طبيعيات: جي ورجائن ۾ تفاوت
Ibne maryam (بحث | ڀاڱيداريون) مسنوار جو تَتُ ڪونهي ٽيگَ: موبائل سنوار موبائل ويب سنوار وڌيل موبائل سنوار |
Ibne maryam (بحث | ڀاڱيداريون) مسنوار جو تَتُ ڪونهي ٽيگَ: موبائل سنوار موبائل ويب سنوار وڌيل موبائل سنوار |
||
سِٽَ 32: | سِٽَ 32: | ||
===يورپ جو وچين دور ۽ اسلامي دور=== |
===يورپ جو وچين دور ۽ اسلامي دور=== |
||
{{main|European science in the Middle Ages|Physics in the medieval Islamic world}} |
{{main|European science in the Middle Ages|Physics in the medieval Islamic world}} |
||
پنجين صدي عيسويءَ ۾ مغربي رومن سلطنت جو زوال ٿيو ۽ ان جي نتيجي ۾ يورپ جي الهندي حصي ۾ دانشورانه جستجو ۾ گهٽتائي آئي. ان جي ابتڙ، اڀرندي رومن سلطنت (عام طور تي بازنطيني سلطنت جي نالي سان مشهور آهي) باربیرين جي حملن جي مزاحمت ڪئي ۽ علم جي مختلف شعبن، بشمول فزڪس کي اڳتي وڌايو.{{sfn|Lindberg|1992|page=363}} |
|||
ڇهين صدي عيسويءَ ۾، ميلٽس جو آئسڊور، آرشيميدس جي ڪمن جو هڪ اهم تالیف ٺاهيو جيڪو آرشيميدس پاليمپسٽ ۾ نقل ٿيل آهي. |
|||
[[File:Hazan.png|thumb|left|upright|<small>ابن الهيثم (965ع - 1040ع) پنهنجي ڪئميرا اوبسڪیورا جي تجربن بابت "ڪتاب المناظر" ۾ لکيو آهي.{{sfn|Smith|2001|loc=Book I [6.85], [6.86], p. 379; Book II, [3.80], p. 453}}</small>|alt=Ibn Al-Haytham (Alhazen) drawing]] |
|||
ڇهين صدي عيسويءَ ۾ يورپ جي جان فلپونس، هڪ بازنطيني عالم، ارسطو جي فزڪس جي علم تي سوال ڪيو ۽ ان جي خامين کي نوت ڪرايو. هن تحقیق جو نظريو متعارف ڪرايو. ارسطو جي فزڪس جي ڇنڊڇاڻ نه ڪئي وئي جيستائين فلپونس ظاهر نه ٿيو. ارسطو جي برعڪس، جنهن پنهنجي فزڪس جو بنياد لفظي دليلن تي رکيو، فلپونس مشاهدي تي ڀروسو ڪيو. ارسطو جي فزڪس تي فلپونس لکيو آهي ته: |
|||
"پر اهو مڪمل طور تي غلط آهي، ۽ اسان جي نظريي جي تصديق ٿي سگهي ٿي حقيقي مشاهدي سان ڪنهن به قسم جي لفظي دليلن جي ڀيٽ ۾. ڇاڪاڻ ته جيڪڏهن توهان هڪ ئي اونچائي کان ٻه وزن گرڻ ڏيو جن مان هڪ وزن ٻئي کان ڪيترائي ڀيرا وزني آهي، توهان ڏسندا ته حرڪت لاءِ گهربل وقتن جو تناسب وزن جي تناسب تي نه آهي پر اهو فرق، وقت ۾ تمام ننڍو آهي ۽ ائين، جيڪڏهن وزن ۾ فرق قابل غور نه آهي، يعني هڪ، اسان کي چئون ته ٻئي کي ٻيڻو ڪريو، ڪو به فرق نه ٿيندو، يا نه ته هڪ ناقابل تصور فرق، وقت ۾، جيتوڻيڪ وزن ۾ فرق آهي. نه معنيٰ گهٽجي، هڪ جسم جو وزن ٻئي کان ٻه ڀيرا"<ref>{{Cite web|url=http://homepages.wmich.edu/~mcgrew/philfall.htm|title=John Philoponus, Commentary on Aristotle's Physics|archive-url=https://web.archive.org/web/20160111105753/http://homepages.wmich.edu/~mcgrew/philfall.htm|archive-date=11 January 2016|access-date=15 April 2018|url-status=dead}}</ref> |
|||
وڌيڪ فزڪس جي ارسطو جي اصولن تي فلپونس جي تنقيد گيليلو گليلي لاءِ ڏهه صديون پوءِ، سائنسي انقلاب دوران هڪ الهام جو ڪم ڪيو.<ref name="dialogTwoNewSciences2">{{cite book|title=[[Two New Sciences]]|last=Galileo|date=1638|quote=in order to better understand just how conclusive Aristotle's demonstration is, we may, in my opinion, deny both of his assumptions. And as to the first, I greatly doubt that Aristotle ever tested by experiment whether it be true that two stones, one weighing ten times as much as the other, if allowed to fall, at the same instant, from a height of, say, 100 cubits, would so differ in speed that when the heavier had reached the ground, the other would not have fallen more than 10 cubits.<br />Simp. – His language would seem to indicate that he had tried the experiment, because he says: We see the heavier; now the word see shows that he had made the experiment.<br />Sagr. – But I, Simplicio, who have made the test can assure[107] you that a cannon ball weighing one or two hundred pounds, or even more, will not reach the ground by as much as a span ahead of a musket ball weighing only half a pound, provided both are dropped from a height of 200 cubits.|authorlink=Galileo}}</ref> گليلو پنهنجي ڪمن ۾ فلپونس جو ڪافي حوالو ڏنو جڏهن بحث ڪيو ته ارسطو جي فزڪس غلط هئي.{{sfn|Lindberg|1992|page=162}} <ref>{{Cite book|title=The Stanford Encyclopedia of Philosophy|publisher=Metaphysics Research Lab, Stanford University|year=2018|chapter=John Philoponus|access-date=11 April 2018|chapter-url=https://plato.stanford.edu/entries/philoponus/|archive-url=https://web.archive.org/web/20180422010906/https://plato.stanford.edu/entries/philoponus/|archive-date=22 April 2018|url-status=live}}</ref> 1300ع واري ڏهاڪي ۾ پيرس يونيورسٽي ۾ آرٽس جي فيڪلٽي ۾ استاد جين بريڊن 1300ع واري ڏهاڪي ۾ تحرڪ (impetus) جو تصور پيش ڪيو. اهو جديد نظرين جي جڙت ۽ رفتار ڏانهن هڪ قدم هو.<ref>{{Cite book|title=The Stanford Encyclopedia of Philosophy|publisher=Metaphysics Research Lab, Stanford University|year=2018|chapter=John Buridan|access-date=11 April 2018|chapter-url=https://plato.stanford.edu/entries/buridan/|archive-url=https://web.archive.org/web/20180422012611/https://plato.stanford.edu/entries/buridan/|archive-date=22 April 2018|url-status=live}}</ref> |
|||
اسلامي اسڪالر کي ارسطوءَ جي فزڪس، يونانين کان ورثي ۾ ملي ۽ اسلامي سونهري دور ۾ ان کي وڌيڪ ترقي ڏني، خاص ڪري مشاهدي ۽ ترجيحي استدلال تي زور ڏيندي، سائنسي طريقي جي شروعاتي شڪلن کي ترقي ڪندي. |
|||
جيتوڻيڪ ارسطو جي فزڪس جي اصولن کي تنقيد جو نشانو بڻايو ويو، اهو ضروري آهي ته انهن ثبوتن جي نشاندهي ڪئي وڃي جن تي هن پنهنجي نظريات جو بنياد رکيو. سائنس ۽ رياضي جي تاريخ جو محتاط مطالعو پراڻن سائنسدانن پاران ڪيل تعاون کي ظاهر ڪري ٿو. ارسطو جي سائنس اڄ جي اسڪولن ۾ سيکاريندڙ سائنس جي پسمنظر هئي. ارسطو ڪيترائي حياتياتي ڪم شايع ڪيا جن ۾ جانورن جا حصا شامل آهن، جن ۾ هن حياتياتي سائنس ۽ فطري سائنس ٻنهي تي بحث ڪيو آهي. ارسطو فزڪس ۽ مابعد الطبعيات جي ترقيءَ ۾ اهم ڪردار ادا ڪيو ۽ سندس نظریا ۽ نتيجا اڄ به سائنس جي ڪلاسن ۾ پڙهايا وڃن ٿا. ارسطو جيڪي وضاحتون ڏئي ٿو، سو به سادو آهي. |
|||
جڏهن عناصرن جي باري ۾ سوچيو، ارسطو اهو مڃيو ته چئن ڪلاسيڪل عناصر (ڌرتي، باهه، پاڻي، هوا) مان هر هڪ پنهنجي قدرتي جڳهه آهي.<ref>{{Cite web|url=https://www.calstatela.edu/sites/default/files/dept/chem/09summer/158/daily40-aristotle.pdf|title=Daily 40 no. 2 – Aristotle and the Four Simple Bodies and Elements|website=Cal State LA|archive-url=https://web.archive.org/web/20230106231001/https://www.calstatela.edu/sites/default/files/dept/chem/09summer/158/daily40-aristotle.pdf|archive-date=6 January 2023|access-date=2023-09-27}}</ref> انهن جي مختلف کثافت جي ڪري، هر عنصر فضا ۾ پنهنجي مخصوص جڳهه ڏانهن موٽندو.<ref>{{Cite web|url=https://blogs.umass.edu/p139ell/2012/10/14/natural-philosophy-aristotle/|title=Natural Philosophy: Aristotle {{!}} Physics 139|last=tbcaldwe|date=14 October 2012|language=en-US|access-date=2022-12-17}}</ref> تنهن ڪري "باهه" انهن جي وزن جي ڪري، چوٽي تي هوندي، باهه هيٺ هوا، پوء پاڻي، پوء آخر ۾ زمين. هن اهو به چيو ته جڏهن هڪ عنصر جو هڪ ننڍڙو مقدار ٻئي جي قدرتي جاء تي داخل ٿئي ٿو، گهٽ گهڻائي عنصر خود بخود پنهنجي قدرتي جڳهه ڏانهن ويندا آهن. مثال طور، جيڪڏهن زمين تي باهه لڳندي آهي، ته شعلا پنهنجي فطري جاءِ تي واپس وڃڻ جي ڪوشش طور هوا ۾ اڀري ويندا آهن جتي اهو تعلق رکي ٿو. ارسطو پنهنجي مابعد الطبعيات کي ”پهريون فلسفو“ سڏيو ۽ ان کي ”هجڻ جي حيثيت ۾“ جي مطالعي جي حيثيت ڏني.<ref name=":02">{{Cite web|url=https://www.britannica.com/biography/Aristotle/Physics-and-metaphysics|title=Aristotle – Physics and metaphysics|website=Encyclopedia Britannica|language=en|access-date=2022-12-17}}</ref> ارسطو حرڪت جي مثال کي هڪ وجود جي طور تي بيان ڪيو آهي جيڪو هڪ ئي جسم ۾ مختلف علائقن کي شامل ڪري ٿو. اهڙيء طرح، هڪ شخص جيڪو هڪ جڳهه (الف) تي آهي هڪ نئين جڳهه (ب) ڏانهن منتقل ڪري سگهي ٿو ۽ اڃا تائين ساڳئي مقدار ۾ جاء وٺي سگھي ٿو. اهو ارسطو جي نظریي سان شامل آهي ته حرڪت هڪ تسلسل آهي. معاملي جي لحاظ کان، ارسطو جو خيال هو ته ڪنهن شئي جي درجي (مثال طور جڳهه) ۽ ڪيفيت (مثال طور رنگ) ۾ تبديلي کي ”تبدل“ چئبو آهي. پر، مادي ۾ تبديلي مادي ۾ تبديلي آهي. اهو به اڄ جي معاملي جي خيال سان ملندڙ جلندڙ آهي. |
