

IMPROVING THE PERFORMANCE
EVALUATION OF WIRELESS NETWORKS
TOWARDS A SIMULATION-EXPERIMENTATION SYNERGY USING NS-3

HELDER MARTINS FONTES
TESE DE DOUTORAMENTO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
ENGENHARIA INFORMÁTICA

D 2019

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Improving the Performance Evaluation
of Wireless Networks: Towards a

Simulation-Experimentation Synergy
using ns-3

Helder Martins Fontes

PH.D. THESIS

Doctoral Program in Informatics Engineering

Supervisor: Manuel Alberto Pereira Ricardo (PhD)

Co-Supervisor: Rui Lopes Campos (PhD)

June 13, 2019

Improving the Performance Evaluation of Wireless
Networks: Towards a Simulation-Experimentation

Synergy using ns-3

Helder Martins Fontes

Doctoral Program in Informatics Engineering

June 13, 2019

Abstract

The increasing need of wireless communications in emerging scenarios, including aerial and mar-
itime, requires the development of new protocols and the enhancement of existing protocols. To
properly validate these developments, we depend on performance evaluation of wireless networks,
traditionally considering Simulation and Experimentation activities. Simulations are flexible but
usually produce optimistic results, assuming many simplifications to represent complex scenarios
such as those related to emerging aerial networks. Testbeds, on the other hand, are increasingly
costly to maintain and are frequently unavailable; still, they provide realistic results and are an es-
sential step to achieve proper protocol validation and fine tuning. The problem is that real wireless
testbed experiments in emerging networking scenarios are hardly repeatable. Given the same in-
put, they can produce very different output results, since wireless communications are influenced
by external random phenomena such as noise, interference, and multipath. Real experiments are
also difficult to reproduce. Either the original community testbed can be unavailable – offline or
running other experiments – or the custom testbed becomes inaccessible. Without repeatability
and reproducibility, the validity of the protocol developed is questionable. Also, there is dupli-
cation of effort to develop simulation and real implementation of the protocols, which can be
error-prone and lead to non-comparable results.

Based on the identified problems and on our experience in different research projects, in this
thesis we propose the use of ns-3 as a common platform to enhance and promote the interaction
between Simulation and Experimentation. The objective is to foster the synergy between Simula-
tion and Experimentation, improving the process of performance evaluation of wireless networks.
This synergy is addressed in both directions, resulting in two related main original contributions:
a) from simulation to experimentation – the Fast Prototyping development process; b) from ex-
perimentation to simulation – the Trace-based Simulation (TS) approach. The Fast Prototyping
development process allows to reuse the ns-3 protocol model implementation in the real prototype
for obtaining comparable results, reducing code duplication and potential implementation differ-
ences. In addition, it improves the ns-3 emulation functionality and performance, with a 23-fold
increase in throughput and a 15-fold decrease in Round-Trip Time (RTT), when compared to the
current ns-3 emulation performance in a scenario of interest. The TS approach captures the physi-
cal conditions of real experiments (e.g., radio link quality, the positions of the nodes) and relies on
ns-3 TCP/IP and MAC simulation capabilities to enable the reproduction of real experiments in
simulation. The TS approach was extensively evaluated, producing more accurate results than the
pure simulation alternatives; it achieved average gains above 53% and 90th percentile gains above
57% in scenarios of interest.

With comparable results using the Fast Prototyping development process, and repeatable and
reproducible past real experiments using the TS approach, the interaction between Simulation
and Experimentation activities results in an enhanced Simulation-Experimentation synergy that
improves the process of performance evaluation of wireless networks.

i

ii

Resumo

A necessidade crescente de comunicações sem fios em cenários emergentes, incluindo aéreo e
marítimo, requer o desenvolvimento de novos protocolos e o melhoramento de protocolos exis-
tentes. A validação destes desenvolvimentos depende da avaliação de desempenho das redes sem
fios, que tradicionalmente contempla atividades de Simulação e Experimentação. As simulações
são flexíveis mas tipicamente produzem resultados optimistas, assumindo varias simplificações
ao representar cenários complexos como os das redes aéreas emergentes. As testbeds, por outro
lado, são cada vez mais caras de manter e, por vezes, encontram-se indisponíveis; contudo, elas
fornecem resultados realistas e são um passo essencial para a avaliação de desempenho completa.
O problema é que as experiências reais realizadas em testbeds sem fios que operam em cenários
emergentes são dificilmente repetíveis. Dadas as mesmas entradas elas podem produzir resultados
muito diferentes, uma vez que as comunicações sem fios são influenciadas por fenómenos exter-
nos aleatórios como o ruído, interferência, e o multipath. Experiências reais são também difíceis
de reproduzir. Ou a testbed comunitária original pode estar indisponível – desligada ou ocupada a
correr outras experiências – ou a custom testbed original deixa de estar acessível. Sem repetibil-
idade e reprodutibilidade, a validade do protocolo desenvolvido é questionável. Existe, também,
duplicação de esforço ao desenvolver a implementação de simulação e real dos protocolos, o que
pode tornar-se numa fonte de erros e impedir a comparação de resultados.

Com base nos problemas identificados e na nossa experiência em diferentes projetos de in-
vestigação, nesta tese propomos a utilização do ns-3 como plataforma comum para melhorar e
promover a interação entre atividades de Simulação e Experimentação. O objetivo é a sinergia en-
tre as duas atividades, melhorando o processo de avaliação de desempenho de redes sem fios. Esta
sinergia é abordada nos dois sentidos, resultando em duas principais contribuições relaccionadas:
a) da simulação para a experimentação – processo de desenvolvimento Fast Prototyping; b) da ex-
perimentação para a simulação – abordagem Trace-based Simulation (TS). O processo de desen-
volvimento Fast Prototyping permite reutilizar o modelo de implementação em ns-3 num protótipo
real para obter resultados comparáveis, reduzir a duplicação de código e potenciais diferenças de
implementação. Adicionalmente, ele melhora a funcionalidade e o desempenho de emulação do
ns-3, com um aumento de 23x no throughput e uma redução de 15x no RTT, quando comparados
com o desempenho atual da emulação em ns-3 num cenário de interesse. A abordagem TS captura
as condições físicas de experiências reais (ex., qualidade da ligação de rádio, posições dos nós) e
baseia-se no realismo de simulação do ns-3 ao nível MAC e TCP/IP para permitir a reprodução
de experiências reais em simulação. A abordagem TS foi extensivamente avaliada, produzindo
resultados mais precisos do que as alternativas de simulação pura; ela conseguiu ganhos médios
acima de 53% e ganhos do percentil 90 acima de 57% em cenários de interesse.

