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In this work, we investigate the properties of the Abelian gauge vector field in the background of a 
string-cigar braneworld. Both the thin and thick brane limits are considered. The string-cigar scenario 
can be regarded as an interior and exterior string-like solution. The source undergoes a geometric Ricci 
flow which is related to a variation of the bulk cosmological constant. The Ricci flow changes the width 
and amplitude of the massless mode at the brane core and recovers the usual string-like behavior at 
large distances. By means of suitable numerical methods, we attain the Kaluza–Klein (KK) spectrum for 
the string-like and the string-cigar models. For the string-cigar model, the KK modes are smooth near 
the brane and their amplitude are enhanced by the brane core. Furthermore, the analogue Schrödinger 
potential is also regulated by the geometric flow.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The braneworld models became an active research area in High 
Energy Physics in the last years. The seminal works of Randall–
Sundrum (RS) [1,2] introduced an infinite extra dimension by 
means of a warped compactification. Thereafter, several models 
explored both the field [3,4] as cosmological properties [5,6] of 
the RS models. In six dimensions, by assuming a static and ax-
ial symmetry for the bulk, the geometry of the brane is similar to 
cosmic string space-time. Then, these models are called string-like 
braneworlds [7–13].

Even though the string-like models have the advantage of 
trapping free gauge fields [10,11] and minimally coupled Dirac 
fermions [12], they present some issues about the core of the 
source. The Gherghetta–Shaposhnikov (GS) model [13], for in-
stance, does not satisfy the metric regularity conditions at the 
brane nor the dominant energy condition [14]. This is due to the 
metric proposed be only a vacuum solution of the Einstein equa-
tions. The GS model can be regarded as an infinitely thin string-
like model.

In order to study the source properties and to suppress the 
anomalies of the string-like models, Giovannini et al. proposed a 
braneworld scenario constructed from an Abelian vortex [15]. The 
solution found numerically satisfies all the regularity and energy 
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conditions, but the analytical solution is still lacking [15]. More-
over, the same solutions leading to gravity localization, also lead 
to the localization of the gauge zero mode [16,17]. Afterward, 
de Carlos–Moreno proposed a supersymmetric model without bulk 
cosmological constant free of regularity problems [19], whereas 
Papantonopoulos et al. regularized the conical behavior near the 
brane by adding a ring-like structure at the brane [20]. More re-
cently, Silva–Almeida proposed a resolution scheme based in an 
effective conifold transition in the internal space [21]. The resolu-
tion of the conical singularity at the core of the brane provides a 
geometrical flow which smoothes the Kaluza–Klein (KK) modes for 
the scalar, gauge and Dirac fields [21–23].

An analytical smooth string-like model was proposed and its 
gravitational KK modes were studied [24]. This thick solution ex-
tends the GS model being an interior and exterior string-like 
model. The near brane corrections to the geometry makes the 
model satisfy all the regularity and energy conditions [24]. Since 
this string-like model is built from a warped product between 
a 3-brane and a particular steady solution of the Ricci flow, 
called Hamilton cigar soliton, the scenario is called the string-cigar 
model [24]. The evolution parameter of the Ricci flow yields to a 
varying bulk cosmological constant and changes the ratio among 
the components of the stress-energy tensor [24]. Moreover, the 
near brane correction provides a potential well around the brane 
for the gravitational KK modes [24].

Once defined and studied this smoothed string-like braneworld, 
it is worth to analyze the behavior of the Standard Model fields on 
this scenario. In this article, we study the features of the gauge 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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vector field minimally coupled to this geometry. We show that the 
radial component has a richer dependence compared with the thin 
string-like solution presented on Ref. [11]. Moreover, the KK tower 
has a trapped massless s-wave state shifted from the origin due 
to the core behavior. The displacement of the massless mode hap-
pens because the brane-core is shifted from the origin, as in the 
Abelian vortex solution for higher winding numbers [15]. Never-
theless, the source and the massless mode approach to the origin 
as the geometric evolution parameter increases. The limit of large 
values of this parameter matches with the thin string results.