|||
هن حرڪت جا پنهنجا قانون پڻ ٺاهيا جن ۾ شامل آهن؛ |
|||
# ڳري شيون تيزيءَ سان ڪِرنديون آھن ء ڪِرن جي رفتار وزن جي متناسب هوندي آھي. ۽ |
|||
# گرڻ واري شئي جي رفتار جو دارومدار اُن کثافت واري شئي تي منحصر هوندو آهي جنهن ذريعي اُهو گري رهيو آهي (مثال طور هوا جی ڪثافت).<ref name=":12">{{Cite web|url=https://galileoandeinstein.phys.virginia.edu/lectures/aristot2.html|title=Aristotle|website=galileoandeinstein.phys.virginia.edu|access-date=2022-12-17}}</ref> |
|||
هن اهو پڻ چيو ته، جڏهن اها پرتشدد حرڪت (هڪ شئي جي حرڪت جي صورت ۾ اچي ٿي جڏهن هڪ ٻي شئي طرفان ان تي قوت لاڳو ٿئي ٿي) ته اها رفتار جيڪا شئي حرڪت ڪري ٿي، اها تيز يا مضبوط هوندي، جيترو ان تي لاڳو ڪيل قوت جي ماپ جيتري تيز يا مضبوط ھوندی آھي.<ref name=":13">{{Cite web|url=https://galileoandeinstein.phys.virginia.edu/lectures/aristot2.html|title=Aristotle|website=galileoandeinstein.phys.virginia.edu|access-date=2022-12-17}}</ref> اها رفتار ۽ قوت جي ضابطن ۾ پڻ ڏٺو وڃي ٿو جيڪي اڄڪلهه فزڪس جي ڪلاسن ۾ سيکاريا وڃن ٿا. اهي ضابطا ضروري نه آهن جيڪي اڄڪلهه فزڪس ۾ بيان ڪيا ويا آهن پر، اهي گهڻو ڪري هڪجهڙا آهن. ظاهر آهي ته اهي قاعدا ٻين سائنسدانن لاءِ هن جي نظرين جي نظرثاني ۽ تدوين لاءِ ريڙهه هئا.[[File:Pinhole-camera.svg|thumb|right|upright|بنيادي اصول جنھن تي هڪ پن هول ڪئميرا ڪم ڪري ٿو.]] |
|||
اسلامي اسڪالر شپ تحت سڀ کان وڌيڪ قابل ذڪر جدت بصري ۽ بصيرت جي ميدان ۾ هئي، جيڪي ڪيترن ئي سائنسدانن جهڙوڪ ابن سهل، الڪندي، ابن الهيثم، الفارسي ۽ آويسيننا جي ڪمن مان حاصل ڪيون ويون آهن. سڀ کان وڌيڪ قابل ذڪر ڪم The Book of Optics (جنهن کي ڪتاب المنير به چيو ويندو آهي) ابن الهيثم جو لکيل هو، جنهن ۾ هن بصري بابت قديم يوناني نظريي جو متبادل پيش ڪيو.[20] روشنيءَ تي پنهنجي ڪتاب ۽ ڪتاب المنير ۾، هن ڪيمرا اوبسڪورا جي رجحان جو مطالعو پيش ڪيو (پن هول ڪيمرا جو سندس هزار سال پراڻو نسخو) ۽ ان طريقي سان اڳتي وڌيو ته جيئن اکيون پاڻ ڪم ڪري ٿي. اڳين عالمن جي ڄاڻ کي استعمال ڪندي، هن وضاحت ڪرڻ شروع ڪيو ته روشني ڪيئن اکين ۾ داخل ٿئي ٿي. هن زور ڀريو ته روشنيءَ جي شعاعن تي مرڪوز آهي، پر روشنيءَ جي روشنيءَ کي اکين جي پٺيءَ ڏانهن ڪيئن پيش ڪجي ٿو، ان لاءِ 1604ع تائين انتظار ڪرڻو پيو. هن جي روشنيءَ تي لکيل ڪتاب، فوٽوگرافي جي جديد ترقيءَ کان سوين سال اڳ، ڪيمرا اوبسڪورا جي وضاحت ڪئي.[21 ] ست جلدن تي مشتمل ڪتاب نظرياتي (ڪتاب المناثير) 600 سالن کان وڌيڪ عرصي تائين، وچئين دور جي فن ۾ نظريي جي نوعيت کان وٺي بصري تصور جي نظريي تائين، ٻنهي شعبن ۾ سوچ کي متاثر ڪيو. ان ۾ بعد ۾ يورپي عالمن ۽ ساٿي پولي ميٿس شامل هئا، رابرٽ گراسٽسٽي ۽ ليونارڊو ڊي ونسي کان وٺي جوهانس ڪيپلر تائين. The Book of Optics جي ترجمي جو يورپ تي اثر پيو. ان مان، بعد ۾ يورپي عالمن ڊوائيسز ٺاهڻ جي قابل ٿي ويا، جيڪي ابن الهيثم ٺاهيا هئا انهن کي نقل ڪيو ۽ سمجھڻ جي طريقي سان نظر انداز ڪيو. گلي. ليو گليلي، هن رياضي، نظرياتي فزڪس ۽ تجرباتي فزڪس تي ڪم ڪيو. |
|||
most notable innovations under Islamic scholarship were in the field of [[optics]] and vision,<ref>{{cite book |last= Dallal|first=Ahmad |author-link= |date= 2010|title=Islam, Science, and the Challenge of History |url= |location=New Haven |publisher= Yale University Press|page=38 |isbn=|quote = Within two centuries, the field of optics was radically transformed}}</ref> which came from the works of many scientists like [[Ibn Sahl (mathematician)|Ibn Sahl]], [[Al-Kindi]], [[Ibn al-Haytham]], [[Kamāl al-Dīn al-Fārisī|Al-Farisi]] and [[Avicenna]]. The most notable work was ''[[Book of Optics|The Book of Optics]]'' (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision.<ref>{{Cite journal |last=Tbakhi |first=Abdelghani |last2=Amr |first2=Samir S. |date=2007 |title=Ibn Al-Haytham: Father of Modern Optics |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074172/ |journal=Annals of Saudi Medicine |volume=27 |issue=6 |pages=464–467 |doi=10.5144/0256-4947.2007.464 |issn=0256-4947 |pmc=6074172 |pmid=18059131}}</ref> In his ''Treatise on Light'' as well as in his ''Kitāb al-Manāẓir'', he presented a study of the phenomenon of the [[camera obscura]] (his thousand-year-old version of the [[pinhole camera]]) and delved further into the way the eye itself works. Using the knowledge of previous scholars, he began to explain how light enters the eye. He asserted that the light ray is focused, but the actual explanation of how light projected to the back of the eye had to wait until 1604. His ''Treatise on Light'' explained the camera obscura, hundreds of years before the modern development of photography.<ref>{{harvnb |Howard|Rogers|1995|pp=6–7}}</ref> |
|||
The seven-volume ''Book of Optics'' (''Kitab al-Manathir'') influenced thinking<ref>{{Cite journal |last=Al-Khalili |first=Jim |date=February 2015 |title=In retrospect: Book of Optics |url=https://www.nature.com/articles/518164a |journal=Nature |language=en |volume=518 |issue=7538 |pages=164–165 |doi=10.1038/518164a |bibcode=2015Natur.518..164A |issn=1476-4687}}</ref> across disciplines from the theory of visual [[perception]] to the nature of [[perspectivity|perspective]] in medieval art, in both the East and the West, for more than 600 years. This included later European scholars and fellow polymaths, from [[Robert Grosseteste]] and [[Leonardo da Vinci]] to [[Johannes Kepler]]. |
|||
The translation of ''The Book of Optics'' had an impact on Europe. From it, later European scholars were able to build devices that replicated those Ibn al-Haytham had built and understand the way vision works.[[File:Justus Sustermans - Portrait of Galileo Galilei, 1636.jpg|thumb|right|upright|[[Galileo Galilei]] (1564–1642) related mathematics, theoretical physics, and experimental physics.]] |
|||
===کلاسیکل=== |
|||
[[File:GodfreyKneller-IsaacNewton-1689.jpg|thumb|right|upright|[[Isaac Newton]] discovered the [[Newton's laws of motion|laws of motion]] and [[Newton's law of universal gravitation|universal gravitation]]]] |
|||
Physics became a separate science when [[early modern Europe]]ans used experimental and quantitative methods to discover what are now considered to be the [[laws of physics]].<ref name="benchaim2004">{{harvnb |Ben-Chaim|2004}}</ref>{{Page needed|date=November 2016}} |