Com resultados comparáveis usando o processo de desenvolvimento Fast Prototyping, e resul-
tados repetíveis e reprodutíveis de experiências reais passadas usando a abordagem TS, a interação
entre atividades de Simulação e Experimentação resulta na sinergia melhorada entre as duas, mel-
horando assim o processo de avaliação de desempenho de redes sem fios.

iii

iv

Acknowledgments

I would like to express my total gratitude to all the extraordinary people which made possible the
development of this work in the investigation environment of INESC TEC.

I feel pleased to have integrated the WiN (Wireless Networks) group of the Centre for Telecom-
munications and Multimedia (CTM) at INESC TEC, whose elements unconditionally helped and
supported the various steps of this work. They would be too many to reference separately in this
short part, but their contribution is present all over this work.

I would especially like to express my large gratefulness towards my supervisors Prof. Manuel
Ricardo and Prof. Rui Campos for their friendliness and absolutely outstanding support. Thanks
to them, and the other elements, work had always been an object of personal interest, reflection,
and constructive discussion. I owe them the vast wireless networks knowledge they transmitted
during these years and the patience to answer all my questions. I would also like to express my
deepest gratitude to Thomas Henderson, for his invaluable input to this work.

I would like to acknowledge all my family, friends and especially my wife and parents who, in
some way, made it possible for me to be here through their unconditional support in all situations
of my life.

I would also like to thank the support from the Portuguese Foundation for Science and Tech-
nology (FCT) under the fellowship SFRH/BD/69051/2010. This work is financed by the ERDF
– European Regional Development Fund through the Operational Programme for Competitive-
ness and Internationalisation - COMPETE 2020 Programme and by National Funds through the
Portuguese funding agency, FCT – Fundacao para a Ciencia e a Tecnologia within project POCI-
01-0145-FEDER-016744. This work was also part of the FP7 SUNNY project (id: 313243).

Helder Martins Fontes

v

vi

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Definition . 2
1.3 Objectives . 3
1.4 Challenges . 4
1.5 Thesis Hypothesis . 4
1.6 Original Contributions . 5
1.7 Related Research Projects . 6
1.8 Thesis Structure . 11

2 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse 13
2.1 Traditional Protocol Development Process . 13
2.2 Proposed Protocol Development Process . 15
2.3 Related Work . 16
2.4 ns-3 Emulation . 19
2.5 Performance Evaluation of ns-3 Emulation . 19
2.6 Summary . 23

3 Improving ns-3 Emulation Support in Real-World Networking Scenarios 25
3.1 Overview of ns-3 Communication Types . 25
3.2 Problem and Motivation . 27

3.2.1 Cellular PPP Interfaces Support . 28
3.2.2 Cellular PPP Interfaces Intermittency 28
3.2.3 Manual MAC Address Configuration 28
3.2.4 Dynamic IP Configuration Settings . 29

3.3 Proposed EmuFdNetDevice . 29
3.3.1 Detection of the Operating Layer of Real Network Interfaces 29
3.3.2 Support for Intermittent Real Interfaces 29
3.3.3 MAC Address Cloning . 30
3.3.4 IP Address Cloning . 31

3.4 Solution Validation . 31
3.4.1 Laboratory Testbed . 32
3.4.2 Vehicular Network Testbed . 34

3.5 Summary . 35

4 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols 37
4.1 Problem and Motivation . 37
4.2 Migrating the Data Plane to Outside of ns-3 . 38

vii

viii CONTENTS

4.2.1 Data Plane in User Space (DPU) . 38
4.2.2 Data Plane in Kernel Space (DPK) . 40
4.2.3 Emulating Multiple Nodes . 42

4.3 Validation . 44
4.3.1 Data Plane in User Space (DPU) . 44
4.3.2 Data Plane in Kernel Space (DPK) . 47
4.3.3 Emulating Multiple Nodes . 49

4.4 Comparing the DPU Approach with the Traditional ns-3 Emulation using Oprofile 53
4.5 Comparison with the new NetmapNetDevice and its Impact on Fast Prototyping . 54
4.6 Discussion . 56
4.7 Summary . 57

5 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments 59
5.1 Problem and Motivation . 59
5.2 Related Work . 61
5.3 Proposed Trace-based Simulation Approach . 63

5.3.1 Traces to be Collected from Real Experiments 65
5.3.2 Reproducing Real Node Positions in ns-3 67
5.3.3 Reproducing Radio Link Quality in ns-3 67

5.4 TraceBasedPropagationLossModel . 68
5.4.1 Trace-based Simulation Settings . 70

5.5 TraceBasedPropagationLossModel Functional Testing 71
5.5.1 Asymmetric Point-to-Point Radio Link Test 71
5.5.2 Asymmetric Multiple-Access Radio Link Test 73

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 74
5.6.1 SUNNY UAV-Ground Communications Testbed 74
5.6.2 Isolated Laboratory Testbed . 77
5.6.3 Fed4FIRE+ w-iLab.2 Testbed . 82

5.7 Discussion . 91
5.7.1 TS Approach Strengths . 91
5.7.2 TS Approach Weaknesses . 92

5.8 Summary . 94

6 Conclusions 95
6.1 Overview of the Work Developed . 95
6.2 Original Contributions . 96
6.3 Fast Prototyping Process and Trace-based Approach Limitations 98
6.4 Future Work . 100

6.4.1 Further Developments . 100
6.4.2 Open Research Topics . 100

References 103

List of Figures

1.1 Overview of the typical development process of protocols for communications
systems highlighting the importance of the Performance Evaluation. 2

1.2 Overview of the proposed interactions between Simulation and Experimentation
which promote the Simulation-Experimentation Synergy: A) reuse ns-3 protocol
model implementations (as emulated resources) in real experiments; B) improve
simulation accuracy based on physical conditions and results from past real exper-
iments. 4

1.3 SITMe Communications System Overview. 7
1.4 SUNNY Communications System Overview. 8
1.5 MareCom Communications System Overview. 9
1.6 BLUECOM+ Communications System Overview. 10
1.7 Example of indoor and outdoor Wi-Fi testbeds used in SIMBED. 11
1.8 WISE Communications System Overview. 12

2.1 Traditional protocol development process resulting in a separate Simulation Model
and Implementation Prototype. 14

2.2 Proposed shared ns-3 protocol model development process, named Fast Prototyp-
ing, resulting in a Shared Protocol Model between Simulation and Experimentation. 16

