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Single-file and normal diffusion of magnetic colloids in modulated channels
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Diftfusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence
of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian
dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion
coefficient of a single particle by Festa and d’Agliano [Physica A 90, 229 (1978)] and show the importance of
interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a
function of linear density, strength of the periodic modulation and commensurability factor.

DOI: 10.1103/PhysRevE.89.032306

I. INTRODUCTION

Manipulation and control of magnetic colloidal particles
have greatly increased over the last years. Recent advances
include fabrication of anisotropic magnetic particles [1]
which can have a wide range of applications, from drug
delivery mechanisms [2,3] to fabrication of tunable self-
assembly colloidal devices [4-6]. Further examples of ap-
plications of anisotropic particles are the so-called colloidal
molecules [7,8], the patchy colloids [9-11], and the mag-
netic Janus colloids [12]. The use of magnetic dipoles is
particularly interesting due to the fact that the interparticle
interaction potential introduces a natural source of anisotropy.
This is achieved by the application of a tunable external
static homogeneous [13,14] or oscillating [15,16] magnetic
field (B). Diffusion and transport of colloidal particles in
periodic modulated (corrugated) channels [17] represent im-
portant phenomena which allow the understanding of several
mechanisms in soft condensed matter, e.g., molecular and
cell crowding in biological systems [18], pinning-depinning
transition of vortices in type-II superconductors [19], and
elastic strings [20]. Theoretical models which describe the
trapping dynamics of modulated systems include, for instance,
continuous time random walk (CTRW) [21] and random walk
with barriers [22]. Experimentally, corrugated periodic [23] or
random [24] landscapes can be realized, e.g., by light fields
allowing the control of the colloidal particles. Furthermore,
diffusion in modulated landscapes is often anomalous, i.e., the
mean-square displacement (MSD) W(¢) follows a power law
[W(¢) o t*] with an exponent 0 < @ < 1 [25].

Diffusion in very narrow channels is governed by single-file
diffusion (SFD) [26]. An interesting quantity in this case is the
single-file mobility factor, F. This factor has been previously
analyzed by Herrera-Velarde and Castafieda-Priego [27] for the
case of a system of repulsive interacting superparamagnetic
colloids. In our case, however, the attractive part of the
interparticle interaction potential [Eq. (12)] introduces an
anisotropy in the system. This means that the external magnetic
field, regulated by the magnitude of B and its direction ¢, now
plays an important role in tuning the diffusive properties of the
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system. The effects of these two parameters in a system without
external modulation has been recently investigated by us in
Ref. [28]. Here we extend these results to the case where the
narrow channel is periodically modulated along the unconfined
direction. We find that the commensurability between the
interparticle distance and the period of the modulation is an
essential factor that strongly influences the diffusion.

This paper is organized as follows. In Sec. II we analyze
the simplest one-dimensional (1D) case of a single particle
diffusing in the presence of a periodic modulation. The effect
of many-particle interactions is analyzed in Sec. III, where we
present a model of interacting magnetic dipoles. The equations
used to describe the dynamics of the particles, together with
definitions and simulation parameters are given. In Sec. IV
we fix the linear density of the system and analyze the
diffusion coefficient and the single-file mobility factor as a
function of the strength of the periodic modulation. Section V
is dedicated to the analysis of the influence of the linear
density on diffusion and in Sec. VI we study the influence
of the commensurability factor on diffusion. The case of
moderate density is investigated in Sec. VII where the diffusion
process becomes anisotropic due to the competition between
the periodic modulation and the transversal confinement. We
show that a transversal SFD and a subdiffusive regime can
be induced by tuning the external periodic modulation. The
conclusions are presented in Sec. VIII.

II. SINGLE PARTICLE IN AN EXTERNAL
PERIODIC POTENTIAL

First, we consider the simplest case of a single-particle
diffusing in one dimension and subjected both to Brownian
motion and to an external periodic potential landscape. The
equation of motion for the particle is given by the overdamped
Langevin equation [29]

dx  9V(x)
Yar T ox

where y is the viscosity of the medium, x is the position of
the particle, ¢ is time, and V(x) is the external 1D periodic
potential of the form V(x) = Vycos(2mrx /L), where V; and
L are the magnitude and periodicity of the external potential,
respectively. Essential here is that V (x) is periodic but it does
not necessarily need to be of cosine form. The only condition
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is that the external potential obeys the periodicity relation,
V(x) = V(x + L). Furthermore, £(¢) is a § correlated noise
which follows the well-known properties (i) (£(¢)) = 0 and (ii)
(E@)E(t)) = 2ykpTd(t —t'). kp is the Boltzmann constant
and T is the absolute temperature of the heat bath.