|||
Major developments in this period include the replacement of the [[geocentric model]] of the [[Solar System]] with the heliocentric [[Copernican model]], the [[Kepler's laws|laws governing the motion of planetary bodies]] (determined by Kepler between 1609 and 1619), Galileo's pioneering work on [[telescope]]s and [[observational astronomy]] in the 16th and 17th centuries, and [[Isaac Newton]]'s discovery and unification of the [[Newton's laws of motion|laws of motion]] and [[Newton's law of universal gravitation|universal gravitation]] (that would come to bear his name).<ref>{{harvnb |Guicciardini|1999}}</ref> Newton also developed [[calculus]],{{efn|Calculus was independently developed at around the same time by [[Gottfried Wilhelm Leibniz]]; while Leibniz was the first to publish his work and develop much of the notation used for calculus today, Newton was the first to develop calculus and apply it to physical problems. See also [[Leibniz–Newton calculus controversy]]}} the mathematical study of continuous change, which provided new mathematical methods for solving physical problems.<ref name="allen1997">{{harvnb |Allen|1997}}</ref> |
|||
The discovery of laws in [[thermodynamics]], [[chemistry]], and [[electromagnetics]] resulted from research efforts during the [[Industrial Revolution]] as energy needs increased.<ref name="schoolscience-industrialrevolution">{{cite web |
|||
|title = The Industrial Revolution |
|||
|publisher = Schoolscience.org, [[Institute of Physics]] |
|||
|url = http://resources.schoolscience.co.uk/IoP/14-16/biogs/biogs5.html |
|||
|access-date = 1 April 2014 |
|||
|url-status=live |
|||
|archive-url = https://web.archive.org/web/20140407083354/http://resources.schoolscience.co.uk/IoP/14-16/biogs/biogs5.html |
|||
|archive-date = 7 April 2014 |
|||
|df = dmy-all |
|||
}}</ref> The laws comprising classical physics remain widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a close approximation in such situations, and theories such as [[quantum mechanics]] and the [[theory of relativity]] simplify to their classical equivalents at such scales. Inaccuracies in [[classical mechanics]] for very small objects and very high velocities led to the development of modern physics in the 20th century. |
|||
===جدید=== |
|||
[[File:Max Planck Nobel 1918.jpg|thumb|right|upright|[[Max Planck]] (1858–1947), the originator of the theory of [[quantum mechanics]]]] |
|||
[[File:Einstein1921 by F Schmutzer 2.jpg|thumb|right|upright|[[Albert Einstein]] (1879–1955), discovered the [[photoelectric effect]] and [[theory of relativity]].]] |
|||
[[Modern physics]] began in the early 20th century with the work of [[Max Planck]] in quantum theory and [[Albert Einstein]]'s theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. [[Classical mechanics]] predicted that the [[speed of light]] depends on the motion of the observer, which could not be resolved with the constant speed predicted by [[Maxwell's equations]] of electromagnetism. This discrepancy was corrected by Einstein's theory of [[special relativity]], which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light.<ref name="oconnorrobertson1996-relativity">{{harvnb |O'Connor|Robertson|1996a}}</ref> [[Black-body radiation]] provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators is possible only in discrete steps proportional to their frequency. This, along with the [[photoelectric effect]] and a complete theory predicting discrete [[energy levels]] of [[Atomic orbital|electron orbitals]], led to the theory of quantum mechanics improving on classical physics at very small scales.<ref name="oconnorrobertson1996-quantum">{{harvnb |O'Connor|Robertson|1996b}}</ref> |
|||
Quantum mechanics would come to be pioneered by [[Werner Heisenberg]], [[Erwin Schrödinger]] and [[Paul Dirac]].<ref name="oconnorrobertson1996-quantum"/> From this early work, and work in related fields, the [[Standard Model of particle physics]] was derived.<ref name="donut2001">{{cite web |website=[[DONUT]] |title=The Standard Model |publisher=[[Fermilab]] |date=29 June 2001 |url=http://www-donut.fnal.gov/web_pages/standardmodelpg/TheStandardModel.html |access-date=1 April 2014 |archive-date=31 May 2014 |archive-url=https://web.archive.org/web/20140531012204/http://www-donut.fnal.gov/web_pages/standardmodelpg/TheStandardModel.html |url-status=live }}</ref> Following the discovery of a particle with properties consistent with the [[Higgs boson]] at [[CERN]] in 2012,<ref name="cho2012">{{harvnb |Cho|2012}}</ref> all [[fundamental particles]] predicted by the standard model, and no others, appear to exist; however, [[physics beyond the Standard Model]], with theories such as [[supersymmetry]], is an active area of research.<ref>{{cite magazine |last=Womersley |first=J. |url=http://www.symmetrymagazine.org/sites/default/files/legacy/pdfs/200502/beyond_the_standard_model.pdf |date=February 2005 |title=Beyond the Standard Model |magazine= Symmetry |volume=2 |issue=1 |pages=22–25 |archive-url=https://web.archive.org/web/20150924114111/http://www.symmetrymagazine.org/sites/default/files/legacy/pdfs/200502/beyond_the_standard_model.pdf |archive-date=24 September 2015 |url-status=live}}</ref> Areas of mathematics in general are important to this field, such as the study of [[probability amplitude|probabilities]] and [[Group theory#Physics|groups]]. |
|||
The [[Western Roman Empire]] fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the [[Byzantine Empire]]) resisted the attacks from invaders and continued to advance various fields of learning, including physics.{{sfn|Lindberg|1992|page=363}} |
The [[Western Roman Empire]] fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the [[Byzantine Empire]]) resisted the attacks from invaders and continued to advance various fields of learning, including physics.{{sfn|Lindberg|1992|page=363}} |
ورجاءُ بمطابق 11:45, 3 آڪٽوبر 2024ع
طبیعیات يا فزڪس (Physics) علم جي اها شاخ جنھن ۾ مادي ۽ توانائي جي خاصيتن ۽انهن جي هڪ ٻئي تي اثر بابت مطالعا ۽ مشاهدا ڪيا ويندا آهن. فزڪس مادي جو سائنسي مطالعو آهي، ان جي بنيادي جزن ۾ مادي جي حرڪت، خلا ۽ وقت جي اندر ان جي رويي ۽ توانائي ۽ قوتن جي لاڳاپيل اينٽيٽيون شامل آهن.[1] فزڪس سڀ کان بنيادي سائنسي شعبن (Disciplines) مان هڪ آهي.[2][3][4] هڪ سائنسدان جيڪو فزڪس جي شعبي ۾ ماهر آهي، ان کي طبیعیات دان (Physicist) سڏيو ويندو آهي. طبیعیات جي هڪ نئين تعريف بہ سامهون آئي آهي جنهن مطابق طبیعیات، ڪائنات جي باري ۾ ڄاڻ جو علم آهي جنهن ۾ اسان ڪائنات ۾ موجود ننڍي کان ننڍي شيءِ کان ديوقامت تارن بابت پروڙ حاصل ڪندا آهيون. نيوٽن، گليليو کي ڪلاسيڪی طبیعیات جڏهن تہ آئنسٽائن، ارون شروڊينگر، ميڪس پلانڪ کي جديد طبیعیات جو ابو سڏيو ويندو آهي.