2.3 Data plane forwarding test scenarios. 20
2.4 Data plane forwarding results for 1400-byte packets. 21
2.5 Data plane forwarding results for 160-byte packets. 22

3.1 Overview of the communications provided by the ns-3 (a)NetDevice, (b)FdNetDevice,
(c)TapFdNetDevice and (d)EmuFdNetDevice. 26

3.2 Emulation in a vehicular network scenario, considering possible Wi-Fi and Cellu-
lar network links. 27

3.3 State machine representing how the improved EmuFdNetDevice handles commu-
nication using intermittent real interfaces. 30

3.4 Laboratory testbed scenario. 32
3.5 Elements present in each bus of the Vehicular network testbed scenario. 34

4.1 Data plane in user space (DPU) approach. 39
4.2 Data plane in kernel space (DPK) approach. 40
4.3 Real Routing module architecture. 41
4.4 Emulation of multiple nodes in a single host machine. 42
4.5 DPK approach for emulation with multiple nodes. 44
4.6 Network topology of the test scenarios related to the DPU approach. 45
4.7 DPU performance validation results for UDP traffic with payload of 160 bytes. . 46
4.8 Network topology of the test scenarios related to the DPK approach. 47

ix

x LIST OF FIGURES

4.9 DPK approach performance validation results for UDP traffic with payload of
160 bytes. 48

4.10 Network topology of the test scenarios regarding the DPK approach for emulating
multiple nodes. 50

4.11 Results of emulating multiple nodes for UDP traffic with payload of 160 bytes. . 51
4.12 Results of emulating multiple nodes for TCP traffic. 52

5.1 Enhanced Simulation-Testbed Synergy via Shared ns-3 Protocol Model and Per-
petuation of Experiments. 60

5.2 UAV path recorded in real-world experiment performed in the SUNNY project. . 61
5.3 High-level comparison between pure ns-3 simulation and a trace-based ns-3 sim-

ulation approaches. 64
5.4 High-level model of the Trace-based Simulation approach. 64
5.5 Frame success ratio of NIST OFDM model for a frame size of 200 bytes using

IEEE 802.11a PHY rates. [1] . 66
5.6 Class diagram for the proposed TraceBasedPropagationLossModel. 69
5.7 Wireshark screenshot #1 showing RSSI for Node 0 and Node 1 after the first

Scheduled update. 72
5.8 Wireshark screenshot #2 showing RSSI for Node 0 and Node 1 after the second

Scheduled update. 72
5.9 Wireshark screenshot #3 showing RSSI for Node 0 and Node 1 after the third

Scheduled update. 72
5.10 Wireshark screenshots showing Node0 RSSI perspective of the network. 73
5.11 Wireshark screenshots showing Node1 RSSI perspective of the network. 73
5.12 Wireshark screenshots showing Node2 RSSI perspective of the network. 73
5.13 Radio link distance between UAV and BS. 75
5.14 SNR recorded in the real-world experiment for the UAV and BS. 75
5.15 Real Throughput vs. 2-Ray Ground Model Simulation vs. Trace-Based Simulation. 76
5.16 Diagram of the real testbed used for the wireless experiments, with the average

SNR measured per link direction. 78
5.17 Comparison of UDP Throughput per second measured during 1) the repetition of

real Exp.#5, 2) the corresponding Trace-Based Simulation based on traces con-
taining the real SNR average per second, and 3) the corresponding Trace-Based
Simulation based on traces containing the real SNR with a per packet resolution. 81

5.18 Map of the available resources, and their location, in w-iLab.2 testbed. 83
5.19 CDFs of the throughput relative error when comparing the trace-based (TraceSim)

and pure simulations to the corresponding real experiments for auto PHY rate mode. 87
5.20 CDFs of the throughput relative error when comparing the trace-based (TraceSim)

and pure simulations to the corresponding real experiments for fixed PHY rate mode. 88
5.21 CDF of the trace-based ns-3 simulation (TraceSim) and pure ns-3 simulation (PureSim)

RTT absolute error in comparison to the RTT obtained in the real experiments for
auto PHY rate mode with packet size of 1472 bytes 89

List of Tables

4.1 Number of CPU “CLK_UNHALTED” events associated to each binary image,
when using the traditional ns-3 emulation. 53

4.2 Number of CPU “CLK_UNHALTED” events associated to each binary image,
when using the DPU approach. 54

4.3 Detailed comparison of CPU “CLK_UNHALTED” events count between using
traditional ns-3 emulation and DPU approaches. 55

5.1 Example of the 2D RSS (in dBm) array for a trace-based ns-3 simulation con-
taining three nodes, where the lines represent the receiver nodes and the columns
represent the sender nodes. 69

5.2 Average UDP throughput results obtained for each individual link, one flow di-
rection at each time, in the Real Experiment, the Trace-Based Simulation, and the
Pure Simulation, including the relative error with respect to the Real Experiment
results. 80

5.3 Average UDP throughput results obtained for two simultaneous flows from differ-
ent senders to each sink node, in the Real Experiment, the Trace-Based Simulation
and the Pure Simulation, including the relative error with respect to the Real Ex-
periment results. 80

5.4 Average UDP throughput results obtained when rerunning Exp.#5 and considering
the Trace-Based Simulation - High SNR Sampling Rate (HSSR), the Trace-Based
Simulation, and the Pure Simulation, including the relative error with respect to
the Real Experiment results. 81

5.5 Throughput relative error when comparing the trace-based (TraceSim) and pure
simulations to the corresponding real experiments for auto PHY rate mode. . . . 87

5.6 Throughput relative error when comparing the trace-based (TraceSim) and pure
simulations to the corresponding real experiments for fixed PHY rate mode. . . . 88

xi

xii LIST OF TABLES

xiii

xiv ABBREVIATIONS

Abbreviations

API Application Programming Interface
AGC Auto-Gain Control
ARP Address Resolution Protocol
AUV Autonomous Underwater Vehicle
BLUECOM+ Connecting Humans and Systems at Remote Ocean Areas using Cost-effective

