unidirectional update prop-
agation is more interesting than is usually considered.

With respect to (b), the lens framework is to be augmented with the or-
ganizational symmetry dimension (roughly, tagging updates as propagatable or
not). Specifically, we need a language for specifying sets of updates to distin-
guish propagatable and non-propagatable ones. We may refer to this as an
access control language.

Non-deterministic Bidirectional Transformation

Frédéric Jouault

Goal.

A bidirectional transformation (BX) is generally linked to a consistency relation
between several model spaces. For simplicity reasons, we will only consider the
binary case here, and call the two related model spaces A and B.

In general, a given model from A may be consistent with several models from
B, and vice versa. However, most current BX approaches typically perform the
selection of a single model when computing an element of B (resp. A) from
an element of A (resp. B), or when updating an element of B (resp. A) to
synchronize it in reaction to changes in its corresponding element from A (resp.
B). The choice of which model should be selected is typically influenced by
additional properties of the BX, for instance:

e A hippocratic BX starting from two consistent models will not select a
different model from B (resp. A) if no change occurred in the correspond-
ing model from A (resp. B).

e Least change will result in a model that is closest to the previous one.
As a particular case, no change should be performed on a model from one
space after a change in the other space if it is not necessary (i.e., if the
two models are still consistent after the change).

In this working group, we attempt to go beyond these limitations along two
main aspects:

e Generalizing model selection. For instance, we discussed the fact that
model selection may actually be seen as an optimization problem. An
objective function (e.g., on the models, and/or on the changesets) would
then be used to specify which model to select. This objective function
may either operate solely on internal information in the models, or also
consider external information. The evolution itself may be constrained
(not just the models). Traditional BX properties such as hippocracticness
or least change could be encoded in such an objective function.

18



¢ Avoiding model selection. For instance, models may be represented
in a parametric way (or with feature models), so that we can consider
a whole set of consistent models at once. This is related to the notion
of incompleteness in databases. A simple case would be, for instance, to
leave some model element properties in an unknown state (i.e., their value
could be any value allowed by their type), or to allow them to have any
value from a more specific set. It should also be possible to modify such
parametric models to change the set of concrete models they represent, and
it should be possible to synchronize such changes. Monads and functional
logic programming were also mentioned as possible means to deal with
nondeterminism, even in functional settings.

A combination of both aspects could be considered, for instance by avoiding
selection for some time before ultimately selecting a specific model.

A tentative naming proposal is to call these extended BX non-deterministic,
or uncertain.

Summary.

Several possible representations of the consistency relations have been discussed:

e Constraints between the model spaces. Such a representation is basically
relational.

e Coupled grammars specifying operationally how models from each space
can be jointly constructed. The corresponding rules may be incomplete
(notion of island grammars). Such a representation is also called rule-
based.

A few open questions have been identified:

e What representation(s) of model-spaces would be appropriate, notably in
the case where we want to avoid selection?

e Which laws (e.g., related to round-tripping) should such BX follow?
e How should we diagrammatically represent such BX?

Applications and examples of such non-deterministic BX still need to be ex-
plored. Software engineering may provide some applications, especially related
to forward and reverse engineering. Another aspect that we explicitly decided
not to consider in the working group is the possibility that metamodels (or
domains, or model spaces) may evolve during the lifetime of the BX.

19



Can we Put Put-Put to Bed Now?
Michael Johnson

Goal.

In a recent review of types of lenses we note that all but one were explic-
itly required by their authors to satisfy an appropriately phrased Put-Put law
(although sometimes the authors themselves were surprised to see that that
was what they had required). (The one exception was “well-behaved set-based
lenses”.) This is not an attempt to proselytise, but a genuine discussion as
there are real empirical questions to be considered. It is an attempt to step
back from pre-formed views and see if we can come to common understandings
as well as drawing on each others’ empirical experiences. It would be good for
our community to clarify this topic.

Summary.

The working group began by identifying a need to clarify terminology, avoid
prejudice, and analyze carefully, and ultimately it concluded that yes, Put-Put
need not be a matter for controversy. Along the way, myths and misconceptions
were identified including (1) That Put-Put is bad (in fact it’s a very useful
property), (2) That Put-Put is always there if you look at it the right way (while
that’s sometimes true, there are real cases, including the parable of Jeremy’s
red shoes, which violate Put-Put, (3) several misconceptions related to Deltas
(that led to some of us wanting to clarify the terminology), (4) misconceptions
about compositions (including mistaken assumptions that they are codiscrete, or
free), and finally the misremembered “theorem” that Put-Put implies constant
complement (and this is probably the source of myth number (1) above).

After clarifying terminology including basic terms like delta, update and
propagation, along with the need to be clear about atomicity (what size of
update does it make sense to propagate), we spent some time discussing incre-
mentality but ultimately passed that off to another working group.

Finally, we reviewed Put-Put as implying a coherent update strategy, we
noted how Put-Put therefore supports incremental analysis and we laid out the
definition of Put-Put as propagation that respects composition, leading to the
observation that Put-Put is important for Least-Surprise. In this light, a careful
analysis of the parable of Jeremy’s red shoes leads to useful understanding of
why Put-Put fails, proposals for how it might be restored, and a warning that
our role is to inform and satisfy a client, not to dictate whether or not their
updates need to be coherent.

20



References

[ACGT14]

[Cool4]

[DGWC16]

[FHP15]

[HWRK11]

[JohO7]

[KS05]

[MW15]

[WHR*13]

[Xi009]

Anthony Anjorin, Alcino Cunha, Holger Giese, Frank Hermann,
Arend Rensink, and Andy Schiirr. BenchmarX. In S. Hidaka and
J. Terwilliger, editors, Bidirectional Transformations (BX 2014)
- Workshops of the EDBT/ICDT 201/ Joint Conference, volume
1133 of CEUR Workshop Proceedings, pages 82-86, Aachen, Ger-
many, March 2014. CEUR-WS.org.

Steve Cook. Domain-specific modeling and model driven architec-
ture. MDA Journal, pages 2-10, Jan 2014.

Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and Krzysztof Czar-
necki. A three-dimensional taxonomy for bidirectional model syn-
chronization. J. Syst. Softw., 111(C):298-322, January 2016.

Sebastian Fischer, ZhenJiang Hu, and Hugo Pacheco. The essence
of bidirectional programming. Science China Information Sciences,

58(5):1-21, 2015.

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. Empirical assessment of mde in industry. In Proceed-

ings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 471-480, New York, NY, USA, 2011. ACM.

Michael Johnson. Enterprise interoperability: New challenges and
approaches. In Enterprise Software with Half-Duplex Interopera-
tions, pages 521-530. Springer-Verlag, 2007.

Alexander Konigs and Andy Schiirr. Multi-domain integration
with mof and extended triple graph grammars. Dagstuhl Seminar
Proceedings 04101 http://drops.dagstuhl.de/opus/volltexte/
2005/22, 2005.

Kazutaka Matsuda and Meng Wang. Applicative bidirectional pro-
gramming with lenses. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015,
pages 62-74, New York, NY, USA, 2015. ACM.

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden,
and Rogardt Heldal. Industrial Adoption of Model-Driven Engi-
neering: Are the Tools Really the Problem?, pages 1-17. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

Yingfei Xiong. A Language-based Approach to Model Synchroniza-
tion in Software Engineering. PhD thesis, The University of Tokyo,
2009. http://sei.pku.edu.cn/~xiongyf04/papers/PhDThesis.
pdf.

21