In the case where the particle is free, i.e., Vo =0, it is
straightforward to show [29] that the self-diffusion coefficient
of the particle is given by the Einstein relation Dy = kgT/y.
In the presence of a periodic potential V (x), previous studies
[30-32] showed that the self-diffusion coefficient of the
particle is modified into

D L?

Do [LaxexplVx)/ksT} [ dzexp{—V(z)/ksT}
()

It is easy to see that when V (x) = 0, Eq. (2) reduces to Dy as
it should be. If we consider the case of L = 2o andx — x'o
[V(x") = Vycos(x')], the solutions of the integrals in (2) are
known [33] and given by

2
a/ dx exp{V(x")/kgT} =2m0lo(Vo/ksT), (3)
0

2
cr/ dx exp{—V(x")/kpgT} = 2o lo(—Vo/kzT), (4)
0

where Iy(y) are the modified Bessel functions of the first
kind and o is a unit of distance. Therefore, the self-diffusion
coefficient Degs depends only on the ratio Vy/kpgT. A series
representation of /y(y) can be written as [34]

/27 n /2"
(1)? (2
Taking the first order approximation in Eq. (5), we have that

D.¢/ Dy is given by

Der 1

Dy~ [14(y/22P
Note that for y = Vy/kgT < 1, Desr/ Dy — 1, as expected.

On the other hand, for y = V,/kgT > 1, the modified Bessel
function [y(y) can be written to a first order approximation

I(y) =1+ ——— )

(6)

Eq.(2) ——

0.0 1.0 2.0 3.0 4.0 5.0
Vo/kgT

FIG. 1. (Color online) Effective self-diffusion coefficient
D.is/ Dy of a single-particle in one dimension in the presence of a
thermal bath and a periodic potential V(x") = V, cos(x’).
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as [35] In(y) =~ e¥//2my. Therefore, Des/ Dy has the form
D
Dy

Fory = Vo /kgT > 1, Der/ Do — 0. Both limiting cases (6)
and (7) are shown in Fig. 1.
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III. INTERACTING MAGNETIC DIPOLES

We now turn to the problem where instead of a single-
particle we have N interacting magnetic dipoles of diameter o
and magnetic moment g diffusing in the plane (x,y). The
geometry of the plane is then modulated by two external
potentials, namely (i) a parabolic transversal confinement
potential in the y direction and (ii) a periodic potential in the
x direction. We also apply an external homogeneous magnetic
field B which can form an angle 0° < ¢ < 90° with the x axis.
In this more complex situation, the equations of motion which
describe the dynamics of particle i are given by N overdamped
coupled Langevin equations

yE; = Zvvmt

Jj>i

mod()C ) + Vconf(yt ] +§ (t) (8)

Y0262 =1, + 1P + 01, ©

where r; = x;X + y;¥ is the position vector of particle i and
0; is the angle between the vector p; and the x axis. t; and
T ZB are the torque due to the magnetic field created on particle
i by all other particles and the torque created by the external
magnetic field B, respectively. A similar set of Egs. (8) and (9)
was recently used in Ref. [28], and therefore we report only
on the results related to the presence of the modulation in the

x direction [36,37],

2w x i
Vinoa(xi) = Vg cos - ) (10)
The parabolic transversal confinement is given by

Veont (i) = 'mw y, , (11)

where w is the strength of the confinement (frequency) and
m is the mass of the identical particles. Furthermore, the pair
interaction potential Viljm is given by

vint _ ﬂ[l‘«i Sy 3 TR 'rij):| +48<L)12
A 4 | Y Ir;j13 Iril/)

12)

where (1o is the medium permeability, r;; is the interparticle
separation vector between a pair of particles i and j, and ¢ is an
energy parameter in order to prevent particles from coalescing
into a single point.