Broadband Communications
BS Base Station
CDF Cumulative Distribution Function
CPU Central Processing Unit
CSI Channel State Information
DCE Direct Code Execution
DHCP Dynamic Host Configuration Protocol
DPK Data Plane in Kernel Space
DPU Data Plane in User Space
EMI Electromagnetic Interference
EU European Union
FBMN Flying Backhaul Mesh Network
FER Frame Error Ratio
FEUP Faculdade de Engenharia da Universidade do Porto
FMAP Flying Mesh Access Point
INESC TEC Instituto de Engenharia e Sistemas de Computadores, Tecnologia e Ciência
IP Internet Protocol
IPC Inter-Process Communication
LAN Local Area Network
LoS Line-of-Sight
ML Machine Learning
MareCom Maritime Community Networks and Services
MAP Mesh Access Point
MCS Modulation Coding Scheme
MIMO Multiple-Input Multiple-Output
NSC Network Simulation Cradle
ns-2 Network Simulator 2
ns-3 Network Simulator 3
OFDM Orthogonal Frequency Division Multiplexing
OLSR Optimized Link State Routing
OS Operating System
PAN Personal Area Network
PDR Packet Delivery Ratio
PDU Protocol Data Unit
PLR Packet Loss Ratio

ABBREVIATIONS xv

QREN Quadro de Referência Estratégico Nacional
R&D Research and Development
RFI Radio-Frequency Interference
RSSI Received Signal Strength Indication
RTT Round Trip Time
SDN Software Defined Networking
SIMBED Offline Real-World Wireless Networking Experimentation using ns-3
SISO Single-Input Single-Output
SITMe Serviços Integrados para Transportes Metropolitanos
SNR Signal-to-Noise Ratio
STCP Sociedade de Transportes Colectivos do Porto
SUNNY Smart UNattended airborne sensor Network for detection of vessels used for

cross border crime and irregular entrY
TTL Time to Live
TVWS Television White Spaces
UAV Unmanned Aerial Vehicle
USV Unmanned Surface Vehicle
WAN Wide Area Network
WISE traffic-aWare flyIng backhaul meSh nEtworks
WMRP Wireless Metropolitan Routing Protocol

Chapter 1

Introduction

1.1 Context and Motivation

In the last decade, we have assisted to the proliferation of Wireless Networks in different appli-

cation domains, such as Wide Area Network (WAN), Local Area Network (LAN), and Personal

Area Network (PAN). In these application domains, increasingly complex scenarios are being con-

sidered which may have unique characteristics and requirements that are not yet fully addressed

by State-of-the-Art solutions. Examples of such scenarios may include emerging vehicular net-

works that operate at the extreme conditions experienced by Unmanned Aerial Vehicles (UAVs),

Unmanned Surface Vehicles (USVs), and Autonomous Underwater Vehicles (AUVs). The more

demanding scenario characteristics, such as very dynamic wireless link quality and network topol-

ogy, as well as application requirements – e.g., higher bandwidth, quicker link establishment, and

faster handover – push further the development of new protocols and the enhancement of existing

protocols.

To properly quantify the enhancements introduced by such developments we highly depend

on the performance evaluation of wireless networks. Wireless networking systems are too com-

plex to be evaluated analytically. Therefore, we typically evaluate wireless networking systems

using two processes: 1) network simulation based on mathematical models of the real system; 2)

network experimentation performed in real testbeds. Simulation and experimentation evaluation

processes are both essential and complementary for evaluating the performance of the protocols

being developed and for achieving their proper validation and fine-tuning.

In the Wireless Networks (WiN) group [2] of INESC TEC [3], we typically use Network

Simulator 3 (ns-3) [4][5] in the performance evaluation process. ns-3 is an open-source, discrete-

event and packet level network simulator for Internet systems, targeted primarily for research and

educational use. ns-3 provides an architecture that eases the implementation of new simulation

modules. Also, it allows to create complex, though fully controlled, repeatable, reproducible,

easily observable, and inexpensive to run simulation scenarios. Being a simulated environment,

these scenarios may involve new technologies that are not yet available to use in a real system (e.g.,

a new IEEE 802.11 variant or a new routing protocol), and scale to the number of network nodes,

1

2 Introduction

or scenario variations, needed to perform the necessary evaluations. Simulation, however, may be

unable to accurately represent the very complex characteristics present in emerging networking

scenarios, as the simulation models are abstractions of the real systems or the phenomena they

are trying to represent. In such cases it is especially important to complement the performance

evaluation process with network experimentation.

In the WiN research group we typically use custom real testbeds in the performance evalua-

tion process. In real testbeds we can experiment and evaluate the real performance of the protocol,

running it in a real hardware prototype and collecting experimental results that are typically more

accurate than the simulation results. Although this appears to be the better performance evalu-

ation process, especially considering the decreasing size and cost of computer hardware, in real

testbeds we typically have problems such as scarce resources – e.g., money, time, space, hardware,

and testbed availability –, which directly limits the testbed scale and the number and duration of

experiments we are able to run. On top of this, the real scenario may be highly unstable (e.g.,

emerging aerial wireless networks), which greatly limits the repeatability and reproducibility of

the experiments, thus affecting the comparison of the results obtained for different runs.

Most of the research projects developed in the WiN research group, further detailed in Sec-

tion 1.7, involve the design and development of custom-tailored protocols to address very differ-

ent communications systems requirements, typically operating in emerging networking scenarios.

Usually, for each project, a combination of performance evaluation based on simulation and ex-

perimentation is used. This combination helps to achieve better validation and fine-tuning of the

protocols before deploying them in the real environment. Nevertheless, our hands-on experience

allowed the identification of problems regarding this combined performance evaluation process.

These problems are detailed in Section 1.2.

1.2 Problem Definition

The typical development process of new protocols for communications systems generally involves

the four phases represented in Figure 1.1: design of the protocol concept, evaluation in a network

simulator (Simulation), evaluation in a real testbed (Experimentation), and final deployment in a

production system.

Figure 1.1: Overview of the typical development process of protocols for communications systems
highlighting the importance of the Performance Evaluation.

1.3 Objectives 3

Creating new protocols for wireless communications systems is highly dependent on the per-

formance evaluation phases that rely on simulation and experimentation. Traditionally, a protocol

simulation model is created from the design of the protocol. Multiple simulations are run and the

results are analyzed and used to improve the protocol. When the simulation results are acceptable,

development can continue to the next phase. A prototype of the protocol is implemented in a real

system and run in a testbed to be validated. This development process is usually iterative. If the re-

sults from simulation or experimentation do not meet the requirements, the protocol design needs

to be changed and new simulations and experiments are carried out. At this point, two implemen-

tations of the protocol are being maintained: 1) the simulation model; 2) the implementation
prototype. This leads to duplication of effort when a change needs to be made in the protocol,

which, in turn, increases both the development time and the chance of unwilling introduction of

human errors in the implementations, making their results non-comparable.

