Filtros : "Joshi, Nirav Kumar Jitendrabhai" Limpar

Filtros



Refine with date range


  • Source: Processes. Unidade: IFSC

    Subjects: NANOCIÊNCIA, MATERIAIS NANOESTRUTURADOS, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINTO, Odeilson Morais et al. Advances and challenges in WO3 nanostructures’ synthesis. Processes, v. No 2024, n. 11, p. 2605-1-2605-46, 2024Tradução . . Disponível em: https://doi.org/10.3390/pr12112605. Acesso em: 10 jan. 2025.
    • APA

      Pinto, O. M., Toledo, R. P., Barros, H. E. da S., Gonçalves, R. A., Nunes, R. S., Joshi, N. K. J., & Berengue, O. M. (2024). Advances and challenges in WO3 nanostructures’ synthesis. Processes, No 2024( 11), 2605-1-2605-46. doi:10.3390/pr12112605
    • NLM

      Pinto OM, Toledo RP, Barros HE da S, Gonçalves RA, Nunes RS, Joshi NKJ, Berengue OM. Advances and challenges in WO3 nanostructures’ synthesis [Internet]. Processes. 2024 ; No 2024( 11): 2605-1-2605-46.[citado 2025 jan. 10 ] Available from: https://doi.org/10.3390/pr12112605
    • Vancouver

      Pinto OM, Toledo RP, Barros HE da S, Gonçalves RA, Nunes RS, Joshi NKJ, Berengue OM. Advances and challenges in WO3 nanostructures’ synthesis [Internet]. Processes. 2024 ; No 2024( 11): 2605-1-2605-46.[citado 2025 jan. 10 ] Available from: https://doi.org/10.3390/pr12112605
  • Source: Machine learning for advanced functional materials. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e KUSHVAHA, Vinod e MADHUSHRI, Priyanka. Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 10 jan. 2025. , 2023
    • APA

      Joshi, N. K. J., Kushvaha, V., & Madhushri, P. (2023). Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Unidade: IFSC

    Subjects: SEMICONDUTORES, NANOPARTÍCULAS, ÓPTICA ELETRÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics. . Weinheim: Wiley-VCH. Disponível em: https://doi.org/10.1002/9783527837649. Acesso em: 10 jan. 2025. , 2023
    • APA

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics. (2023). 1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics. Weinheim: Wiley-VCH. doi:10.1002/9783527837649
    • NLM

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics [Internet]. 2023 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1002/9783527837649
    • Vancouver

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics [Internet]. 2023 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1002/9783527837649
  • Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Machine learning for advanced functional materials. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 10 jan. 2025. , 2023
    • APA

      Machine learning for advanced functional materials. (2023). Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC

    Subjects: ELETROQUÍMICA, SENSORES QUÍMICOS, SENSORES ÓPTICOS, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATERON, Elsa Maria et al. Recent advances in machine learning for electrochemical, optical, and gas sensors. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_6. Acesso em: 10 jan. 2025.
    • APA

      Materon, E. M., Silva, F. S. R. da, Ribas, L. C., Joshi, N. K. J., Bruno, O. M., Carrilho, E., & Oliveira Junior, O. N. de. (2023). Recent advances in machine learning for electrochemical, optical, and gas sensors. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_6
    • NLM

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
    • Vancouver

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
  • Source: Coordination Chemistry Reviews. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu e JOSHI, Nirav Kumar Jitendrabhai e TOMER, Vijay kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, v. 466, n. 13, p. 214611-1-214611-43, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ccr.2022.214611. Acesso em: 10 jan. 2025.
    • APA

      Malik, R., Joshi, N. K. J., & Tomer, V. kumar. (2022). Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, 466( 13), 214611-1-214611-43. doi:10.1016/j.ccr.2022.214611
    • NLM

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
    • Vancouver

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
  • Unidade: IFSC

    Subjects: NANOPARTÍCULAS, POLÍMEROS (MATERIAIS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      THOMAS, Sabu et al. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications. . Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/C2020-0-00520-7. Acesso em: 10 jan. 2025. , 2022
    • APA

      Thomas, S., Nguyen, T. A., Ahmadi, M., Yasin, G., & Joshi, N. K. J. (2022). Silicon-based hybrid nanoparticles: fundamentals, properties, and applications. Amsterdam: Elsevier. doi:10.1016/C2020-0-00520-7
    • NLM