Following previous works [28,36,37], we use an Ermak-
type algorithm [38] to integrate Eqs. (8) and (9). The
simulations were performed with fixed parameters: Af =
1.0 x 107%(yo?/kpT), n = 1.0\/4wkgTo3/19, and B =
100/kpT po/4wo3. We choose & = kgT as unit of energy
and o as unit of distance and time is measured in units of
tp = yo?/kgT. Finally, the stochastic white noise &;(¢) is
simulated using the Box-Miiller transformation technique [39]
and in all the results presented in this work, the error bars in the
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plots are smaller than the symbol size. Similarly to our previous
paper [28], hydrodynamic interactions (HIs) are not taken into
account. Such interactions may have an impact on the diffusion
properties (and, in general, on the dynamical properties; see,
e.g. Ref. [40]) for the case of highly concentrated colloidal
suspensions, which are not considered in the present work.

In order to study diffusion we calculate the MSD W (¢),
defined as [41]

N
W) = <N—' > Ini) - r,-<0)|2>, (13)

i=1

where we use a typical value of N = 300-900 particles, ¢ is
the time, and (- - -) is an average over different time origins
during the simulation [42]. This equation can be split in two
terms, namely, W,(¢) and W,(¢), where the first refers to the
MSD in the x direction and the latter refers to the MSD in the
y direction.

The system is tuned by three parameters, namely (i)
the linear density, p = N/L,, where L, is the size of the
computational unit cell in the x direction and N is the total
number of particles, (ii) the angle ¢ of the external magnetic
field, and (iii) the strength V, of the external modulation
in the x direction. Note that since we are using periodic
boundary conditions in the x direction, we have to guarantee
the continuity of the external modulation at the borders of the
computational unit cell. This is achieved by introducing the
relation

L, =nL, (14)

where n € Z* and it represents the number of minima (or
maxima) of the external modulation within the computational
unit cell.

IV. NORMAL AND SINGLE-FILE DIFFUSION FOR FIXED
LINEAR DENSITY

A. Case w = 1.0/2kpT [ mo?

In this section, we set the transversal confinement param-
eter w = 1.04/2kpT/mo? and ¢ = 90°. A snapshot of the
configuration of the system together with the contour plot of
the periodic modulation and transversal confinement is shown
in Fig. 2. The MSD in the x direction W,(¢) [Eq. (13)] for
different values of V/kgT is shown in Fig. 3. Note that for all
the values of Vy/kpT, except for 4.0 and 5.0, W, (¢) exhibits a
linear dependence on time ¢ for large time scales,

lim W, (t) = 2Dqt, (15)
>N

where D; is the self-diffusion coefficient and ¢y (indicated by
gray open diamonds) is the time scale at which this normal
diffusion regime is recovered. Note that since the system is
coupled to a heat bath (kpT), the normal diffusion regime
should be recovered for any value of the ratio Vi / kg T, with the
condition thatty — oofor Vy/kgT — oo.In other words, this
means that the intermediate regime [i.e., where W(¢) exhibits
a slower-than-linear dependence on time or W(¢) = const]
extends over a larger time interval for larger values of Vy/kpT .
This intermediate regime is generally associated with a “cage”
effect, which in our case is represented by the localization of
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FIG. 2. (Color online) Snapshot of the configuration of the sys-
tem for V) / kg T = 2.0. The particles are represented by yellow circles
where the black arrows indicate the direction of the dipoles. The
contour plot of the potential Vioq(x) + Veons(y) is also shown. The
linear density is p = 0.50 ! and the transversal confinement strength

isw = 1.0,/2kpT/mo?.

particles in the potential minima. A similar effect was found
previously in simulations on monodisperse glassy systems [43]
and Lennard-Jones binary mixtures [44]. However, in these
works, the caging effect was not induced by an external
modulation but rather by many-body effects related to the
specificities of their system.

From these results, we also note that, as expected from
previous section, the self-diffusion coefficient depends on the
ratio Vy/kpT. This dependence is shown in Fig. 4, where D,
decreases with increasing Vy/kpT. Dy is obtained by fitting
our data with Eq. (15). Note that even though the behavior of
Dy as a function of the ratio Vy/kpT is qualitatively similar to
Dqi(Vy/kpT) for a single particle, it is clear that Dy < Deg.
This difference between D; and D is due to correlations
between the particles, which now couples the movement of
the dipoles through the interaction potential. We estimate