The dynamics for the massive modes, presented in a Sturm–
Liouville equation [24], is quite complex to be studied analytically. 
Then, we accomplish a numerical analysis to find the KK spectrum 
and the respective eigenfunctions. It turns out that exists a mass 
gap between the massless and the massive modes for both the 
thin string-like and string-cigar models. Moreover, the known lin-
early increasing KK masses are obtained. The KK eigenfunctions
are all smooth near the brane and they recover the usual string-
like pattern asymptotically [11]. The string-cigar core enhances the 
amplitude of the KK modes near the brane. Performing the ana-
logue Schrödinger approach, it turns out that the geometric flow, 
provided by a geometric parameter, controls the high of the barrier 
and the width of the potential well.

This article is organized as follows: In Section 2, we review the 
properties of the thin string-like and string-cigar models as well as 
the changes provided by the Ricci flow on the brane core. In Sec-
tion 3, we investigate the gauge vector massless field and the KK 
spectrum and study the influence of the geometric flow in this sce-
nario for the s-wave state. Further in this section, we analyze the 
analogue Schrödinger potential behavior upon this flow. Moreover, 
some conclusions and perspectives are outlined in Section 4.

2. The string-cigar scenario

In this section, we briefly review the construction of the string-
cigar model [24]. A complete description of the model, as well 
further details are presented in Ref. [24]. Firstly, let us define a 
string-like spacetime. Let M6 a spacetime that can be split as 
M6 = M4 × M2, where M4 is a 3-brane embedded in M6
and M2 is a two dimensional Riemannian space. A string-like 
static braneworld is an M6 with axial symmetry. A warped metric 
ansatz for this axisymmetric spacetime is [7–11,13]

ds2
6 = σ(r)ημνdxμdxν + dr2 + γ (r)dθ2, (1)

where ημν is the induced metric brane and σ and γ are the 
so-called warp factors. In order to the brane possess a regular ge-
ometry, we assume that the warp functions satisfy the regularity 
conditions, namely [13,15]

σ(0) = 1 , σ ′(0) = 0 (2)

γ (0) = 0 , (
√

γ )′(0) = 1, (3)

where the prime (′) denotes the derivative according to r variable.
An example of a string-like geometry is the GS model [13], 

where M2 = S2 is the two-dimensional disk of radius R0 and the 
metric is given by the components [13]

σ(r) = e−cr and γ (r) = R2
0σ(r), (4)

where c ∈ R is a constant. The constant c is related to the bulk 
cosmological constant � by [13]

c2 = − 16π

5M4
� ⇒ � < 0. (5)
6

Therefore, the GS model is an AdS6 space time which geometry is 
an exterior solution for a thin string-like brane [13].

In the GS model, the relation between the Bulk Planck mass M6
and the brane Planck mass M4 is given by [13]

M2
4 = 5π

3

μθ

−�
M4

6. (6)

Then, in order to solve the hierarchy problem, GS model imposes 
a fine tuning between the bulk cosmological constant and the an-
gular tension μθ , what yields to [13]

−� � μθ . (7)

The inequality (7) constrains the possible values for the constant c. 
In the RS model the curvature is set to be small in order to guar-
antee the model be obtained from the Horava–Witten model [1]. 
For the GS model, c can assume any value satisfying the conditions 
(5) and (7).

Despite all these important features, the GS model does not 
satisfy all the regularity conditions at the origin [14]. For r = 0, in-
stead of a 3-brane we obtain a 4-brane [13]. Further, although the 
thin brane be flat, the curvature at the origin is non-zero [13]. Be-
sides these geometrical issues, the source also does not satisfy all 
the energy conditions [14]. The drawbacks of the GS model arise 
because it is only a vacuum exterior solution of the Einstein equa-
tions [13].