فزڪس قديم ترين علمي شعبن مان هڪ آهي ۽ ان ۾ فلڪيات جي شموليت ذريعي، شايد سڀ کان پراڻو آهي.[5] گذريل ٻن هزارن سالن کان گهڻو وقت، فزڪس، علم ڪيميا، حياتيات ۽ رياضي جون ڪجهه شاخون قدرتي فلسفي جو حصو هيون، پر 17هين صديءَ ۾ سائنسي انقلاب دوران، اهي ۽ قدرتي سائنس الڳ الڳ تحقيقي ڪوششن ۾ شامل ٿي ويا. فزڪس تحقيق جي ڪيترن ئي بين الاقوامي شعبن سان ٽڪراءُ ڪري ٿو، جهڙوڪ حياتياتي فزڪس ۽ ڪوانٽم ڪيمسٽري ۽ فزڪس جون حدون سختيءَ سان بيان ٿيل نه آهن. فزڪس ۾ نوان خيال اڪثر ڪري ٻين سائنسن پاران اڀياس ڪيل بنيادي ميکانزم جي وضاحت ڪن ٿا ۽ انهن ۽ ٻين علمي شعبن جهڙوڪ رياضي ۽ فلسفو ۾ تحقيق جا نوان رستا تجويز ڪن ٿا.[6]
فزڪس ۾ ترقيون اڪثر ڪري نئين ٽيڪنالاجي کي فعال ڪن ٿيون. مثال طور، اليڪٽرومگنيٽزم، سولڊ اسٽيٽ فزڪس ۽ ايٽمي فزڪس جي سمجھ ۾ اڳڀرائي سڌو سنئون نئين پراڊڪٽن جي ترقيءَ جو سبب بڻيون، جن جديد دور جي سماج کي ڊرامائي طور تي تبديل ڪري ڇڏيو آهن، جهڙوڪ ٽيليويزن، ڪمپيوٽر ۽ ايٽمي هٿيار؛[7] ٿرموڊائنامڪس ۾ ترقي، صنعتي ترقيءَ جو سبب بڻي ۽ ميڪانيات ۾ ترقيءَ علم احصاء (Calculus) جي ترقيءَ کي متاثر ڪيو.
نالو
لفظ فزڪس لاطيني فزڪس (فطرت جو مطالعو) مان ورتل آهي، جيڪو خود يوناني لفظ "φυσική" (فزيڪي، مطلب: فطري سائنس) جو قرض ورتو ويو آهي، جو هڪ يوناني اصطلاح "φύσις" (فزيس، مطلب: اصل، فطرت) مان نڪتل آهي.[8][9][10]
فزڪس جي تاريخ
- اصل مضمون جي لاءِ ڏسو History of physics
قدیم فلڪيات
- اصل مضمون جي لاءِ ڏسو History of astronomy
فلڪيات (Astronomy) قديم ترين قدرتي سائنسن مان هڪ آهي. 3000 قبل مسيح کان اڳ واري تهذيب، جهڙوڪ سومیري، قديم مصري ۽ سنڌو ماٿري جي تهذيب، سج، چنڊ ۽ تارن جي حرڪت بابت اڳڪٿي ڪندڙ علم ۽ بنيادي ڄاڻ رکندڙ هئي. ستارا ۽ سيارا، جنھن جی باری م کي ديوتا جي نمائندگي ڪرڻ جو گمان ھو، اڪثر ڪري پوڄا ڪندا هئا. جڏهن ته ستارن جي مشاهدي واري پوزيشن جي وضاحت اڪثر غير سائنسي ۽ ثبوتن جي کوٽ سان هئي، انهن ابتدائي مشاهدن بعد ۾ فلڪيات جو بنياد وڌو. ڇاڪاڻ ته ستارن کي آسمان جي چوڌاري وڏن دائرن کي پار ڪندي مليو، جيڪو سيارن جي پوزيشن جي وضاحت نه ڪري سگهيو.
اسگیر آبوئی (Asger Aaboe) جي مطابق، مغربي فلڪيات جي شروعات ميسوپوٽيميا ۾ ملي سگهي ٿي ۽ صحيح سائنس ۾ مغربي ڪوششون دير سان بابل جي فلڪيات مان نڪتل آهن.[11] مصري فلڪيات جي ماهرن يادگار ڇڏيا جن ۾ ستارن ۽ آسماني جسمن جي حرڪتن جي ڄاڻ ڏيکاري ٿي، [12] جڏهن ته يوناني شاعر هومر پنهنجي ایليڊ ۽ اوڊيسي ۾ مختلف آسماني شين بابت لکيو؛ بعد ۾ يوناني فلڪيات دان، اتر اڌ گول مان نظر ايندڙ اڪثر تارن لاءِ نالا مهيا ڪيا، جيڪي اڄ به استعمال ڪيا وڃن ٿا.[13]
قدرتي فلاسفي
- اصل مضمون جي لاءِ ڏسو قدرتي فلاسفي
Natural philosophy has its origins in Greece during the Archaic period (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause.[14] They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment;[15] for example, atomism was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus.
ارسطو ۽ قديم يوناني فزڪس
During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times, natural philosophy developed along many lines of inquiry. Aristotle (يوناني ٻولي: Ἀριστοτέλης, Aristotélēs) (384–322 BCE), a student of Plato, wrote on many subjects, including a substantial treatise on "Physics" – in the 4th century BC. Aristotelian physics was influential for about two millennia. His approach mixed some limited observation with logical deductive arguments, but did not rely on experimental verification of deduced statements. Aristotle's foundational work in Physics, though very imperfect, formed a framework against which later thinkers further developed the field. His approach is entirely superseded today.
He explained ideas such as motion (and gravity) with the theory of four elements. Aristotle believed that each of the four classical elements (air, fire, water, earth) had its own natural place.[16] Because of their differing densities, each element will revert to its own specific place in the atmosphere.[17] So, because of their weights, fire would be at the top, air underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go towards its own natural place. For example, if there is a fire on the ground, the flames go up into the air in an attempt to go back into its natural place where it belongs. His laws of motion included 1) heavier objects will fall faster, the speed being proportional to the weight and 2) the speed of the object that is falling depends inversely on the density object it is falling through (e.g. density of air).[18] He also stated that, when it comes to violent motion (motion of an object when a force is applied to it by a second object) that the speed that object moves, will only be as fast or strong as the measure of force applied to it.[18] The problem of motion and its causes was studied carefully, leading to the philosophical notion of a "primer mover" as the ultimate source of all motion in the world (Book 8 of his treatise Physics).