FIG. 3. (Color online) Log-log plot of the MSD in the x direction
W, (¢) as a function of time ¢ for different values of the ratio V,/kpT .
The yellow dotted line is a guide for the eye. The open diamonds
indicate approximately the time scale (¢y) where the normal diffusive
regime, i.e., W,(r) o t, is recovered. The transversal confinement
strengthis w = 1.0\/2ky T /mo? and the linear density is p = 0.50 .
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FIG. 4. (Color online) Long-time  self-diffusion  coefficient
D,/ Dy as a function of the ratio Vy,/ kg T for different linear densities
p. The effective self-diffusion coefficient Degi/Dy [Eq. (2)] as a
function of V,,/kgT for a single particle is also shown (solid red
curve) for comparison. The inset shows the ratio R = D;/ D as a

function of V,/ kT for the case p = 0.50 .

this difference by calculating the ratio R = D/ Deg, which
is shown in the inset of Fig. 4. Note that R drops to zero
as Vy/kpT increases. This means that in both cases, i.e., for
single-particle and for interacting particles, the self-diffusion
coefficient goes to a value very close to zero (but does
not vanish completely, see Ref. [45], Sec. IlIB) as Vo/kgT
increases. Therefore, there is no diffusion until temperature is
sufficiently high to allow the escape of the particles from the
potential wells [46]. The effect of the linear density p on the
self-diffusion coefficient, Dy, is discussed in Sec. V.

B. Case w = 10.0,/2kpT /mo?

In the case where the transversal confinement potential is
increased, the fluctuations of the particles in the y direction
becomes smaller. This effect of confinement brings the
system into the single-file (SF) regime, which means that
particles cannot bypass each other [47]. This special geometric
constraint leads to a phenomenon called single-file diffusion
(SFD), in which one of the most striking features is that
the long-time MSD W,(t) of a tagged particle along the
unconfined direction (in our case, the x direction) displays
typical subdiffusive motion with

lim W,(r) = Ft%, (16)

>,
where F is the so-called single-file diffusion mobility and ¢, is
a characteristic relaxation time of the system. In particular,
F and t. depend on the specifics of the system [48].
Wei et al. [49] showed experimentally that for a repulsive
interparticle interaction potential, 7. decreases with increasing
strength of the interaction potential. This can be understood
from the fact that an increase in the interaction leads to
an increase in the collision rate between the particles [50].
Nelissen et al. [51] recently showed that when the interparticle
interaction is comparable to the viscosity (damping), an
intermediate “under” single-file diffusion regime, i.e., W, (f)
t* (with o < 0.5), is also observed. Such a behavior was
also found in experiments with millimeter metallic balls [52]
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FIG. 5. (Color online) (a) Log-log plot of the MSD in the x
direction, W,(¢), as a function of time ¢ for different values of
the ratio Vy/kgT. The yellow dotted line is a guide for the
eye. The transversal confinement strength is @ = 10.0\/2kgT/mo?
and the linear density is p = 0.50 ~!. Vertical black arrows indicate
the relaxation time 7.. (Inset) Single-file diffusion mobility F,
obtained from the relation (16), as a function of Vy/ kg T . (b) Snapshot
of the configuration of particles (black dots) for Vy/kpT = 1.0. The
modulation Vp.4(x) is plotted as the solid red curve.

and in numerical simulations [53] taking into account spatial
correlated noises.

In our specific case, the modulation in the x direction adds
an additional restriction to the movement of the particles. The
effect of Vy/kgT on the MSD W,(¢) is shown in Fig. 5(a).
Two effects are noticed here. First, the relaxation time ¢,
increases with increasing ratio V,/kgT, which means that
for higher values of this ratio a longer time is needed for
a particle to feel the presence of its neighboring particles.
Once this time scale is reached, the subdiffusive law (16) is
recovered due to the interaction with its neighbors. Second,
the mobility factor F decreases with increasing V,/kpT [cf.
inset of Fig. 5(a)], which results from the restriction of the
motion in the x direction, as stated above. Note that for
Vo/kgT > 0.0, the system exhibits an intermediate regime
where W, (t) o t*, with o < 0.5 before it reaches the SFD
regime. This intermediate regime extends to larger times scales
as the ratio Vy/kpT increases.

V. EFFECT OF LINEAR DENSITY ON DIFFUSION

In order to investigate the effect of the linear density p on the
diffusion, we introduce a commensurability factor p = N/n,
where N is the total number of particles in the computational
unit cell and 7 is the total number of minima (or maxima) of
the external periodic modulation along the x direction. Using

032306-4



SINGLE-FILE AND NORMAL DIFFUSION OF MAGNETIC ...