In order to solve these problems concerning the thin string-
like branes, an interior and exterior solution for a string-like 
braneworld was proposed taking the cigar soliton as the transverse 
space M2 [24]. The cigar soliton is a solution of the geometrical 
Ricci flow whose equation is given by [24–30]

∂ gab(λ)

∂λ
= −2Rab(λ). (8)

The Ricci flow (8) defines a family of geometries evolving under 
a parameter λ. The metric for the cigar soliton can be written 
as [24,30]

ds2
λ = dr2 + 1

λ2
tanh2 λr dθ2. (9)

The evolution parameter λ may be identified with the warp con-
stant c [24], so that, choosing the warp metric components

σ(r, c) = e−(cr−tanh cr) (10)

and

γ (r, c) = 1

c2
tanh2(cr) σ (r, c), (11)

it defines an axisymmetric braneworld called string-cigar
model [24].

The string-cigar model converges to the GS model far from the 
origin [24]. Near the origin, the string-cigar geometry presents a 
conical behavior and it smoothes out the warp factor. As a re-
sult, all the regularity conditions are satisfied and thereby, the 
string-cigar geometry is a smooth interior and exterior string-like 
solution [24]. The string-cigar model not only smoothes the GS 
model near the brane but also provides a geometrical flow due to 
the variation of the bulk cosmological constant. Indeed, the com-
ponents of the stress-energy tensor evolves under the geometrical 
flow. For small c, the source satisfies the dominant energy condi-
tion, whereas for great values c, only the weak energy condition 
is satisfied [24]. Moreover, the width and the position of the brane 
core also change with the flow. The source approaches to the origin 
and becomes narrower as c increases. Therefore, high cosmological 
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constant values situate the source around the origin what agrees 
with the GS model [13].

Furthermore, the string-cigar model also provides a solution for 
the hierarchy problem. Indeed, the relation between the masses 
are now given by [24]

M2
4 = 2π M4

6

∞∫
0

σ(r, c)
√

γ (r, c)dr

= 2π M4
6

c

∞∫
0

e− 3
2 (cr−tanh cr) tanh cr dr

≈ 2π M4
6

1

c2
. (12)

Therefore, as in the RS model, due to the dominant energy condi-
tion and the hierarchy solution, we concern ourselves to the small 
c analysis.

It is worthwhile to mention that the near brane corrections
shifts the maximum of the energy density from the origin [24]. 
Similar results were found by numerical analysis performed by 
Giovannini et al. for higher winding number Abelian vortex [15]. 
Besides, Kehagias argued that this displacement due to the conical 
behavior could be used to explain the cosmological problem [31].

3. Gauge field localization

Once we presented how the Ricci flow changes the properties 
of the brane core, we proceed to analyze the effects of this geo-
metrical flow upon the Abelian vector field. We begin with a U (1)

invariant vector field action, namely

S =
∫

d6x
√−g gMN g R S F M R F N S , (13)

where F MN = ∇M AN − ∇M AN . From the action (13), the equation 
of motion is obtained in a straightforward way as

1√−g
∂R(

√−g g RM gLN F MN) = 0. (14)

Let us consider the brane Lorentz gauge

∂μ Aμ = 0 (15)

and a purely radial field configuration, e.g., Aθ = 0, as usual [10,
11,22]. In addition, since the 3-brane is flat and has an axial sym-
metry, the radial vector component Ar should not depend on the 
brane coordinates, i.e., [22]

Ar = Ar(r, θ) ⇒ ∂λ Ar(xμ) = 0. (16)

Using the string-cigar metric and the gauge choice, the equation 
of motion (14) takes the form(
ημν∂μ∂ν + σ(r, c)

γ (r, c)
∂θ

2
)

Ar = 0, (17)

∂r

(
σ 2(r, c)

√
γ (r, c)

γ (r, c)
∂θ Ar

)
= 0 (18)

and(
ημν∂μ∂ν + σ

γ
∂2
θ + 1√

γ
∂rσ

√
γ ∂r

)
Aλ = 0. (19)

Performing the Kaluza–Klein decompositions [10]

Aμ(xM) =
∞∑

A(n,l)
μ (xμ)χn(r)Yl(θ) (20)
n,l=0
and

Ar(xM) =
∞∑

l=0

A(l)
r (xμ)ξ(r)Yl(θ), (21)

Eq. (17) yields to(
ημν∂μ∂ν − σ

γ
l2

)
A(l)

r (xμ) = 0. (22)