      Thomas S, Nguyen TA, Ahmadi M, Yasin G, Joshi NKJ. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications [Internet]. 2022 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/C2020-0-00520-7
    • Vancouver

      Thomas S, Nguyen TA, Ahmadi M, Yasin G, Joshi NKJ. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications [Internet]. 2022 ;[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/C2020-0-00520-7
  • Source: New Journal of Chemistry. Unidade: IFSC

    Subjects: ZINCO, BAIXA TEMPERATURA, SENSOR, FILMES FINOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai et al. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, v. 46, n. 37, p. 17967-17976 + supplementary information, 2022Tradução . . Disponível em: https://doi.org/10.1039/D2NJ02709G. Acesso em: 10 jan. 2025.
    • APA

      Joshi, N. K. J., Long, H., Naik, P., Kumar, A., Mastelaro, V. R., Oliveira Junior, O. N. de, et al. (2022). Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, 46( 37), 17967-17976 + supplementary information. doi:10.1039/D2NJ02709G
    • NLM

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1039/D2NJ02709G
    • Vancouver

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1039/D2NJ02709G
  • Source: Molecules. Unidade: IFSC

    Subjects: PROPRIEDADES DOS MATERIAIS, NANOTECNOLOGIA, POLÍMEROS (MATERIAIS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Rosana A. et al. Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules, v. 26, n. 8, p. 2236-1-2236-39, 2021Tradução . . Disponível em: https://doi.org/10.3390/molecules26082236. Acesso em: 10 jan. 2025.
    • APA

      Gonçalves, R. A., Toledo, R. P., Joshi, N. K. J., & Berengue, O. M. (2021). Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules, 26( 8), 2236-1-2236-39. doi:10.3390/molecules26082236
    • NLM

      Gonçalves RA, Toledo RP, Joshi NKJ, Berengue OM. Green synthesis and applications of ZnO and TiO2 nanostructures [Internet]. Molecules. 2021 ; 26( 8): 2236-1-2236-39.[citado 2025 jan. 10 ] Available from: https://doi.org/10.3390/molecules26082236
    • Vancouver

      Gonçalves RA, Toledo RP, Joshi NKJ, Berengue OM. Green synthesis and applications of ZnO and TiO2 nanostructures [Internet]. Molecules. 2021 ; 26( 8): 2236-1-2236-39.[citado 2025 jan. 10 ] Available from: https://doi.org/10.3390/molecules26082236
  • Source: Metal oxide nanocomposites: synthesis and applications. Unidade: IFSC

    Subjects: NANOCOMPOSITOS, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu et al. Introduction to nanocomposites. Metal oxide nanocomposites: synthesis and applications. Tradução . Hoboken: Wiley, 2021. p. 402 . Disponível em: https://doi.org/10.1002/9781119364726.ch2. Acesso em: 10 jan. 2025.
    • APA

      Malik, R., Tomer, V. K., Chaudhary, V., Joshi, N. K. J., & Duhan, S. (2021). Introduction to nanocomposites. In Metal oxide nanocomposites: synthesis and applications (p. 402 ). Hoboken: Wiley. doi:10.1002/9781119364726.ch2
    • NLM

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Introduction to nanocomposites [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1002/9781119364726.ch2
    • Vancouver

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Introduction to nanocomposites [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1002/9781119364726.ch2
  • Source: Nanosensors for smart manufacturing. Unidades: IQSC, IFSC

    Subjects: SENSORES BIOMÉDICOS, ELETROQUÍMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATERON, Elsa Maria et al. Smart materials for electrochemical flexible nanosensors: advances and applications. Nanosensors for smart manufacturing. Tradução . Amsterdam: Elsevier, 2021. p. 632 . Disponível em: https://doi.org/10.1016/B978-0-12-823358-0.00018-6. Acesso em: 10 jan. 2025.
    • APA

      Materon, E. M., Gómez, F. R., Joshi, N. K. J., Dalmaschio, C. J., Carrilho, E., & Oliveira Junior, O. N. de. (2021). Smart materials for electrochemical flexible nanosensors: advances and applications. In Nanosensors for smart manufacturing (p. 632 ). Amsterdam: Elsevier. doi:10.1016/B978-0-12-823358-0.00018-6
    • NLM