يورپ جو وچين دور ۽ اسلامي دور
- اصل مضمون/مضمونن جي لاءِ ڏسو European science in the Middle Ages ۽ Physics in the medieval Islamic world
پنجين صدي عيسويءَ ۾ مغربي رومن سلطنت جو زوال ٿيو ۽ ان جي نتيجي ۾ يورپ جي الهندي حصي ۾ دانشورانه جستجو ۾ گهٽتائي آئي. ان جي ابتڙ، اڀرندي رومن سلطنت (عام طور تي بازنطيني سلطنت جي نالي سان مشهور آهي) باربیرين جي حملن جي مزاحمت ڪئي ۽ علم جي مختلف شعبن، بشمول فزڪس کي اڳتي وڌايو.[19]
ڇهين صدي عيسويءَ ۾، ميلٽس جو آئسڊور، آرشيميدس جي ڪمن جو هڪ اهم تالیف ٺاهيو جيڪو آرشيميدس پاليمپسٽ ۾ نقل ٿيل آهي.
ڇهين صدي عيسويءَ ۾ يورپ جي جان فلپونس، هڪ بازنطيني عالم، ارسطو جي فزڪس جي علم تي سوال ڪيو ۽ ان جي خامين کي نوت ڪرايو. هن تحقیق جو نظريو متعارف ڪرايو. ارسطو جي فزڪس جي ڇنڊڇاڻ نه ڪئي وئي جيستائين فلپونس ظاهر نه ٿيو. ارسطو جي برعڪس، جنهن پنهنجي فزڪس جو بنياد لفظي دليلن تي رکيو، فلپونس مشاهدي تي ڀروسو ڪيو. ارسطو جي فزڪس تي فلپونس لکيو آهي ته:
"پر اهو مڪمل طور تي غلط آهي، ۽ اسان جي نظريي جي تصديق ٿي سگهي ٿي حقيقي مشاهدي سان ڪنهن به قسم جي لفظي دليلن جي ڀيٽ ۾. ڇاڪاڻ ته جيڪڏهن توهان هڪ ئي اونچائي کان ٻه وزن گرڻ ڏيو جن مان هڪ وزن ٻئي کان ڪيترائي ڀيرا وزني آهي، توهان ڏسندا ته حرڪت لاءِ گهربل وقتن جو تناسب وزن جي تناسب تي نه آهي پر اهو فرق، وقت ۾ تمام ننڍو آهي ۽ ائين، جيڪڏهن وزن ۾ فرق قابل غور نه آهي، يعني هڪ، اسان کي چئون ته ٻئي کي ٻيڻو ڪريو، ڪو به فرق نه ٿيندو، يا نه ته هڪ ناقابل تصور فرق، وقت ۾، جيتوڻيڪ وزن ۾ فرق آهي. نه معنيٰ گهٽجي، هڪ جسم جو وزن ٻئي کان ٻه ڀيرا"[21]
وڌيڪ فزڪس جي ارسطو جي اصولن تي فلپونس جي تنقيد گيليلو گليلي لاءِ ڏهه صديون پوءِ، سائنسي انقلاب دوران هڪ الهام جو ڪم ڪيو.[22] گليلو پنهنجي ڪمن ۾ فلپونس جو ڪافي حوالو ڏنو جڏهن بحث ڪيو ته ارسطو جي فزڪس غلط هئي.[23] [24] 1300ع واري ڏهاڪي ۾ پيرس يونيورسٽي ۾ آرٽس جي فيڪلٽي ۾ استاد جين بريڊن 1300ع واري ڏهاڪي ۾ تحرڪ (impetus) جو تصور پيش ڪيو. اهو جديد نظرين جي جڙت ۽ رفتار ڏانهن هڪ قدم هو.[25]
اسلامي اسڪالر کي ارسطوءَ جي فزڪس، يونانين کان ورثي ۾ ملي ۽ اسلامي سونهري دور ۾ ان کي وڌيڪ ترقي ڏني، خاص ڪري مشاهدي ۽ ترجيحي استدلال تي زور ڏيندي، سائنسي طريقي جي شروعاتي شڪلن کي ترقي ڪندي.
جيتوڻيڪ ارسطو جي فزڪس جي اصولن کي تنقيد جو نشانو بڻايو ويو، اهو ضروري آهي ته انهن ثبوتن جي نشاندهي ڪئي وڃي جن تي هن پنهنجي نظريات جو بنياد رکيو. سائنس ۽ رياضي جي تاريخ جو محتاط مطالعو پراڻن سائنسدانن پاران ڪيل تعاون کي ظاهر ڪري ٿو. ارسطو جي سائنس اڄ جي اسڪولن ۾ سيکاريندڙ سائنس جي پسمنظر هئي. ارسطو ڪيترائي حياتياتي ڪم شايع ڪيا جن ۾ جانورن جا حصا شامل آهن، جن ۾ هن حياتياتي سائنس ۽ فطري سائنس ٻنهي تي بحث ڪيو آهي. ارسطو فزڪس ۽ مابعد الطبعيات جي ترقيءَ ۾ اهم ڪردار ادا ڪيو ۽ سندس نظریا ۽ نتيجا اڄ به سائنس جي ڪلاسن ۾ پڙهايا وڃن ٿا. ارسطو جيڪي وضاحتون ڏئي ٿو، سو به سادو آهي.
جڏهن عناصرن جي باري ۾ سوچيو، ارسطو اهو مڃيو ته چئن ڪلاسيڪل عناصر (ڌرتي، باهه، پاڻي، هوا) مان هر هڪ پنهنجي قدرتي جڳهه آهي.[26] انهن جي مختلف کثافت جي ڪري، هر عنصر فضا ۾ پنهنجي مخصوص جڳهه ڏانهن موٽندو.[27] تنهن ڪري "باهه" انهن جي وزن جي ڪري، چوٽي تي هوندي، باهه هيٺ هوا، پوء پاڻي، پوء آخر ۾ زمين. هن اهو به چيو ته جڏهن هڪ عنصر جو هڪ ننڍڙو مقدار ٻئي جي قدرتي جاء تي داخل ٿئي ٿو، گهٽ گهڻائي عنصر خود بخود پنهنجي قدرتي جڳهه ڏانهن ويندا آهن. مثال طور، جيڪڏهن زمين تي باهه لڳندي آهي، ته شعلا پنهنجي فطري جاءِ تي واپس وڃڻ جي ڪوشش طور هوا ۾ اڀري ويندا آهن جتي اهو تعلق رکي ٿو. ارسطو پنهنجي مابعد الطبعيات کي ”پهريون فلسفو“ سڏيو ۽ ان کي ”هجڻ جي حيثيت ۾“ جي مطالعي جي حيثيت ڏني.[28] ارسطو حرڪت جي مثال کي هڪ وجود جي طور تي بيان ڪيو آهي جيڪو هڪ ئي جسم ۾ مختلف علائقن کي شامل ڪري ٿو. اهڙيء طرح، هڪ شخص جيڪو هڪ جڳهه (الف) تي آهي هڪ نئين جڳهه (ب) ڏانهن منتقل ڪري سگهي ٿو ۽ اڃا تائين ساڳئي مقدار ۾ جاء وٺي سگھي ٿو. اهو ارسطو جي نظریي سان شامل آهي ته حرڪت هڪ تسلسل آهي. معاملي جي لحاظ کان، ارسطو جو خيال هو ته ڪنهن شئي جي درجي (مثال طور جڳهه) ۽ ڪيفيت (مثال طور رنگ) ۾ تبديلي کي ”تبدل“ چئبو آهي. پر، مادي ۾ تبديلي مادي ۾ تبديلي آهي. اهو به اڄ جي معاملي جي خيال سان ملندڙ جلندڙ آهي.
هن حرڪت جا پنهنجا قانون پڻ ٺاهيا جن ۾ شامل آهن؛
- ڳري شيون تيزيءَ سان ڪِرنديون آھن ء ڪِرن جي رفتار وزن جي متناسب هوندي آھي. ۽
- گرڻ واري شئي جي رفتار جو دارومدار اُن کثافت واري شئي تي منحصر هوندو آهي جنهن ذريعي اُهو گري رهيو آهي (مثال طور هوا جی ڪثافت).[29]
هن اهو پڻ چيو ته، جڏهن اها پرتشدد حرڪت (هڪ شئي جي حرڪت جي صورت ۾ اچي ٿي جڏهن هڪ ٻي شئي طرفان ان تي قوت لاڳو ٿئي ٿي) ته اها رفتار جيڪا شئي حرڪت ڪري ٿي، اها تيز يا مضبوط هوندي، جيترو ان تي لاڳو ڪيل قوت جي ماپ جيتري تيز يا مضبوط ھوندی آھي.[30] اها رفتار ۽ قوت جي ضابطن ۾ پڻ ڏٺو وڃي ٿو جيڪي اڄڪلهه فزڪس جي ڪلاسن ۾ سيکاريا وڃن ٿا. اهي ضابطا ضروري نه آهن جيڪي اڄڪلهه فزڪس ۾ بيان ڪيا ويا آهن پر، اهي گهڻو ڪري هڪجهڙا آهن. ظاهر آهي ته اهي قاعدا ٻين سائنسدانن لاءِ هن جي نظرين جي نظرثاني ۽ تدوين لاءِ ريڙهه هئا.