Thus, in order to match Eq. (17) with Eq. (16), we restrict ourselves 
to s-waves states, e.g., l = 0 [22]. Further, Eq. (18) leads to a general 
solution to ξ(r) as

ξ(r) = kγ 1/2σ−2, (23)

where k is a simple integration constant [22]. It is worth to men-
tion that the function ξ(r) in Eq. (23) is a direct extension to that 
displayed by Oda [10]. Finally, using Eq. (23), Eq. (19) turns to be

χ ′′
n (r) +

(
3

2

σ ′

σ
+ 1

2

β ′

β

)
χ ′

n(r) + m2
n

σ
χn(r) = 0, (24)

where β(r, c) = γ (r, c)/σ (r, c). Eq. (24) governs the behavior of 
the gauge field through the bulk. It is worth to mention that this 
equation is rather similar to the graviton radial equation, regardless 
the change of the factor 3

2 by 5
2 [13].

We now impose the following boundary conditions [10,13,15]

χ ′
n(0) = lim

r→∞χ ′
n(r) = 0, (25)

which yields the orthogonality relation between χi and χ j given 
by [13]

∞∫
0

σ(r, c)
3
2
√

β(r, c)χiχ jdr = δi j. (26)

Furthermore, it is possible to transform the KK equation (24)
into a Schrödinger-like equation. Consider the change of indepen-
dent variable [24]

z = z(r) =
r∫
σ−1/2dr′ (27)

and of dependent variable

χn(z) = �(z)�n(z), (28)

where � = C1σ
−1/2β−1/4, with C1 a constant. The changes of vari-

ables (27) and (28) transform Eq. (24) into a Schrödinger one with 
�n(z) fulfilling

−�̈n(z) + U (z)�n(z) = m2
n�n(z), (29)

where U (z) is given by

U (z) = 1

4

[
2
σ̈

σ
−

(
σ̇

σ

)2

+ β̈

β
− 3

4

(
β̇

β

)2

+ σ̇

σ

β̇

β

]
. (30)

The over-dots refers to derivatives with respect to the z coordinate.

3.1. Massless mode

For m = 0, a solution for Eq. (24) is the following linear combi-
nation:

χ0(r) = C + C̃

r∫
σ− 3

2 β− 1
2 dr′, (31)
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Fig. 1. Massless mode for the string-cigar and thin string-like (on subgraph) scenar-
ios.

where C and C̃ are integration constants. Since the second function 
does not satisfy the orthogonality condition (26), we choose the 
constant function χ0 = C as the solution of Eq. (24).

For the thin string-like scenario [10], the analogue Schrödinger 
equation reads

−�̈n + 2(
z + 2

c

)2
�n = m2

n�n, (32)

where z = 2
c (e

c
2 r −1). Note that the origin in the r coordinate is 

mapped into the origin in the z coordinate. The solution of Eq. (32)
for m = 0 is given by

�0(z) = A1

(
z + 2

c

)−1

+ A2

(
z + 2

c

)2

. (33)

By making A2 = 0 in Eq. (33), we obtain a normalizable massless

�0(r) =
√

5c

2R0
e− c

2 r . (34)

This KK massless mode is trapped at the brane because of the ex-
ponential factor. Moreover, the amplitude is bigger for the gauge 
massless mode than for the gravitons [13].

From the general Schrödinger equation (29) for m = 0, the so-
lution satisfying the orthogonality condition (26) is given by

ψ0(r, c) = Nσ(r, c)
1
2 β(r, c)

1
4 , (35)

where

N2 = 1∫ ∞
0 σ(r, c)

5
2 β(r, c)dr

(36)

is a normalization constant.
We plot on Fig. 1 the massless mode for the string-cigar and 

for the thin-string scenarios. These localized modes are responsi-
ble for the effective 3-brane gauge field. The gauge massless modes 
are more concentrated at origin when compared with the graviton 
massless modes [13,24]. A worthwhile feature is the displacement 
of the massless mode from the origin in the string-cigar back-
ground. This behavior is also present in the energy density of the 
model (see Ref. [24]). Out of the core, the string-like exponential 
behavior dominates, whereas at the origin, the near core correction 
vanishes the mode. Matching these two regimes, there is a smooth 
peak which maximum is around the boundary of the brane core. 
Note that, for great values of the geometric parameter c (and then, 
the bulk cosmological constant), the gauge massless mode in the 
string-cigar scenario tends to the thin string-like case.
3.2. Massive modes