      Materon EM, Gómez FR, Joshi NKJ, Dalmaschio CJ, Carrilho E, Oliveira Junior ON de. Smart materials for electrochemical flexible nanosensors: advances and applications [Internet]. In: Nanosensors for smart manufacturing. Amsterdam: Elsevier; 2021. p. 632 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/B978-0-12-823358-0.00018-6
    • Vancouver

      Materon EM, Gómez FR, Joshi NKJ, Dalmaschio CJ, Carrilho E, Oliveira Junior ON de. Smart materials for electrochemical flexible nanosensors: advances and applications [Internet]. In: Nanosensors for smart manufacturing. Amsterdam: Elsevier; 2021. p. 632 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/B978-0-12-823358-0.00018-6
  • Source: Applied Surface Science Advances. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, MEDICINA (APLICAÇÕES), BIOMEDICINA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VÁSQUES, Elsa María Materón et al. Magnetic nanoparticles in biomedical applications: a review. Applied Surface Science Advances, v. 6, p. 100163-1-100163-17, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.apsadv.2021.100163. Acesso em: 10 jan. 2025.
    • APA

      Vásques, E. M. M., Miyazaki, C. M., Carr, O., Joshi, N. K. J., Picciani, P. H. S., Dalmaschio, C. J., et al. (2021). Magnetic nanoparticles in biomedical applications: a review. Applied Surface Science Advances, 6, 100163-1-100163-17. doi:10.1016/j.apsadv.2021.100163
    • NLM

      Vásques EMM, Miyazaki CM, Carr O, Joshi NKJ, Picciani PHS, Dalmaschio CJ, Davis F, Shimizu FM. Magnetic nanoparticles in biomedical applications: a review [Internet]. Applied Surface Science Advances. 2021 ; 6 100163-1-100163-17.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/j.apsadv.2021.100163
    • Vancouver

      Vásques EMM, Miyazaki CM, Carr O, Joshi NKJ, Picciani PHS, Dalmaschio CJ, Davis F, Shimizu FM. Magnetic nanoparticles in biomedical applications: a review [Internet]. Applied Surface Science Advances. 2021 ; 6 100163-1-100163-17.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/j.apsadv.2021.100163
  • Source: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, MONITORIZAÇÃO FISIOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIYAKAZI, Celina M. et al. Metal oxides and sulfide-based biosensor for monitoring and health control. Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Tradução . Cham: Springer, 2021. p. 340 . Disponível em: https://doi.org/10.1007/978-3-030-63791-0_6. Acesso em: 10 jan. 2025.
    • APA

      Miyakazi, C. M., Joshi, N. K. J., Shimizu, F. M., & Oliveira Junior, O. N. de. (2021). Metal oxides and sulfide-based biosensor for monitoring and health control. In Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors (p. 340 ). Cham: Springer. doi:10.1007/978-3-030-63791-0_6
    • NLM

      Miyakazi CM, Joshi NKJ, Shimizu FM, Oliveira Junior ON de. Metal oxides and sulfide-based biosensor for monitoring and health control [Internet]. In: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Cham: Springer; 2021. p. 340 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-3-030-63791-0_6
    • Vancouver

      Miyakazi CM, Joshi NKJ, Shimizu FM, Oliveira Junior ON de. Metal oxides and sulfide-based biosensor for monitoring and health control [Internet]. In: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Cham: Springer; 2021. p. 340 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1007/978-3-030-63791-0_6
  • Source: ECS Meeting Abstracts. Conference titles: ECS Meeting. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e OLIVEIRA JUNIOR, Osvaldo Novais de. Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance. ECS Meeting Abstracts. Pennington: Electrochemical Society - ECS. Disponível em: https://doi.org/10.1149/MA2021-01561456mtgabs. Acesso em: 10 jan. 2025. , 2021
    • APA

      Joshi, N. K. J., & Oliveira Junior, O. N. de. (2021). Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance. ECS Meeting Abstracts. Pennington: Electrochemical Society - ECS. doi:10.1149/MA2021-01561456mtgabs
    • NLM

      Joshi NKJ, Oliveira Junior ON de. Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance [Internet]. ECS Meeting Abstracts. 2021 ; MA2021-01( 56):[citado 2025 jan. 10 ] Available from: https://doi.org/10.1149/MA2021-01561456mtgabs
    • Vancouver