Emerging vehicular network testbeds, such as those composed of UAVs, present very unique

and extreme physical characteristics, namely highly unstable Signal-to-Noise Ratio (SNR) at re-

ceivers due to antenna misalignment and obstruction, asymmetric radio link SNR due to differ-

ent noise exposures, and unstable nodes’ mobility patterns. These characteristics are not accu-

rately reproduced in simulation, thus making the results from simulation and experimentation

non-comparable. Also, the performance evaluation in the real testbeds cannot be done extensively

due to costly logistics operations, small testbed scale, and limited duration of the experiments.

These limitations greatly affect the reproducibility and comparison of the performance evaluation

results.

In summary, without comparable results between simulation and experimentation evaluation

phases, and without repeatable and reproducible results between different runs of the same real

experiment, the performance evaluation of a wireless communications system under study cannot

be properly carried out. Ultimately, the validity of the protocol developed – along with its possible

gains compared to State-of-the-Art alternatives – becomes questionable.

1.3 Objectives

The main goal of this thesis is to address the problems identified in Section 1.2, in order to improve

the process of performance evaluation of wireless networks. By introducing new forms of interac-

tion between Simulation and Experimentation evaluation phases, this work aims at using ns-3 for

improving not only both phases individually, but mainly the performance evaluation process as a

whole. To achieve the Simulation-Experimentation synergy using ns-3, our objective is to explore

how each phase can benefit from the output of the other without affecting each other’s expected

functionality and performance.

An overview of the proposed interaction between Simulation and Experimentation evaluation

phases is depicted in Figure 1.2. From simulation to experimentation (A), our objective is to use

a shared protocol model implementation between simulation and experimentation to avoid poten-

tial implementation differences and non-comparable results. More specifically, we aim to explore

4 Introduction

Figure 1.2: Overview of the proposed interactions between Simulation and Experimentation which
promote the Simulation-Experimentation Synergy: A) reuse ns-3 protocol model implementations
(as emulated resources) in real experiments; B) improve simulation accuracy based on physical
conditions and results from past real experiments.

and improve the ns-3 emulation functionality, which has the potential to combine emulated (sim-

ulations using ns-3 emulation) and real resources in the same test run. From experimentation to

simulation (B), our objective is to improve the simulation accuracy based on the physical con-

ditions captured from real experiments and enable repeatability and reproducibility, namely in

emerging networking scenarios.

1.4 Challenges

This section presents the main challenges faced during this PhD work in order to achieve the two

main objectives defined in Section 1.3. The challenges related to each objective are defined in the

following.

Experimentation benefiting from simulation:

• Assessment of the correct operation and performance overhead of the ns-3 emulation mode

and how it affects the network performance of real testbeds.

• Improvement of the compatibility of the ns-3 emulation mode to work with different real-

world network configurations and interfaces.

• Reduction of the ns-3 packet processing overhead in order to keep real-time operation and

performance while scaling the network capacity or the number of emulated nodes per sim-

ulation process.

Simulation benefiting from experimentation:

• Identification of the suitable variables to capture from real experiments, in order to repro-

duce them in simulation while dealing with the hardware limitations on reporting up-to-date

and accurate data.

1.5 Thesis Hypothesis

It is possible to use ns-3 as the platform to improve the process of performance evaluation of

wireless networks enabling: 1) the combination of emulated and real testbed resources in the same

1.6 Original Contributions 5

experiment, while maintaining the designed system behavior and performance; 2) the perpetuation

of real experiments via trace-based ns-3 simulations that are more accurate than pure simulation.

1.6 Original Contributions

The two main original contributions provided by this thesis are the following:

1. Fast Prototyping Development Process. This is a new shared protocol model implementa-

tion process to be used during the performance evaluation phases of protocol development.

By reusing the already implemented ns-3 protocol model over the real hardware prototype,

then installed in a testbed, we eliminate the duplicate effort to develop simulation and real

implementations. This reduces the coding effort and also the chance for error introduc-

tion, which could render the results non-comparable. This process relies on ns-3 emula-

tion functionality which allows to run simulated resources in real time, interacting with the

real network interfaces. This contribution includes the following specific contributions: 1)

improvements to the compatibility of ns-3 emulation to a larger set of real network inter-

face types and operational restrictions encountered in the real-world networks used by the

testbeds; 2) different approaches to improve the ns-3 emulation performance over the real

testbed hardware. The novelty of this process, when compared to the state-of-the-art alter-

natives, relies on maintaining the benefits of ns-3 regarding the easiness and flexibility of

implementation, the important log functionality it provides, and the ability to combine, in

the same run, simulated and emulated resources, which can improve the testbed in scale and

functionality.

2. Trace-based Simulation Approach. This is a novel simulation approach allowing to per-

petuate past real-world experiments and rerun them independently of the testbed availability

and the external phenomena influencing its physical conditions. This is possible by record-

ing traces of such physical conditions and reproducing them using a trace-based simulation.

Trace-based simulation is especially important considering very unpredictable and unstable

scenarios such as the emerging wireless vehicular networking scenarios. Using trace-based

simulations we can reproduce the same conditions encountered in the real experiment runs.

The novelty of our approach, when compared to the state-of-the-art, is that we only repro-

duce the physical conditions (radio links characteristics and the positions of the nodes) and

rely on ns-3 TCP/IP and MAC simulation capabilities for the upper layers.

Five conference papers and two journal papers were produced as a direct result of this thesis:

1. ns-3 NEXT: Towards a Reference Platform for Offline and Augmented Wireless Net-
working Experimentation in Proceedings of the Workshop on ns-3, 2019, Florence, Italy

(Conference) [6];

6 Introduction

2. Improving ns-3 Emulation Performance for Fast Prototyping of Routing and SDN Pro-
tocols: Moving Data Plane Operations to Outside of ns-3 in Simulation Modelling Prac-

tice and Theory, 2019 (Journal) [7];

3. Improving the ns-3 TraceBasedPropagationLossModel to Support Multiple Access Wire-
less Scenarios in Proceedings of the Workshop on ns-3, 2018, Surathkal, India (Conference)

[8];

4. A Trace-Based ns-3 Simulation Approach for Perpetuating Real-World Experiments
in Proceedings of the Workshop on ns-3, 2017, Porto, Portugal (Conference) [9];

5. Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols in

Proceedings of the Workshop on ns-3, 2016, Seattle, WA, USA (Conference) [10];

6. Improving ns-3 Emulation Support in Real-World Networking Scenarios in Proceed-

ings of the 8th International Conference on Simulation Tools and Techniques, 2015, Athens,

Greece (Conference) [11];

7. Fast Prototyping of Network Protocols Through ns-3 Simulation Model Reuse in Sim-

ulation Modeling Practice and Theory, 2011 (Journal) [12];

1.7 Related Research Projects

This section presents some research projects we actively contributed to as researchers at INESC

TEC, which inspired and directly influenced this thesis. The acquired hands-on experience in these

projects helped to: 1) better define relevant real-world problems to be addressed during this PhD;

2) assess, with first-hand experience, the added value introduced by the original contributions. For

each project, a brief description is presented, in order to illustrate the context of this PhD work

and motivate with real examples the application of the approach proposed herein.

