Кинетическая энергия
Виды энергии: | ||
---|---|---|
Механическая | Потенциальная Кинетическая | |
‹♦› | Внутренняя | |
Электромагнитная | Электрическая Магнитная | |
Химическая | ||
Ядерная | ||
Гравитационная | ||
Вакуума | ||
Гипотетические: | ||
Тёмная | ||
См. также: Закон сохранения энергии |
Кинети́ческая эне́ргия — скалярная физическая величина, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[2]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как
где индекс нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[3]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[4]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: , , и другие. В системе СИ она измеряется в джоулях (Дж), в СГС — в эргах.
Упрощённо, кинетическая энергия — это работа, которую необходимо совершить, чтобы тело массой разогнать из состояния покоя до скорости . Либо, наоборот, это работа, которую может совершить, останавливаясь, тело массой , обладающее начальной скоростью .
История и этимология понятия
[править | править код]Прилагательное «кинетический» происходит от греческого слова κίνησις (kinesis, «движение»). Дихотомия между кинетической энергией и потенциальной энергией восходит к аристотелевским концепциям потенциальности и актуальности[англ.][5] .
Лейбниц в своих трактатах 1686 и 1695 годов ввёл понятие «живой силы» (лат. vis viva), которую он определил как произведение массы объекта и квадрата его скорости (в современной терминологии — кинетическая энергия, только удвоенная)[6].
Вильгельм Гравезанд из Нидерландов предоставил экспериментальные доказательства важности величины mv2. Cбрасывая грузы с разной высоты на глиняный блок, он определил, что глубина их проникновения пропорциональна квадрату скорости удара. Эмили дю Шатле осознала значение данного эксперимента и опубликовала объяснение в книге «Учебник физики» (фр. Institutions de Physique, 1740)[7].
Иоганн Бернулли использовал понятие "живой силы" для расчётов (в частности, движения идеальной жидкости). В 1741 году у него впервые появилось выражение mv2/2[8].
Томас Юнг в лекциях, опубликованных в 1807 году[9], предложил вместо термина «живая сила» использовать слово «энергия», хотя первое время после Юнга многие учёные продолжали пользоваться термином "живая сила".
В 1829 году Гаспар-Гюстав Кориолис опубликовал статью Du Calcul de l’Effet des Machines, в которой излагалась математика того, что по сути является связью между работой и кинетической энергией. Исходя из той связи, что существует между механической работой и величиной , Кориолис предложил называть живой силой именно эту величину[10]. Комментируя такой подход, Кориолис писал[11]: «Если ранее наименование живая сила давалось произведению массы на квадрат скорости, то это было потому, что не уделялось внимания работе»[12].
Создание и введение в оборот самого термина «кинетическая энергия» приписывают Уильяму Томсону (лорду Кельвину) c 1849—1851 гг.[13][14]. Ренкин, который ввёл термин «потенциальная энергия» в 1853 году[15], позже цитировал У. Томсона и П. Тэйта с заменой слова «кинетическая» на «фактическая»[16].
Кинетическая энергия в классической механике
[править | править код]Случай одной материальной точки
[править | править код]По определению, кинетической энергией материальной точки массой называется величина
- ,
при этом предполагается, что скорость точки всегда значительно меньше скорости света. С использованием понятия импульса () данное выражение примет вид .
Если — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как . Скалярно умножив его на перемещение материальной точки и учитывая, что , причём , получим .
Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина остаётся постоянной, то есть кинетическая энергия является интегралом движения.
Случай абсолютно твёрдого тела
[править | править код]При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:
Здесь — масса тела, — скорость центра масс, и — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[17].
Кинетическая энергия в гидродинамике
[править | править код]В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа . Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью , то есть плотность кинетической энергии (Дж/м3), запишется:
где по повторяющемуся индексу , означающему соответствующую проекцию скорости, предполагается суммирование.
Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[18]. Если, в согласии с методом Рейнольдса, представить , , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:
где — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[18], часто называемой просто «энергией турбулентности»), а — плотность кинетической энергии, связанная с турбулентным потоком вещества ( — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения зависит от выбора системы координат, в то время как кинетическая энергия турбулентности от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.
Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.
Кинетическая энергия в квантовой механике
[править | править код]В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (, — мнимая единица):
где — редуцированная постоянная Планка, — оператор набла, — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[19].
Кинетическая энергия в релятивистской механике
[править | править код]Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как:
- где — масса материальной точки,
- — скорость движения в выбранной инерциальной системе отсчёта,
- — скорость света в вакууме ( — энергия покоя).
Кинетическая энергия в этой формуле может быть разложена в ряд Маклорена по степеням :
При скоростях много меньших скорости света () пренебрегаем членами разложения с высшими степенями и выражение для переходит в классическую формулу .