Using the expressions for the metric factors (10) and (11), we 
obtain the KK equation from Eq. (24) in the form

χ ′′
n + c

[
−3

2
tanh2 cr + sech2 cr

tanh cr

]
χ ′

n + e(cr−tanh cr) m2
nχn = 0.

(37)

Asymptotically, Eq. (37) recovers the thin-string model case, 
presented in Ref. [10], as

χ ′′
n (r) − 3

2
cχ ′

n(r) + ecr mnχn(r) = 0, (38)

which general solution is [10]

χn(r) = 1

Nn
e

3
4 cr

[
J3/2

(
2mn

c
e

c
2 r

)
+ αnY3/2

(
2mn

c
e

c
2 r

)]
, (39)

where Nn are normalization constants and αn are constant coef-
ficients determined by the boundary conditions. Looking at the 
gravitational case presented in Ref. [13], the graviton fluctuation 
φ has the radial solution

φn(r) = e
5
4 cr

[
B1 J5/2

(
2mn

c
e

1
2 cr

)
+ B2Y5/2

(
2mn

c
e

1
2 cr

)]
, (40)

where B1 and B2 are arbitrary constants. Thus, the massive modes 
of the gauge field have a higher amplitude near the brane but they 
spread less into the bulk when compared with the gravitons.

For the thin string-like model, there is a discontinuity between 
the massive and the massless mode. Indeed, by making the limit 
mn → 0 the massive states converge to φn(r) = 0 not to φ0(r). Fur-
ther, transforming Eq. (38) into a Schrödinger-like equation, we 
find that the KK Schrödinger solutions have the form

�m(z) =
√

2

π

[
(A − mBz̄) sin(mz̄) − (mAz̄ + B) cos(mz̄)

mz̄

]
, (41)

where A and B are integration constants and z̄ = z + 2
c . Since the 

KK solutions in Eq. (41) are not defined for m = 0, then we cannot
obtain the massless mode continuously from the massive modes. 
The existence of this kind of mass gap was also found in negative 
tension braneworlds in five dimensions [18].

Applying the boundary conditions (25) at some cut off point 
rmax, it is possible to obtain the KK spectrum. In fact, the boundary 
conditions yield to the system of equations

J 1
2

(
2

mn

c

)
+ αnY 1

2

(
2

mn

c

)
= 0 (42)

J 1
2

(
2

mn e
c
2 rmax

c

)
+ αnY 1

2

(
2

mn e
c
2 rmax

c

)
= 0. (43)

The system above is difficult to be treated analytically. However, 
for the small mass regime, i.e. mn � c, the divergence in the Bessel 
function of second kind yields to αn = 0. Hence, the mass spec-
trum can be obtained from the equation [10]

J 1
2

(
2

mn e
c
2 rmax

c

)
= 0. (44)

Then, from the zeroes of the Bessel function J 1
2
(xn), where xn =

2mn
c e

c
2 rmax , we obtain the massive spectrum as [34]

mn = c
nπ e− c

2 rmax . (45)

2
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Note that the gauge masses grow linearly with the discrete Bessel 
function root index n ∈ N, as in the factorizable Kaluza–Klein 
model [10]. Therefore, for (mn � c), the spectrum is discrete and 
there is an exponential suppressed mass gap between the massless 
mode and the first massive mode given by

� = m1 − m0 = c

2
π e− c

2 rmax . (46)

Once the general KK equation (37), as well the boundary con-
dition system (42), are difficult to solve analytically, we look for 
approximate solutions by numerical methods. Using the matrix 
method [32] with second order truncation error, we obtain the 
complete KK spectrum and eigenfunctions for the gauge field on 
thin-string and string-cigar scenarios.