اسلامي اسڪالر شپ تحت سڀ کان وڌيڪ قابل ذڪر جدت بصري ۽ بصيرت جي ميدان ۾ هئي، جيڪي ڪيترن ئي سائنسدانن جهڙوڪ ابن سهل، الڪندي، ابن الهيثم، الفارسي ۽ آويسيننا جي ڪمن مان حاصل ڪيون ويون آهن. سڀ کان وڌيڪ قابل ذڪر ڪم The Book of Optics (جنهن کي ڪتاب المنير به چيو ويندو آهي) ابن الهيثم جو لکيل هو، جنهن ۾ هن بصري بابت قديم يوناني نظريي جو متبادل پيش ڪيو.[20] روشنيءَ تي پنهنجي ڪتاب ۽ ڪتاب المنير ۾، هن ڪيمرا اوبسڪورا جي رجحان جو مطالعو پيش ڪيو (پن هول ڪيمرا جو سندس هزار سال پراڻو نسخو) ۽ ان طريقي سان اڳتي وڌيو ته جيئن اکيون پاڻ ڪم ڪري ٿي. اڳين عالمن جي ڄاڻ کي استعمال ڪندي، هن وضاحت ڪرڻ شروع ڪيو ته روشني ڪيئن اکين ۾ داخل ٿئي ٿي. هن زور ڀريو ته روشنيءَ جي شعاعن تي مرڪوز آهي، پر روشنيءَ جي روشنيءَ کي اکين جي پٺيءَ ڏانهن ڪيئن پيش ڪجي ٿو، ان لاءِ 1604ع تائين انتظار ڪرڻو پيو. هن جي روشنيءَ تي لکيل ڪتاب، فوٽوگرافي جي جديد ترقيءَ کان سوين سال اڳ، ڪيمرا اوبسڪورا جي وضاحت ڪئي.[21 ] ست جلدن تي مشتمل ڪتاب نظرياتي (ڪتاب المناثير) 600 سالن کان وڌيڪ عرصي تائين، وچئين دور جي فن ۾ نظريي جي نوعيت کان وٺي بصري تصور جي نظريي تائين، ٻنهي شعبن ۾ سوچ کي متاثر ڪيو. ان ۾ بعد ۾ يورپي عالمن ۽ ساٿي پولي ميٿس شامل هئا، رابرٽ گراسٽسٽي ۽ ليونارڊو ڊي ونسي کان وٺي جوهانس ڪيپلر تائين. The Book of Optics جي ترجمي جو يورپ تي اثر پيو. ان مان، بعد ۾ يورپي عالمن ڊوائيسز ٺاهڻ جي قابل ٿي ويا، جيڪي ابن الهيثم ٺاهيا هئا انهن کي نقل ڪيو ۽ سمجھڻ جي طريقي سان نظر انداز ڪيو. گلي. ليو گليلي، هن رياضي، نظرياتي فزڪس ۽ تجرباتي فزڪس تي ڪم ڪيو.
most notable innovations under Islamic scholarship were in the field of optics and vision,[31] which came from the works of many scientists like Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi and Avicenna. The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision.[32] In his Treatise on Light as well as in his Kitāb al-Manāẓir, he presented a study of the phenomenon of the camera obscura (his thousand-year-old version of the pinhole camera) and delved further into the way the eye itself works. Using the knowledge of previous scholars, he began to explain how light enters the eye. He asserted that the light ray is focused, but the actual explanation of how light projected to the back of the eye had to wait until 1604. His Treatise on Light explained the camera obscura, hundreds of years before the modern development of photography.[33]
The seven-volume Book of Optics (Kitab al-Manathir) influenced thinking[34] across disciplines from the theory of visual perception to the nature of perspective in medieval art, in both the East and the West, for more than 600 years. This included later European scholars and fellow polymaths, from Robert Grosseteste and Leonardo da Vinci to Johannes Kepler.
The translation of The Book of Optics had an impact on Europe. From it, later European scholars were able to build devices that replicated those Ibn al-Haytham had built and understand the way vision works.
کلاسیکل
Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics.[35]سانچو:Page needed
Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model, the laws governing the motion of planetary bodies (determined by Kepler between 1609 and 1619), Galileo's pioneering work on telescopes and observational astronomy in the 16th and 17th centuries, and Isaac Newton's discovery and unification of the laws of motion and universal gravitation (that would come to bear his name).[36] Newton also developed calculus,[lower-alpha 1] the mathematical study of continuous change, which provided new mathematical methods for solving physical problems.[37]
The discovery of laws in thermodynamics, chemistry, and electromagnetics resulted from research efforts during the Industrial Revolution as energy needs increased.[38] The laws comprising classical physics remain widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. Inaccuracies in classical mechanics for very small objects and very high velocities led to the development of modern physics in the 20th century.
جدید
Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted that the speed of light depends on the motion of the observer, which could not be resolved with the constant speed predicted by Maxwell's equations of electromagnetism. This discrepancy was corrected by Einstein's theory of special relativity, which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light.[39] Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators is possible only in discrete steps proportional to their frequency. This, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals, led to the theory of quantum mechanics improving on classical physics at very small scales.[40]
Quantum mechanics would come to be pioneered by Werner Heisenberg, Erwin Schrödinger and Paul Dirac.[40] From this early work, and work in related fields, the Standard Model of particle physics was derived.[41] Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012,[42] all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model, with theories such as supersymmetry, is an active area of research.[43] Areas of mathematics in general are important to this field, such as the study of probabilities and groups.
The Western Roman Empire fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the Byzantine Empire) resisted the attacks from invaders and continued to advance various fields of learning, including physics.[19]
In the sixth century, Isidore of Miletus created an important compilation of Archimedes' works that are copied in the Archimedes Palimpsest.
In sixth-century Europe John Philoponus, a Byzantine scholar, questioned Aristotle's teaching of physics and noted its flaws. He introduced the theory of impetus. Aristotle's physics was not scrutinized until Philoponus appeared; unlike Aristotle, who based his physics on verbal argument, Philoponus relied on observation. On Aristotle's physics Philoponus wrote:
But this is completely erroneous, and our view may be corroborated by actual observation more effectively than by any sort of verbal argument. For if you let fall from the same height two weights of which one is many times as heavy as the other, you will see that the ratio of the times required for the motion does not depend on the ratio of the weights, but that the difference in time is a very small one. And so, if the difference in the weights is not considerable, that is, of one is, let us say, double the other, there will be no difference, or else an imperceptible difference, in time, though the difference in weight is by no means negligible, with one body weighing twice as much as the other[44]
Philoponus' criticism of Aristotelian principles of physics served as an inspiration for Galileo Galilei ten centuries later,[45] during the Scientific Revolution. Galileo cited Philoponus substantially in his works when arguing that Aristotelian physics was flawed.[23][46] In the 1300s Jean Buridan, a teacher in the faculty of arts at the University of Paris, developed the concept of impetus. It was a step toward the modern ideas of inertia and momentum.[47]
Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method.
The most notable innovations under Islamic scholarship were in the field of optics and vision,[48] which came from the works of many scientists like Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi and Avicenna. The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision.[49] In his Treatise on Light as well as in his Kitāb al-Manāẓir, he presented a study of the phenomenon of the camera obscura (his thousand-year-old version of the pinhole camera) and delved further into the way the eye itself works. Using the knowledge of previous scholars, he began to explain how light enters the eye. He asserted that the light ray is focused, but the actual explanation of how light projected to the back of the eye had to wait until 1604. His Treatise on Light explained the camera obscura, hundreds of years before the modern development of photography.[50]
The seven-volume Book of Optics (Kitab al-Manathir) influenced thinking[51] across disciplines from the theory of visual perception to the nature of perspective in medieval art, in both the East and the West, for more than 600 years. This included later European scholars and fellow polymaths, from Robert Grosseteste and Leonardo da Vinci to Johannes Kepler.