(a) po = 0.25
|_
m
<
>
2
(0]
C
|
(b) pc =0.75
|_
m
<
>
2
(0]
C
wi

8 6 4 -2 0 2 4 6 8
x/c

FIG. 6. (Color online) The same as Fig. 2 but now for V/kgT =
4.0. Linear density is (a) p = 0.25¢6 " and (b) p = 0.750 ~". For both
cases, the transversal confinement strength is w = 1.0/2kzT /mo?
and the commensurability factor is p = 1.

relation (14) and the definition for the linear density, we may
write the following condition:

sz

— pL. (17)

S
1

We start by considering the simplest case (p = 1), i.e., where
there is one particle per potential well. In this section we
analyze the system for three different densities, namely,
po = 0.25,0.50,0.75. Also, we fix w = 1.04/2kpgT /mo? and
¢ =90°. In Figs. 6(a) and 6(b) we show snapshots of
the configuration of the system for p = 0.250~! and p =
0.750 !, respectively. The MSD W,(t) for different values
of p is shown in Figs. 7(a) and 7(b).

The main effect of different densities on Dy is shown in
Fig. 4. The solid curve is the single-particle case discussed
in Sec. II, which corresponds to the limiting case of very
dilute systems, i.e., very low densities. As the density increases
(p = 0.2507" and p = 0.5¢ 1), the self-diffusion coefficient
D, decreases. This effect is related to the coupling between the
particles due to the interparticle interaction potential. For the
case of very high densities, the interaction energy is stronger
and diffusion should be partially suppressed, i.e., Dy = 0 for
all values of Vy/kpT. Note that since the system is coupled
to a heat bath, the diffusion coefficient is not exactly zero but
goes to a very small value.
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FIG. 7. (Color online) The same as Fig. 3 but now for density
(a) p = 0.25¢~" and (b) p = 0.750 . The transversal confinement
strength is @ = 1.04/2kpT /mo? and the commensurability factor is
p=1

VI. EFFECT OF COMMENSURABILITY FACTOR

We further investigate the effect of the commensurability
factor p on the self-diffusion coefficient. In this section, we fix
the linear density to p = 0.50 ! and vary p, where we choose
two half-integer values (p = 1/2 and p = 3/2) and compare
these results with the case of the previous section (p = 1).
The effect of p on the MSD W, (¢) is shown in Figs. 8(a)-8(c).
Note that for all cases, the system exhibits an intermediate
regime of diffusion where W, (¢) shows a slower-than-linear
dependence on time or W,(¢) = const before the long-time
normal diffusion regime sets in [Eq. (15)]. The saturation
regime of the MSD in the x direction [i.e., W,(#) = const]
is similar to the one discussed previously in Sec. IV A.

An interesting effect of the commensurability factor p on
diffusion can be observed in Fig. 8(d). For V;/kgT = 0.0, the
self-diffusion coefficient, Dy, is the same for all the cases (i.c.,
p =1/2,1,3/2). This is due to the fact that in the absence
of the external modulation, the system is regulated only by
the linear density (in this case p = 0.50~"). Therefore, the
average distance between neighbor particles is the same. On
the other hand, for sufficiently large values of Vy/kgT = 3.0,
the trapping of particles in the wells suppresses the diffusion,
and again the self-diffusion coefficient D; is of the same order
(close to zero) for all the cases. However, the effect of p on
Dy is more pronounced for intermediate values of Vy/kgT =
0.5 — 2.0. This effect is explained as follows. First, note that
p=1/2 and p =1 have both very similar behaviors, i.e.,
Dy curve as a function of Vy/kpT. From the definition of
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FIG. 8. (Color online) (a)—(c) Log-log plot of the MSD in the x direction W,(¢), as a function of time ¢ for different values of the ratio
Vo/ kg T. The yellow dotted line has a slope of 1 and is a guide for the eye. The transversal confinement strength is @ = 1.0,/2kpT/mo? and
the linear density is p = 0.50~". Color code is the same as in Fig. 7. (d) Long-time self-diffusion coefficient, D;, as a function of Vy/ kT for

different values of the commensurability factor p.

p,wehavethatforp=1/2 > L=10candp=1— L =
2.00. In practice, this means that the neighbor interparticle
average distance is the same for both cases, i.e., d ~ 2.00 [cf.
Figs. 9(a) and 9(b)]. For p = 3/2 (which means 3 particles per
2 potential wells, on average), the distance between particles
in neighboring wells is larger, d &~ 3.00, which results in a
larger self-diffusion coefficient. Interestingly, this case can
be thought as a binary system, where one of the wells has
one “big” particle formed by two dipoles and the other well
has only one particle. Note that for all cases, D, decreases
with increasing V/kpT, although for p = 3/2 this decrease
is slower compared to the other cases (p = 1 and p = 1/2).