In order to obtain the gauge field KK spectrum on the thin-
string scenario, we approximated the derivatives by finite differ-
ences in the grid points r j = jh with constant step-size h = 0.01. 
The domain used was r ∈ [0.0, 11.0]. For the string-cigar scenario, 
the numerical integration of Eq. (37) was performed on the do-
main r ∈ [0.01, 11.01] in order to avoid the singularity at r = 0.

We plot in Fig. 2 the lowest mass eigenvalues mk (k = 1, 2, 3 · · ·) 
for both braneworld models. Note that the usual linear behavior
from the Kaluza–Klein theories are reproduced, where the index 
k is the Kaluza–Klein number. Since Eq. (37) is rather complex to 
be solved analytically, an exact value for mk cannot be obtained to 
compare with the numerical values. However, once the near-brane 
correction of the string-cigar braneworld enhances the amplitude 

Fig. 2. Kaluza–Klein spectrum of the gauge vector field in the thin-string and string-
cigar braneworlds for c = 0.8.
of the eigenfunctions [36], it is expected the same effect for the 
spectrum.

The eigenfunctions were obtained for both models whose shape 
is plotted in Fig. 3 for c = 0.8. Asymptotically, all the solutions 
behave as Eq. (39) whereas near the origin the amplitude of the 
KK modes are greater in the smooth string-cigar scenario than in 
the thin string-like one. The string-cigar solutions behave as Bessel 
functions of first kind near the origin.

The massive states were also investigated numerically from 
the Schrödinger-like equation for the string-cigar scenario. The 
analogue quantum potential was constructed by numerical inter-
polation from the numerical integral (27). We have plotted the 
potential function U (z) on Fig. 4a for some values of the evo-
lution parameter. The potential well has a volcano-shape whose 
barrier increases and approaches to the origin with the increasing 
of c. The Schrödinger-like equation (29) was solved using the Nu-
merov algorithm [33]. We plotted in Fig. 4b two wavefunctions for 
c = 0.7. The potential well influenced the first cycle of the wave-
functions and, for a moderate mass, the solutions rapidly oscillate. 
Modes with intermediate values of mass smoothly interpolate be-
tween the two solutions shown. Similar results were found for 
other values of c.

4. Conclusions and perspectives

In this article we studied the features of the gauge vector field 
in the thin string-like and in the thick string-cigar model which 
evolves under a geometric Ricci flow.

The analysis was carried out for the s-wave states, i.e., l = 0. 
The massless mode is localized and smoothed out compared to the 
massless mode in the thin string-like scenario. The maximum of 
this mode is displaced from the origin, likewise the stress energy 
components. Asymptotically, the thin-string exponential behavior 
is recovered, whereas inside the core, the massless mode exhibits 
a conical behavior.

We have obtained the KK spectra for the string-like and string-
cigar models by numerical techniques. The well-known linear in-
creasing behavior was obtained, as well the massive gap between 
the massless mode and the first massive state in the thin-string 
background. The massive eigenfunctions present a bigger am-
plitude near the origin in the string-cigar braneworld whereas 
asymptotically the KK modes exhibit the usual thin string-like be-
havior. Thus, the string-cigar geometry provides a near brane cor-
rection to the KK modes.

We have also obtained numerically the analogue quantum po-
tential. It possess a well known volcano-shape which width of the 
well and the high of the barrier are controlled by the geometric 
evolution parameter.
Fig. 3. Gauge field KK numerical eigenfunction in the thin-string for m = 0.259 (a) and string-cigar for m = 0.253 (b) scenarios.
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Fig. 4. Numerical approximation of the quantum analogue potential U (z) for some values of c on (a). The thin line is a plot of the potential in the thin string-like background 
for c = 0.45. On (b), the numerical solutions of the Schrödinger-like equation for c = 0.7 and for small mass values m = 0.45 (dashed line) and m = 1.27 (thick line).
As perspectives we intent to obtain the corrections to the 
Coulomb potential [35]. Further, we propose to study the effects 
of the Ricci flow on the Dirac fermion field. Another interesting 
subject is the analysis of the massive KK modes for l �= 0 configu-
ration and the search of massive resonant modes.
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