The translation of The Book of Optics had an impact on Europe. From it, later European scholars were able to build devices that replicated those Ibn al-Haytham had built and understand the way vision works.
ڪلاسيڪل فزڪس
- اصل مضمون جي لاءِ ڏسو Classical physics
Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics.[35]سانچو:Page needed
Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model, the laws governing the motion of planetary bodies (determined by Kepler between 1609 and 1619), Galileo's pioneering work on telescopes and observational astronomy in the 16th and 17th centuries, and Isaac Newton's discovery and unification of the laws of motion and universal gravitation (that would come to bear his name).[52] Newton also developed calculus,[lower-alpha 2] the mathematical study of continuous change, which provided new mathematical methods for solving physical problems.[37]
The discovery of laws in thermodynamics, chemistry, and electromagnetics resulted from research efforts during the Industrial Revolution as energy needs increased.[38] The laws comprising classical physics remain widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. Inaccuracies in classical mechanics for very small objects and very high velocities led to the development of modern physics in the 20th century.
جديد طبیعیات
- اصل مضمون جي لاءِ ڏسو Modern physics
Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted that the speed of light depends on the motion of the observer, which could not be resolved with the constant speed predicted by Maxwell's equations of electromagnetism. This discrepancy was corrected by Einstein's theory of special relativity, which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light.[39] Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators is possible only in discrete steps proportional to their frequency. This, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals, led to the theory of quantum mechanics improving on classical physics at very small scales.[40]
Quantum mechanics would come to be pioneered by Werner Heisenberg, Erwin Schrödinger and Paul Dirac.[40] From this early work, and work in related fields, the Standard Model of particle physics was derived.[41] Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012,[42] all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model, with theories such as supersymmetry, is an active area of research.[53] Areas of mathematics in general are important to this field, such as the study of probabilities and groups.
فزڪس جو فلسفو
ڪيترن ئي طريقن سان، فزڪس قديم يوناني فلسفي مان نڪتل آهي. ٿيلس جي پهرين ڪوشش کان وٺي، ڊيموڪرائيٽس جي ڊيڊڪشن تائين، اهو معاملو هڪ غير متضاد حالت ۾ گهٽجڻ گهرجي، بطليموس جي فلڪيات جي هڪ ڪرسٽلائن جي فلڪيات تائين، ۽ ارسطو جو ڪتاب فزڪس (فزڪس تي هڪ ابتدائي ڪتاب، هڪ فلسفيانه نقطه نظر)، جنهن ۾ تجزیو ڪرڻ جي ڪوشش ڪئي وئي آهي ۽ ان جي وضاحت ڪرڻ جي ڪوشش ڪئي وئي آهي. مختلف يوناني فيلسوفن پنهنجي فطرت جي نظرين کي ترقي ڏني. فزڪس 18ھین صدي جي آخر تائين قدرتي فلسفي طور سڃاتو ويندو هو. 19ھین صدي عيسويء تائين، فزڪس کي فلسفي ۽ ٻين سائنسن کان الڳ هڪ نظم جي طور تي محسوس ڪيو ويو.
فزڪس، باقي سائنس وانگر، طبیعي دنيا جي علم کي اڳتي وڌائڻ لاء سائنس جي فلسفي ۽ ان جي "سائنسي طريقي" تي ڀاڙي ٿو. سائنسي طريقو هڪ ترجيحي استدلال سان گڏو گڏ پوسٽريري استدلال ۽ ڏنل نظريي جي صحيحيت کي ماپڻ لاءِ بيزين انفرنس جو استعمال ڪري ٿو. فزڪس جي ترقيءَ شروعاتي فلسفين جي ڪيترن ئي سوالن جا جواب ڏنا آهن ۽ نوان سوال اٿاريا آهن. فزڪس جي چوڌاري فلسفياتي مسئلن جو مطالعو، فزڪس جو فلسفو، مسئلن جهڙوڪ خلاء ۽ وقت جي فطرت، ۽ مابعدالطبيعي نقطه نظر جهڙوڪ تجربو، فطرت ۽ حقيقت پسندي شامل آهن. ڪيترن ئي طبیعیاتدانن پنهنجي ڪم جي فلسفياڻي اثرن بابت لکيو آهي، مثال طور، لاپلاس، جنهن ڪيزال ڊيٽرمنزم کي چيمپيئن ڪيو ۽ ارون شروڊنگر، جنهن ڪوانٽم ميڪانڪس تي لکيو. رياضياتي فزڪس دان راجر پينروز کي اسٽيفن هاڪنگ افلاطون پسند سڏيو آهي، هڪ نظريو پينروز پنهنجي ڪتاب ”The Road to Reality“ ۾ بحث ڪيو آهي. هاڪنگ پاڻ کي "بیباڪ گهٽتائي پسند" طور حوالو ڏنو ۽ پينروز جي خيالن سان معاملو ڪيو.
بنيادي نظريا
Physics deals with a wide variety of systems, although certain theories are used by all physicists. Each of these theories was experimentally tested numerous times and found to be an adequate approximation of nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at a speed much less than the speed of light. These theories continue to be areas of active research today. Chaos theory, an aspect of classical mechanics, was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Newton (1642–1727).
These central theories are important tools for research into more specialized topics, and any physicist, regardless of their specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.
Classical
- اصل مضمون جي لاءِ ڏسو Classical physics
Classical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics, optics, thermodynamics, and electromagnetism. Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies not subject to an acceleration), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter include such branches as hydrostatics, hydrodynamics and pneumatics. Acoustics is the study of how sound is produced, controlled, transmitted and received.[54] Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics, the physics of animal calls and hearing,[55] and electroacoustics, the manipulation of audible sound waves using electronics.[56]
Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light. Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field, and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.
Modern
- اصل مضمون جي لاءِ ڏسو Modern physics
Classical physics is generally concerned with matter and energy on the normal scale of observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on a very large or very small scale. For example, atomic and nuclear physics study matter on the smallest scale at which chemical elements can be identified. The physics of elementary particles is on an even smaller scale since it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in particle accelerators. On this scale, ordinary, commonsensical notions of space, time, matter, and energy are no longer valid.[57]
The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics. Classical mechanics approximates nature as continuous, while quantum theory is concerned with the discrete nature of many phenomena at the atomic and subatomic level and with the complementary aspects of particles and waves in the description of such phenomena. The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with motion in the absence of gravitational fields and the general theory of relativity with motion and its connection with gravitation. Both quantum theory and the theory of relativity find applications in many areas of modern physics.[58]
Fundamental concepts in modern physics
- Causality
- Covariance
- Action
- Physical field
- Symmetry
- Physical interaction
- Statistical ensemble
- Quantum
- Wave
- Particle
Difference
While physics itself aims to discover universal laws, its theories lie in explicit domains of applicability.
Loosely speaking, the laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match predictions provided by classical mechanics. Einstein contributed the framework of special relativity, which replaced notions of absolute time and space with spacetime and allowed an accurate description of systems whose components have speeds approaching the speed of light. Planck, Schrödinger, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales. Later, quantum field theory unified quantum mechanics and special relativity. General relativity allowed for a dynamical, curved spacetime, with which highly massive systems and the large-scale structure of the universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed.
فزڪس جو شاخون
فزڪس جو ڪجهہ اهم شاخون هيٺ ڏنل آهن.
- ميڪانيات
- برق سڪونيات
- برقناطيسيت
- ٿرموڊائنامڪس
- ڪوانٽم مڪينڪس
- سالڊ اسٽيٽ فزڪس
- نيوڪليائي فزڪس
- فلوئڊ مڪينڪس
- پلازما فزڪس
- آسٽرو فزڪس
- ائٽمي فزڪس
- پارٽيڪل فزڪس
ٻين شعبن سان تعلق
تحقيق
تعليم
ڪيريئر
پڻ ڏسو
خارجي لنڪس
حوالا
- ↑ Maxwell 1878, p. 9 "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events."
- ↑ Young & Freedman 2014, p. 1 "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of the human intellect in its quest to understand our world and ourselves."
- ↑ Young & Freedman 2014, p. 2 "Physics is an experimental science. Physicists observe the phenomena of nature and try to find patterns that relate these phenomena."
- ↑ Holzner 2006, p. 7 "Physics is the study of your world and the world and universe around you."
- ↑ Krupp 2003
- ↑ Young & Freedman 2014, p. 1 "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of the human intellect in its quest to understand our world and ourselves."
- ↑ Young & Freedman 2014, p. 1 "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of the human intellect in its quest to understand our world and ourselves."