VII. ANISOTROPIC DIFFUSION AND TRANSVERSAL
SUBDIFFUSION

A. Two particles per potential well

The competition between the external potentials in the x and
y directions (i.e., the modulation [Eq. (10)] and the parabolic
potential [Eq. (11)], respectively) leads to an anisotropic
diffusion process, i.e., Wi(t) # W,(t) [54]. In this section
we analyze the effect of the ratio Vy/kgT on both the
parallel (x direction) and the transversal (y direction) diffusion
independently. For this case, the simulation parameters are
p=2,p=100"",and ® = 1.0,/2kpT /mc?, which allows
the accommodation of two particles per potential well on
average [cf. Fig. 10(a)]. As a representative example, we show
in Figs. 10(b) and 10(c) the MSD in the parallel and transversal
directions, respectively, for different values of Vy/kgT. Note
that the diffusion in the parallel direction is very different
from the transversal direction, which is a direct effect of the

anisotropy of space, i.e., the competition between periodic
modulation in the x direction and the parabolic confinement
in the y direction.

In the x direction (parallel diffusion), the MSD exhibits [cf.
Fig. 10(b)] a short-time normal diffusion behavior for ¢ < ¢,
which is followed by a saturation regime due to the periodic
modulation. Finally, for# > ¢, the long-time normal diffusion
regime is recovered, with

lim W, (t) = DHI,

t>1p

(18)

where D) is the parallel self-diffusion coefficient. The depen-
dence of Dy on Vy/kgT is shownin Fig. 10(d), and as expected
it decreases with increasing Vo /kpT.

On the other hand, in the y direction (transversal diffusion),
the MSD exhibits [cf. Fig. 10(c)] a very different behavior. The
initial short-time normal diffusion is also present. However,
for intermediate time scales f5 < t < g the system exhibits a
sub-diffusive regime with a nonlinear time dependence of the
form

Wy(t) = Ktranstav (19)

where Kians 1S the anomalous transversal diffusion coeffi-
cient [55] and £, is a saturation time scale in which the
diffusion is suppressed due to the finite size in the y direction.
Note that ¢ < 0.5 and thus a smaller power-law behavior, as
compared to the single-file diffusion (SFD) case, is observed.
In Fig. 10(c) we show this intermediate regime and find
o = (.35. Finally, both Kips [cf. Fig. 10(e)] and fs, depend
on the periodic modulation strength Vy/kpT, which is a
measure of a type of “effective” confinement in the x direction.
This indicates that the periodic modulation in the parallel
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FIG. 9. (Color online) Snapshot of the configuration of the sys-
tem for different values of the commensurability factor p = (a) 1/2,
(b) 1, and (c) 3/2. For all cases, the strength of the x direction
modulation is Vy/kgT = 2.0. Note that L changes according to the
value of p.

direction affects directly the diffusion process in the transversal
direction. A transversal subdiffusive behavior was recently
found and analyzed by Delfau et al. [56] in a quasi-1D system
of interacting particles in a thermal bath. Note that even for the
case of two particles in a single-file condition, Ambjornsson
and Silbey [57] showed that the long-time SFD regime should
appear. The fact that we cannot observe the same behavior
here is because of the competition between the interparticle
interaction and the finite-size effect in the transversal direction.
Note that our discussion is only valid for an intermediate
regime (ITR) of subdiffusion, as discussed previously in
Refs. [28,47] and references therein. The subdiffusive regime
in the transversal direction is a well-defined regime with an
exponent of diffusion o & 0.35, which extends to at least one
order of magnitude in time. Note that for Vy/kpT > 0.0, the
time scale ty [cf. Fig. 10(b)] where the system reaches the
normal diffusive regime in the x direction, i.e., W,(¢) o ¢, is
approximately the same as the time scale where the system
reaches the subdiffusive regime in the transversal direction
[cf. Fig. 10(c)]. For this time scale ty, a particle crosses the
potential barrier imposed by the external modulation and it
reaches the neighbor well. Once this time scale is reached,
the correlations among particles in different wells give rise
to the subdiffusive regime in the transversal direction, i.e.,
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FIG. 10. (Color online) (a) Snapshot of the configuration of
particles (black dots) for V;/kpT = 3.0. The modulation Vq(x)
is plotted as the solid red curve. (b),(c) Log-log plot of the MSD
as a function of time ¢ in the parallel and transversal direction,
respectively, for different values of Vy/kpT. The dotted yellow line
has a slope of 1, the magenta dot-dashed line has a slope of 0.35, and
both are guides for the eye. The open diamonds in (b) [(c)] indicate
approximately the time scale (ty) where the normal diffusive regime
[subdiffusive regime] appears. (d) Parallel self-diffusion coefficient
D) and (e) anomalous transversal diffusion coefficient K5, both
as a function of V;/kgT. Parameters of the simulation are p = 2,