The SITMe [13] project, whose reference architecture is shown in Figure 1.3, had the goal

of developing and supplying information services to passengers traveling in buses, including dis-

playing news and entertainment information in on-board screens and providing Internet access

to the passengers using Wi-Fi. Herein, the terms ‘Wi-Fi’ and ‘IEEE 802.11’ are used with the

same meaning. For this purpose, INESC TEC developed a multi-technology communications sys-

tem. The communications system had to operate with multiple wireless access networks (HSPA+,

IEEE 802.11, and IEEE 802.16e), supporting handovers between them and terminal mobility. On

top of this, the network architecture had to be scalable in order to support future network expan-

sion to the entire public transportation fleet of the city of Porto. To validate the fulfillment of

the project requirements and goals, INESC TEC greatly depended on the performance evalua-

tion of wireless networks. Firstly, using ns-3 simulation; then, using experimentation over a real

testbed instantiated by a pilot of 11 buses that ran for over a year. Simulation allowed to assess

the solution scalability and its correct operation in a multitude of scenario variations, while the

1.7 Related Research Projects 7

Figure 1.3: SITMe Communications System Overview.

experimentation allowed to further validate the solution using real hardware with real usage by the

bus passengers. During this project, the problem of porting the simulation implementation to the

real testbed became evident, as this duplication is time consuming and it is difficult to maintain

both implementations synchronized, which may lead to non-comparable results. Related to the

testbed results, we also found how important it is to have all the relevant operational logs auto-

matically collected, organized and opportunistically uploaded to our experiments database, as we

used this data very often to compare with simulation results and validate the system operation. In

this project, we tested and validated the use of a shared protocol model implementation between

the simulator and the real testbed.

The SUNNY [14] project aimed to develop a solution capable of improving EU border mon-

itoring, compared to the legacy systems, whilst keeping affordability and interoperability as key

enabling factors. The project has developed a novel intelligent and heterogeneous aerial sensor

network, which provides improved cooperative sensing and real-time data processing and trans-

mission capabilities, as illustrated in Figure 1.4. Each UAV had two redundant WLAN interfaces

for Air-Air and Air-Ground data link communications, and a third wireless interface as the control

and telemetry link. INESC TEC has been involved in the development of the communications

system for the two redundant data-links. A testbed of 4 UAVs and a Ground Radio Base Station

has been developed to validate the sensors, the on-board data processing units, and the commu-

nications system. In this project, we faced several issues regarding testbed availability due to

the complex logistics and high costs involved, which resulted in very few UAV test flights. As

such, we had to rely heavily on simulation for the performance evaluation of the wireless com-

munications system. One problem was ns-3 simulation performance results were very optimistic

when compared with the real performance results, due to the extreme physical environment char-

8 Introduction

Figure 1.4: SUNNY Communications System Overview.

acteristics involved (e.g., high relative speeds, antenna misalignment, radio Line-of-Sight (LoS)

obstruction by the UAV body, higher noise exposure). This influenced the radio links stability and

performance. Another problem was that other project partners developing solutions at the appli-

cation layer, thus acting as end-users of the communications system, for instance, UAV on-board

data-processing equipment, highly depended on the realistic operation of the communications sys-

tem to develop and fine tune their data transport solution: simulation results were, once again, too

optimistic. In this project, we tested and validated the process of using past-experiments’ traces,

in order to reproduce those physical conditions in ns-3. This allowed offline validation and fine-

tuning of the communications system and of the applications developed by the end-users.

The MareCom [2] project, whose system overview is shown in Figure 1.5, aimed at develop-

ing a highly available, broadband maritime communications solution based on the IP protocol and

off-the-shelf hardware, in order to: 1) support the activities of the communities operating in mar-

itime environment, such as fishermen, maritime transportation, recreational vessels and navies,

with reliable and broadband communications; 2) enable the convergence with the terrestrial com-

munications scenario, fostering the digital inclusion of these communities. For evaluating the

developed wireless communications system INESC TEC has used simulations and a small-scale

testbed (e.g., one fishing ship, one ship from the Portuguese Navy, and a land base station). Once

again, we experienced physical layer radio link conditions that were unstable, due to the sea undu-

lation, which constantly affected antenna alignment and, consequently, the radio channel. The sea

conditions and the path of the vessels were also non repeatable, which affected the reproducibility

of the experiments and the validation of new versions of the communications solution. External

factors such as weather conditions, fishing quotas, and fishing interdiction periods also had an

impact on the availability of the testbed, as the ships were retained at the harbor for long periods.

1.7 Related Research Projects 9

Figure 1.5: MareCom Communications System Overview.

Again, replaying the past experimental variable traces was important to this project, in order to

keep fine-tuning and validating the wireless communications system.

The BLUECOM+ [15] project had the goal of developing an innovative communications solu-

tion that enables broadband, cost-effective Internet access at remote ocean areas to regular devices,

using standard wireless access technologies such as GPRS/UMTS/LTE and IEEE 802.11. The

long range radio links maintained by a flying network of balloons was our main focus at INESC

TEC, as the rest of the communications solution highly depended on this backhaul network. The

concept proposed by the project is illustrated in Figure 1.6. As in other projects, we firstly used

simulation as a preliminary validation of the solution. Then, a testbed composed by a land base

station and two balloons was deployed, and tests were run considering synthetic traffic and real ap-

plications. Similarly to what happened in the SUNNY project, the deployment of the testbed was

very costly and involved very complex logistics, which highly limited the number and duration

of the experiments performed. After running the experiments in real environment we found that,

once again, simulation results were very optimistic. The wind caused oscillations in the balloons,

which affected antenna alignment. The altitude of the balloons also played an important role in

the real performance of the system, due to the constructive or destructive effect of the ray reflected

in the water surface at the receiver. Replaying past experimental variable traces was relevant to

keep fine-tuning the solution and also helped improving the simulation models used.