      Joshi NKJ, Oliveira Junior ON de. Hierarchical Co2SnO4 microspheres for enhanced NO2 gas sensing performance [Internet]. ECS Meeting Abstracts. 2021 ; MA2021-01( 56):[citado 2025 jan. 10 ] Available from: https://doi.org/10.1149/MA2021-01561456mtgabs
  • Source: Materials Advances. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu e JOSHI, Nirav Kumar Jitendrabhai e TOMER, Vijay kumar. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review. Materials Advances, v. 2, n. 13, p. 4190-4227, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1ma00374g. Acesso em: 10 jan. 2025.
    • APA

      Malik, R., Joshi, N. K. J., & Tomer, V. kumar. (2021). Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review. Materials Advances, 2( 13), 4190-4227. doi:10.1039/d1ma00374g
    • NLM

      Malik R, Joshi NKJ, Tomer V kumar. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review [Internet]. Materials Advances. 2021 ; 2( 13): 4190-4227.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1039/d1ma00374g
    • Vancouver

      Malik R, Joshi NKJ, Tomer V kumar. Advances in the designs and mechanisms of MoO3 nanostructures for gas sensors: a holistic review [Internet]. Materials Advances. 2021 ; 2( 13): 4190-4227.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1039/d1ma00374g
  • Source: Metal oxide nanocomposites: synthesis and applications. Unidade: IFSC

    Subjects: SENSOR, FOTOCATÁLISE, SEMICONDUTIVIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu et al. Semiconducting metal oxides for photocatalytic and gas sensing applications. Metal oxide nanocomposites: synthesis and applications. Tradução . Hoboken: Wiley, 2021. p. 402 . Disponível em: https://doi.org/10.1002/9781119364726.ch8. Acesso em: 10 jan. 2025.
    • APA

      Malik, R., Tomer, V. K., Chaudhary, V., Joshi, N. K. J., & Duhan, S. (2021). Semiconducting metal oxides for photocatalytic and gas sensing applications. In Metal oxide nanocomposites: synthesis and applications (p. 402 ). Hoboken: Wiley. doi:10.1002/9781119364726.ch8
    • NLM

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Semiconducting metal oxides for photocatalytic and gas sensing applications [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1002/9781119364726.ch8
    • Vancouver

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Semiconducting metal oxides for photocatalytic and gas sensing applications [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1002/9781119364726.ch8
  • Source: Multifunctional Materials. Unidade: IFSC

    Subjects: SENSOR, ELETRODO, BIOMARCADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai et al. Insights into nano-heterostructured materials for gas sensing: a review. Multifunctional Materials, v. 4, n. 3, p. 032002-032002-39, 2021Tradução . . Disponível em: https://doi.org/10.1088/2399-7532/ac1732. Acesso em: 10 jan. 2025.
    • APA

      Joshi, N. K. J., Braunger, M. L., Shimizu, F. M., Riul Junior, A., & Oliveira Junior, O. N. de. (2021). Insights into nano-heterostructured materials for gas sensing: a review. Multifunctional Materials, 4( 3), 032002-032002-39. doi:10.1088/2399-7532/ac1732
    • NLM

      Joshi NKJ, Braunger ML, Shimizu FM, Riul Junior A, Oliveira Junior ON de. Insights into nano-heterostructured materials for gas sensing: a review [Internet]. Multifunctional Materials. 2021 ; 4( 3): 032002-032002-39.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1088/2399-7532/ac1732
    • Vancouver

      Joshi NKJ, Braunger ML, Shimizu FM, Riul Junior A, Oliveira Junior ON de. Insights into nano-heterostructured materials for gas sensing: a review [Internet]. Multifunctional Materials. 2021 ; 4( 3): 032002-032002-39.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1088/2399-7532/ac1732
  • Source: Nanobatteries and nanogenerators: materials, technologies and applications. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, FILMES FINOS, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KUMAR, Arvind e JOSHI, Nirav Kumar Jitendrabhai. Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches. Nanobatteries and nanogenerators: materials, technologies and applications. Tradução . Amsterdam: Elsevier, 2021. p. 666 . Disponível em: https://doi.org/10.1016/B978-0-12-821548-7.00018-X. Acesso em: 10 jan. 2025.
    • APA