Как и в классическом случае, имеет место соотношение , получаемое посредством умножения на выражения второго закона Ньютона (в виде ).
Релятивистское соотношение между кинетической энергией и импульсом p записывается в виде
Разложив это выражение по степеням получаем
первый член которого равен нерелятивистскому выражению кинетической энергии через импульс, а последующие члены — релятивистские поправки к этому выражению, которые малы при
Свойства кинетической энергии
[править | править код]- Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
- Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки и направления её скорости, а зависит лишь от модуля скорости или от квадрата её скорости[1].
- Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
- Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[20][21].
Физический смысл кинетической энергии
[править | править код]Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[2]:
Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения между состояниями 1 и 2).
Соотношение кинетической и внутренней энергии
[править | править код]Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.
То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.
См. также
[править | править код]- Теорема о кинетической энергии системы
- Потенциальная энергия
- Закон сохранения энергии
- Хаос
- Энтальпия
- Негэнтропия
- Термодинамика
- Парадокс кинетической энергии
Примечания
[править | править код]- ↑ 1 2 3 4 Айзерман, 1980, с. 49.
- ↑ 1 2 Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
- ↑ Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва, Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
- ↑ Brenner, Joseph. Logic in Reality. — illustrated. — Springer Science & Business Media, 2008. — P. 93. — ISBN 978-1-4020-8375-4. Архивная копия от 25 января 2020 на Wayback Machine Extract of page 93 Архивировано 4 августа 2020 года.
- ↑ Мах Э. Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 253. — 456 с. — ISBN 5-89806-023-5.
- ↑ Judith P. Zinsser. Emilie Du Châtelet : daring genius of the Enlightenment. — New York: Penguin Books, 2007. — viii, 376 pages, 16 unnumbered pages of plates с. — ISBN 0-14-311268-6, 978-0-14-311268-6.
- ↑ Bernoulli D. De legibus quibusdam mechanicis… // Commentarii Academiae scientiarum imperialis Petropolitanae. — 1741 (1736). — Т. 8. — С. 99—127. Архивировано 2 января 2014 года.
- ↑ Thomas Young (1807). A Course of Lectures on Natural Philosophy and the Mechanical Arts, p. 52.
- ↑ Coriolis. Du calcul de l'effet des machines. — Paris, 1829. — P. 17. Архивировано 7 августа 2019 года.
- ↑ Цит. по: Roche J. J. The Mathematics of Measurement: A Critical History. — Springer, 1998. — P. 159. — 330 p. — ISBN 978-0-387-91581-4.
- ↑ Подчёркнуто Кориолисом.
- ↑ Crosbie Smith. Energy and empire : a biographical study of Lord Kelvin. — Cambridge [Cambridgeshire]: Cambridge University Press, 1989. — xxvi, 866 pages с. — ISBN 0-521-26173-2, 978-0-521-26173-9. Архивировано 25 января 2022 года.
- ↑ John Theodore Merz. A history of European thought in the nineteenth century. — Gloucester, Mass.: Peter Smith, 1976. — 4 volumes с. — ISBN 0-8446-2579-5, 978-0-8446-2579-9.
- ↑ William John Macquorn Rankine. XVIII. On the general law of the transformation of energy // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. — 1853-02. — Т. 5, вып. 30. — С. 106–117. — ISSN 1941-5990 1941-5982, 1941-5990. — doi:10.1080/14786445308647205.
- ↑ W.J. Macquorn Rankine. XIII. On the phrase “Potential energy,” and on the definitions of physical quantities // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. — 1867-02. — Т. 33, вып. 221. — С. 88–92. — ISSN 1941-5990 1941-5982, 1941-5990. — doi:10.1080/14786446708639753.
- ↑ Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245. Архивировано 23 августа 2017 года.
- ↑ 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
- ↑ Блохинцев Д. И. Основы квантовой механики Архивная копия от 15 февраля 2022 на Wayback Machine, 5-е изд. Наука, 1976. — 664 с., см. § 26.
- ↑ Айзерман, 1980, с. 54.
- ↑ Сорокин В. С. «Закон сохранения движения и мера движения в физике» Архивная копия от 1 января 2015 на Wayback Machine // УФН, 59, с. 325—362, (1956)
Литература
[править | править код]- Айзерман М. А. Классическая механика. — М.: Наука, 1980. — 368 с.
- Фриш С. Э. Курс общей физики. В 3-х тт. Т.1. Физические основы механики. Молекулярная физика. Колебания и волны. 13-е изд. — СПб.: Лань, 2010. — 480 с. — ISBN 978-5-8114-0663-0.
- Сивухин Д. В. Общий курс физики. Т. 1. Механика. 5-е изд. — М.: Физматлит, 2006. — 560 с. — ISBN 5-9221-0715-1.
Для улучшения этой статьи по физике желательно:
|