The SIMBED [16] project was defined with the goal of further validating our approach of

replaying past experimental conditions in ns-3, as previously used in SUNNY, MareCom, and

BLUECOM+. This time, instead of using custom made private testbeds from specific research

projects, SIMBED focuses on using Fed4FIRE+ wireless testbeds – the world’s largest federa-

tion of community testbeds – which operate in controlled indoor and outdoor environments, as

illustrated in Figure 1.7. Fed4FIRE+ wireless testbeds such as w-iLab.t and NITOS, although

10 Introduction

Figure 1.6: BLUECOM+ Communications System Overview.

deployed in controlled environments, are also affected by environmental phenomena (e.g., noise,

interference, multipath), giving different results between multiple runs of the same experiment.

To assure repeatability and reproducibility of experiments Fed4FIRE+ has tools to exclude results

considered as outliers. In SIMBED we argued that these outliers are also representative of the real

system operation and should not be discarded. Collecting traces of all runs of the experiment we

should be able to replay those conditions in ns-3, producing equivalent results for every experi-

ment execution – even the one that produced the outliers. SIMBED has allowed us to validate our

approach in a large scale and scenario diversity that would be very difficult to accomplish using

private testbeds. Such results are presented in this thesis.

The WISE [17] project aims to develop a new communications solution based on the concept

of Flying Backhaul Mesh Networks (FBMN). The proposed concept is shown in Figure 1.8. At

the core of the FBMN concept is the usage of UAVs, more specifically Quadrotors, which will

carry on-board Mesh Access Points (MAPs) and will form a mobile and physically re-configurable

wireless backhaul mesh network composed of Flying MAPs (FMAPs). This network will be self-

organized and the FMAPs will position themselves according to the data traffic generated by the

mobile terminals and the need to relay the traffic towards the Internet. INESC TEC is, at the

moment, evaluating the communications system in ns-3. Later, a testbed composed of FMAPs

installed in UAVs will be implemented. According to current legislation in Portugal, we face the

need for a special authorization for flying UAVs over people. As such, we anticipate the need to

combine emulated resources with real ones during the performance evaluation process, in order to

achieve proper validation of the solutions. The interaction between real and emulated resources

for enhanced experimentation is also addressed in this thesis.

1.8 Thesis Structure 11

Figure 1.7: Example of indoor and outdoor Wi-Fi testbeds used in SIMBED.

1.8 Thesis Structure

Each of the four main challenges identified in Section 1.4 are addressed in separate chapters, in

the order they were listed. Chapters 2–4 are related to the first main original contribution – Fast

Prototyping Development Process –, while Chapter 5 is related to the second main original con-

tribution – TS Approach. The thesis is then structured as follows. Chapter 2 presents the Fast

Prototyping development process. Chapter 3 presents our proposed solution to improve the Fast

Prototyping compatibility with real-world networks by enhancing the functionality of ns-3 emula-

tion. Chapter 4 describes the two proposed approaches to improve even further the Fast Prototyp-

ing development process, and reduce ns-3 emulation per-packet processing overhead. Chapter 5

presents the Trace-based Simulation (TS) approach. Finally, Chapter 6 draws the conclusions and

presents the future work.

12 Introduction

Figure 1.8: WISE Communications System Overview.

Chapter 2

Fast Prototyping of Network Protocols
through ns-3 Simulation Model Reuse

Research and development in the area of wireless communications protocols is a fast evolving field

of research. Considerable time is spent by researchers and developers from the design of a protocol

to the deployment of its implementation in real systems. One of the main contributors for the time

spent is the need to properly validate the protocol through performance evaluation, both via simu-

lation and experimentation. For that purpose, a simulation model and an implementation prototype

need to be developed for the same protocol design. We have past experience [18] with this time-

consuming duplicate effort on evolving the Wireless Metropolitan Routing Protocol (WMRP) [19]

version for the SITMe project. The evolved WMRP version needed to be thoroughly simulated

and then implemented in a real prototype to be executed in the SITMe real testbed. Motivated by

this hands-on experience we started to explore ways to overcome this problem: what if we could

develop a single shared protocol model for simulation and experimentation?

In this chapter we present a protocol development process, named Fast Prototyping, that ex-

plores that possibility. The Fast Prototyping process uses a shared protocol model implementation

that takes advantage of the existing ns-3 emulation capability. In order to assess the feasibil-

ity of the Fast Prototyping process, we compare the packet processing performance in terms of

achievable throughput, packet loss ratio, and Round Trip Time (RTT), when ns-3 emulation mode

and pure kernel space IPv4 forwarding are used. Finally, we point out the open problems to be

addressed in order to improve the Fast Prototyping process. These problems are the subject of

Chapter 3 and Chapter 4.

2.1 Traditional Protocol Development Process

Traditionally, developing a new network protocol involves the phases depicted in Figure 2.1. In

the Design phase, we assess the scenario requirements and problem we want to solve and create

the protocol specification. Then, in the Simulation phase, we create the Simulation Model for

the protocol and run multiple simulations using a given set of input parameters. When the results

13

14 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse

are acceptable, we move to the Experimentation phase and create the Implementation Prototype,

which runs in the real hardware of the testbed. If the simulation or the experimental results are not

satisfactory, the protocol specification is updated and new results from Simulation and Experimen-

tation obtained, reflecting the new protocol specification. Finally, when the protocol specification

is stable, after its performance is successfully validated in Simulation and Experimentation, the

protocol is ready for final deployment in the production system (Deployment phase).

Figure 2.1: Traditional protocol development process resulting in a separate Simulation Model
and Implementation Prototype.

This development process has problems that become evident when focusing on the Perfor-

mance Evaluation phases. First, there is a lot of duplicate effort when developing both a Simu-

lation Model and an Implementation Prototype. Second, when modifications to the protocol are

needed, they have to be done in three parts at once: Specification, Simulation Model, and Imple-

mentation Prototype. The risk of inconsistencies between them being accidentally introduced is

non-negligible.

We may question what is so different between the Simulation Model and the Implementation

Prototype that justifies the need for duplicate code. A network protocol can generally be described

as a concurrent Timed Automata [20], i.e., a state machine in which state transitions are triggered

by input messages and constrained by the passage of real time. Both simulation and implemen-

tation of the same protocol include the very same automata. Only the way messages are received

and transmitted and the way the passage of time is measured is different between the two. A proto-

col implementation (e.g., a routing agent) usually has an event loop, which is an infinite loop that

waits for data to arrive on one or multiple sockets, decodes the data to extract the Protocol Data

Units (PDUs), and processes the PDUs according to the protocol. As a result of the processing,

new PDUs may need to be transmitted; at this point the new PDUs are encoded as data and written

to one or more sockets. Time-based transitions are typically implemented using a system call to

suspend the process for the required time, thus saving CPU cycles. For example, in UNIX systems

it is frequent to have protocol implementations that use a select or poll based main loop, allowing

them to wait for a certain elapsed time with the process suspended, but at the same time be notified

when new data has arrived at a socket. In simulation environment, on the other hand, time is vir-

tual, represented by a virtual clock, which is a simple numeric counter. In a simulator the passage

of time is modeled by an event and does not require the process to be suspended during that time;

2.2 Proposed Protocol Development Process 15

the virtual clock only needs to be incremented by the amount that simulates the real passage of

time. Events are also used to represent the reception of data from a network interface.