      Kumar, A., & Joshi, N. K. J. (2021). Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches. In Nanobatteries and nanogenerators: materials, technologies and applications (p. 666 ). Amsterdam: Elsevier. doi:10.1016/B978-0-12-821548-7.00018-X
    • NLM

      Kumar A, Joshi NKJ. Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches [Internet]. In: Nanobatteries and nanogenerators: materials, technologies and applications. Amsterdam: Elsevier; 2021. p. 666 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/B978-0-12-821548-7.00018-X
    • Vancouver

      Kumar A, Joshi NKJ. Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches [Internet]. In: Nanobatteries and nanogenerators: materials, technologies and applications. Amsterdam: Elsevier; 2021. p. 666 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/B978-0-12-821548-7.00018-X
  • Source: Metal oxides in nanocomposite-based electrochemical sensors for toxic chemicals. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, ELETROQUÍMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATERON, Elsa Maria et al. Electrochemical sensors based on metal oxide-boron nitride nanocomposites in the detection of biomolecules and toxic chemicals. Metal oxides in nanocomposite-based electrochemical sensors for toxic chemicals. Tradução . Amsterdam: Elsevier, 2021. p. 372 . Disponível em: https://doi.org/10.1016/B978-0-12-820727-7.00004-5. Acesso em: 10 jan. 2025.
    • APA

      Materon, E. M., Joshi, N. K. J., Shimizu, F. M., Faria, R. C., & Oliveira Junior, O. N. de. (2021). Electrochemical sensors based on metal oxide-boron nitride nanocomposites in the detection of biomolecules and toxic chemicals. In Metal oxides in nanocomposite-based electrochemical sensors for toxic chemicals (p. 372 ). Amsterdam: Elsevier. doi:10.1016/B978-0-12-820727-7.00004-5
    • NLM

      Materon EM, Joshi NKJ, Shimizu FM, Faria RC, Oliveira Junior ON de. Electrochemical sensors based on metal oxide-boron nitride nanocomposites in the detection of biomolecules and toxic chemicals [Internet]. In: Metal oxides in nanocomposite-based electrochemical sensors for toxic chemicals. Amsterdam: Elsevier; 2021. p. 372 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/B978-0-12-820727-7.00004-5
    • Vancouver

      Materon EM, Joshi NKJ, Shimizu FM, Faria RC, Oliveira Junior ON de. Electrochemical sensors based on metal oxide-boron nitride nanocomposites in the detection of biomolecules and toxic chemicals [Internet]. In: Metal oxides in nanocomposite-based electrochemical sensors for toxic chemicals. Amsterdam: Elsevier; 2021. p. 372 .[citado 2025 jan. 10 ] Available from: https://doi.org/10.1016/B978-0-12-820727-7.00004-5
  • Source: Journal of Materials Chemistry C. Unidades: IFSC, EESC

    Subjects: SENSOR, ELETRODO, BIOMARCADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VÁSQUES, Elsa María Materón et al. Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes. Journal of Materials Chemistry C, v. 9, n. 17, p. 5633-5642 + supplementary information, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1tc01557e. Acesso em: 10 jan. 2025.
    • APA

      Vásques, E. M. M., Wong, A., Gomes, L. M., Ibáñez-Redín, G. G., Joshi, N. K. J., Oliveira Junior, O. N. de, & Faria, R. C. (2021). Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes. Journal of Materials Chemistry C, 9( 17), 5633-5642 + supplementary information. doi:10.1039/d1tc01557e
    • NLM

      Vásques EMM, Wong A, Gomes LM, Ibáñez-Redín GG, Joshi NKJ, Oliveira Junior ON de, Faria RC. Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes [Internet]. Journal of Materials Chemistry C. 2021 ; 9( 17): 5633-5642 + supplementary information.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1039/d1tc01557e
    • Vancouver

      Vásques EMM, Wong A, Gomes LM, Ibáñez-Redín GG, Joshi NKJ, Oliveira Junior ON de, Faria RC. Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes [Internet]. Journal of Materials Chemistry C. 2021 ; 9( 17): 5633-5642 + supplementary information.[citado 2025 jan. 10 ] Available from: https://doi.org/10.1039/d1tc01557e

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025