o =100"",and w = 1.0,/2ksT/mo?2.

Wy (t) 193 before there is a complete saturation regime
due to the parabolic confinement potential.

B. Four particles per potential well

In this section we analyze the transversal diffusion mecha-
nism for p = 4, which gives four particles per potential well.
As in the previous section, we calculate the transversal MSD
W, (t) as a function of the strength of the external periodic
modulation V,/kp T, and the results are shown in Fig. 11.

For the case of weak external modulation (e.g., Vo/kpT =
0.5), the initial short-time linear MSD [W,,(¢)  ¢] is followed
by a saturation regime due to the finite size of the system in the
transversal direction. With the increase of the external modu-
lation, an intermediate subdiffusive regime takes place before
the onset of the saturation regime (cf. Fig. 11, Vo/kpT = 4.0).
This is explained by the formation of a chain of particles along
the transversal direction (cf. inset of Fig. 11). Note that, as
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FIG. 11. (Color online) Log-log plot of the transversal MSD
W, (t) as a function of time ¢, for different values of V;/kgT. The
magenta dot-dashed line has a slope of 0.5 and is a guide for the
eye. (Inset) Snapshot of the configuration of particles (black dots)
for Vo/kpT = 4.0. The modulation Vi,,q(x) is plotted as the solid
red curve. Parameters of the simulation are p = 4, p = 2.00~!, and
o =1.0,/2kgT/mac?.

opposed to the previous section, where Wy (¢) o 1%, in this
case the MSD presents a clear SFD scaling, i.e., Wy (¢) o< 1%7.

These results indicate that even though the chain of
particles is relatively small, the correlations between particles
is sufficiently strong [56] to induce an intermediate single-file
diffusion regime.

VIII. CONCLUSIONS

We studied the diffusive properties of a system of in-
teracting magnetic dipoles in the presence of a modulated
(corrugated) channel along the x direction and confined in the
y direction by a parabolic confinement potential. In order to
study the diffusion of the system, we used Brownian dynamics
simulations. The analysis of the MSD W (¢) showed that the

PHYSICAL REVIEW E 89, 032306 (2014)

system exhibits different regimes of diffusion depending on the
external parameters (i.e., external modulation, magnetic field)
that regulate the particle dynamics. In principle, this system
could be realized experimentally using optical tweezer traps
and our results could be verified by, e.g., a microscopy imaging
technique to track individual particles’ trajectories [24,58].
We characterized the dynamics of the system for several
parameters, namely the linear density p, the commensurability
factor p and the strength of the external periodic modulation
Vo/kpT . Our main results are summarized as follows. (i) The
self-diffusion coefficient D; is modified by the interparticle
interaction potential as compared to the case of a single-
particle diffusing in a periodic potential landscape. The
difference increases with the linear density of particles. (ii) The
effect of the commensurability factor p on the self-diffusion
coefficient Dy is pronounced for the case of a semi-integer
commensurability factor (as an example, we considered p =
3/2). The system turns into an effective “artificial” binary
system, with the presence of a “big” particle formed by two
dipoles in a potential well and a single particle in a neighbor
potential well. (iii) The presence of the external modulation
affects the diffusion of the magnetic dipoles as compared to the
case where there is no modulation (cf. Ref. [28]); for instance,
we found that a transversal subdiffusive regime, including
SFD, can be induced depending on the value of the external
modulation V/kgT and on the commensurability factor p.
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