- ↑ "physics". Online Etymology Dictionary. وقت 24 December 2016 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 2016-11-01. Unknown parameter
|url-status=
ignored (مدد) - ↑ "physic". Online Etymology Dictionary. وقت 24 December 2016 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 2016-11-01. Unknown parameter
|url-status=
ignored (مدد) - ↑ سانچو:LSJ, سانچو:LSJ, سانچو:LSJ
- ↑ Aaboe 1991
- ↑ Clagett 1995
- ↑ Thurston 1994
- ↑ Singer 2008, p. 35
- ↑ Lloyd 1970, pp. 108–109
- ↑ "Daily 40 no. 2 – Aristotle and the Four Simple Bodies and Elements" (PDF). Cal State LA. وقت 6 January 2023 تي اصل (PDF) کان آرڪائيو ٿيل. حاصل ڪيل 27 September 2023.
- ↑ tbcaldwe. "Natural Philosophy: Aristotle | Physics 139". حاصل ڪيل 17 December 2022.
- ↑ 18.0 18.1 "Aristotle". galileoandeinstein.phys.virginia.edu. حاصل ڪيل 17 December 2022.
- ↑ 19.0 19.1 Lindberg 1992363.
- ↑ 20.0 20.1 Smith 2001, Book I [6.85], [6.86], p. 379; Book II, [3.80], p. 453.
- ↑ "John Philoponus, Commentary on Aristotle's Physics". وقت 11 January 2016 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 15 April 2018. Unknown parameter
|url-status=
ignored (مدد) - ↑ Galileo (1638). Two New Sciences. "in order to better understand just how conclusive Aristotle's demonstration is, we may, in my opinion, deny both of his assumptions. And as to the first, I greatly doubt that Aristotle ever tested by experiment whether it be true that two stones, one weighing ten times as much as the other, if allowed to fall, at the same instant, from a height of, say, 100 cubits, would so differ in speed that when the heavier had reached the ground, the other would not have fallen more than 10 cubits.
Simp. – His language would seem to indicate that he had tried the experiment, because he says: We see the heavier; now the word see shows that he had made the experiment.
Sagr. – But I, Simplicio, who have made the test can assure[107] you that a cannon ball weighing one or two hundred pounds, or even more, will not reach the ground by as much as a span ahead of a musket ball weighing only half a pound, provided both are dropped from a height of 200 cubits." - ↑ 23.0 23.1 Lindberg 1992162.
- ↑ "John Philoponus". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018. https://plato.stanford.edu/entries/philoponus/. Retrieved 11 April 2018.
- ↑ "John Buridan". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018. https://plato.stanford.edu/entries/buridan/. Retrieved 11 April 2018.
- ↑ "Daily 40 no. 2 – Aristotle and the Four Simple Bodies and Elements" (PDF). Cal State LA. وقت 6 January 2023 تي اصل (PDF) کان آرڪائيو ٿيل. حاصل ڪيل 2023-09-27.
- ↑ tbcaldwe. "Natural Philosophy: Aristotle | Physics 139". حاصل ڪيل 2022-12-17.
- ↑ "Aristotle – Physics and metaphysics". Encyclopedia Britannica. حاصل ڪيل 2022-12-17.
- ↑ "Aristotle". galileoandeinstein.phys.virginia.edu. حاصل ڪيل 2022-12-17.
- ↑ "Aristotle". galileoandeinstein.phys.virginia.edu. حاصل ڪيل 2022-12-17.
- ↑ Dallal, Ahmad (2010). Islam, Science, and the Challenge of History. New Haven: Yale University Press. p. 38. "Within two centuries, the field of optics was radically transformed"
- ↑ Tbakhi, Abdelghani; Amr, Samir S. (2007). "Ibn Al-Haytham: Father of Modern Optics". Annals of Saudi Medicine 27 (6): 464–467. doi: . ISSN 0256-4947. PMID 18059131. PMC 6074172. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074172/.
- ↑ Howard & Rogers 1995, pp. 6–7
- ↑ Al-Khalili, Jim (February 2015). "In retrospect: Book of Optics" (en ۾). Nature 518 (7538): 164–165. doi: . ISSN 1476-4687. Bibcode: 2015Natur.518..164A. https://www.nature.com/articles/518164a.
- ↑ 35.0 35.1 Ben-Chaim 2004
- ↑ Guicciardini 1999
- ↑ 37.0 37.1 Allen 1997
- ↑ 38.0 38.1 "The Industrial Revolution". Schoolscience.org, Institute of Physics. وقت 7 April 2014 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 1 April 2014. Unknown parameter
|url-status=
ignored (مدد) حوالي جي چڪ: Invalid<ref>
tag; name "schoolscience-industrialrevolution" defined multiple times with different content - ↑ 39.0 39.1 O'Connor & Robertson 1996a
- ↑ 40.0 40.1 40.2 40.3 O'Connor & Robertson 1996b
- ↑ 41.0 41.1 "The Standard Model". DONUT. Fermilab. وقت 31 May 2014 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 1 April 2014. Unknown parameter
|url-status=
ignored (مدد) - ↑ 42.0 42.1 Cho 2012
- ↑ Womersley, J. "Beyond the Standard Model" (PDF). Symmetry. شمارو. 1. صفحا. 22–25. وقت 24 September 2015 تي اصل (PDF) کان آرڪائيو ٿيل. Unknown parameter
|url-status=
ignored (مدد) - ↑ "John Philoponus, Commentary on Aristotle's Physics". وقت 11 January 2016 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 15 April 2018. Unknown parameter
|url-status=
ignored (مدد) - ↑ Galileo (1638). Two New Sciences. "in order to better understand just how conclusive Aristotle's demonstration is, we may, in my opinion, deny both of his assumptions. And as to the first, I greatly doubt that Aristotle ever tested by experiment whether it be true that two stones, one weighing ten times as much as the other, if allowed to fall, at the same instant, from a height of, say, 100 cubits, would so differ in speed that when the heavier had reached the ground, the other would not have fallen more than 10 cubits.
Simp. – His language would seem to indicate that he had tried the experiment, because he says: We see the heavier; now the word see shows that he had made the experiment.
Sagr. – But I, Simplicio, who have made the test can assure[107] you that a cannon ball weighing one or two hundred pounds, or even more, will not reach the ground by as much as a span ahead of a musket ball weighing only half a pound, provided both are dropped from a height of 200 cubits." - ↑ "John Philoponus". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018. https://plato.stanford.edu/entries/philoponus/. Retrieved 11 April 2018.
- ↑ "John Buridan". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018. https://plato.stanford.edu/entries/buridan/. Retrieved 11 April 2018.
- ↑ Dallal, Ahmad (2010). Islam, Science, and the Challenge of History. New Haven: Yale University Press. p. 38. "Within two centuries, the field of optics was radically transformed"
- ↑ Tbakhi, Abdelghani; Amr, Samir S. (2007). "Ibn Al-Haytham: Father of Modern Optics". Annals of Saudi Medicine 27 (6): 464–467. doi: . ISSN 0256-4947. PMID 18059131.
- ↑ Howard & Rogers 1995, pp. 6–7
- ↑ Al-Khalili, Jim (February 2015). "In retrospect: Book of Optics" (en ۾). Nature 518 (7538): 164–165. doi: . ISSN 1476-4687. Bibcode: 2015Natur.518..164A. https://www.nature.com/articles/518164a.
- ↑ Guicciardini 1999
- ↑ Womersley, J. "Beyond the Standard Model" (PDF). Symmetry. شمارو. 1. صفحا. 22–25. وقت 24 September 2015 تي اصل (PDF) کان آرڪائيو ٿيل. Unknown parameter
|url-status=
ignored (مدد) - ↑ "acoustics". Encyclopædia Britannica. وقت 18 June 2013 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 14 June 2013. Unknown parameter
|url-status=
ignored (مدد) - ↑ "Bioacoustics – the International Journal of Animal Sound and its Recording". Taylor & Francis. وقت 5 September 2012 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 31 July 2012. Unknown parameter
|url-status=
ignored (مدد) - ↑ "Acoustics and You (A Career in Acoustics?)". Acoustical Society of America. وقت 4 September 2015 تي اصل کان آرڪائيو ٿيل. حاصل ڪيل 21 May 2013. Unknown parameter
|url-status=
ignored (مدد) - ↑ Tipler & Llewellyn 2003, pp. 269, 477, 561
- ↑ Tipler & Llewellyn 2003, pp. 1–4, 115, 185–187
حوالي جي چڪ: "lower-alpha" نالي جي حوالن جي لاءِ ٽيگ <ref>
آهن، پر لاڳاپيل ٽيگ <references group="lower-alpha"/>
نہ مليو