In the simulator, the event scheduler is essentially an infinite main loop that processes pending

events in order. It is similar to the select-based event loop in the protocol implementation. The

differences are that: 1) in the simulator, elapsed time is virtual, in the implementation it is real; 2)

in the simulator, a node simulates the reception of data from another node, while in the implemen-

tation the data is actually received from a real network interface. The protocol-specific aspects

are common to the simulation and implementation, only the “environment interface” aspects are

different. The question is whether we can adapt one to the other. This question is answered in

Section 2.2.

2.2 Proposed Protocol Development Process

In this section we propose Network Simulator 3 (ns-3) to be used as the basis for a new proto-

col development process that reuses the code of the Simulation Model for the Implementation

Prototype. The new protocol development process is named Fast Prototyping.

ns-3 is a network simulator popular for research and educational use. It officially started

around mid 2006, and the first stable version was released in June 2008. Even though ns-2 is

still being used, ns-3 has a better core architecture and it is better suited to receive community

contributions. Core architecture features such as a COM-like interface aggregation and query

model, automatic memory management, callback objects, and realistic packets, make for an easy

to use environment in which to develop new complex simulation models. In addition, it is one of

the best performing simulation tools available [21, 22].

Since version 3.2, ns-3 has received support for the “real-time simulator”. The real-time simu-

lator is an alternative event scheduler that can be selected at run-time or compile time. It synchro-

nizes the virtual clock of the simulator with the real time of the host system where the simulation

program is running. Thus, if an event is scheduled to happen in t seconds, then the callback func-

tion associated with the event will be called after exactly (within a small tolerance) t seconds of

real time have elapsed. Shortly after, in version 3.3, ns-3 received support for an “emulated Net-

Device”, also known as EmuNetDevice, currently called EmuFdNetDevice. In ns-3, a NetDevice

is a class of objects that simulate a particular link layer type, such as Ethernet, Wi-Fi, and point-

to-point. The addition of EmuNetDevice provided on ns-3 the ability 1) to receive packets from a

real network interface and convert the packets into simulated packets, and 2) to transmit simulated

packets generated by the simulation through a real network interface. Emulation in ns-3 is not

as difficult as in ns-2. In ns-2 packets are simulated as objects that do not know how to serialize

themselves into a byte stream. Conversely, in ns-3 packets are represented internally as bytes,

such as real packets, even in pure simulation mode, and the simulator uses Header classes for con-

version between PDU format and byte format. For this reason, emulation in ns-3 works with any

protocol, not just a selected few protocols prepared to support emulation, as in ns-2. These are the

main ingredients for enabling real protocol implementations to emerge from an ns-3 simulation

16 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse

model of that same protocol. We only need to build a simulation program, with one node only, and

a number of EmuNetDevice instances equal to the number of real network interfaces being used.

The protocol simulation model runs on that single node, but remains unaware that it is running in

emulation mode. Thanks to the ns-3 architecture and features, very little code is needed on top of

the protocol simulation model to deploy it as an Implementation Prototype to run in a testbed.

Figure 2.2: Proposed shared ns-3 protocol model development process, named Fast Prototyping,
resulting in a Shared Protocol Model between Simulation and Experimentation.

If the Simulation Model and Implementation Prototype of a protocol follow this approach,

wherein most of the code is exactly the same for both, the Fast Prototyping protocol development

process illustrated in Figure 2.2 is defined. The phases composing the Fast Prototyping develop-

ment process are the same, although the code is shared between Simulation and Experimentation

(real-world testbed). The advantages of the shared protocol model for both evaluation phases are

clear. First, development time is saved, since only a small (and very generic) wrapper needs to be

written to run the ns-3 protocol model as an Implementation Prototype for the testbed. Second,

when the protocol is used in a real-world testbed and needs to be adjusted, the modifications are

made in a single software module; this is simple and does not have the risk of inconsistencies

between the Simulation Model and the Implementation Prototype.

2.3 Related Work

The idea of using a shared protocol model as the Implementation Prototype is not new. However,

there are issues with the previous attempts. In this section we analyze the state-of-the-art solutions

using a shared protocol model approach.

The popular ns-2 simulator [23] does have some support for emulation [24], but only some

protocols are prepared for this emulation mode. The packets are simulated as objects and do not

know how to serialize themselves into a byte stream. Moreover, ns-2 does not use real IP or MAC

addresses, making the emulation more complicated. We need to maintain an addressing scheme so

that ns-2 can determine the source and destination nodes from the source and destination address

of the real packets. Finally, ns-2 does not have a software architecture as clean as other existing

simulators, and does not provide an easy environment to develop new protocols to be used for

emulation, for the reasons previously stated.

2.3 Related Work 17

RapidNet is a toolkit that enables the development of network protocols for simulation and

experimentation [25]. The protocols are specified in a declarative paradigm using Network Data-

log (NDlog), which extends the recursive query language of Datalog. RapidNet can compile the

protocol specification into ns-3 code for either simulation or emulation mode, thereby achieving

the goal of using the same protocol model for simulation and experimentation. One of the prob-

lems of RapidNet is that it uses a declarative programming paradigm, which is unusual in protocol

development and results in a steep learning curve; also, the generated ns-3 code depends on the

RapidNet library and it cannot be submitted for inclusion into ns-3 as a new module.

The Protean Protocol Prototyping Library (Protolib) is a toolkit that provides a cross-

platform C++ Application Programming Interface (API) for the development of network protocols.

The developed protocol can run on various operating systems (including Linux, MacOS, Windows,

and FreeBSD) and on the ns-2 and OPNET simulators [26]. The main abstractions needed to

develop new network protocols are provided by the following Protolib’s classes: ProtoSocket,

which abstracts the underlying systems TCP and UDP sockets; ProtoTimer, a generic timer class;

ProtoRouteMgr, which provides a common interface to the systems routing tables; and ProtoCap,

used for raw MAC-layer packet capture. While Protolib appears to be an alternative architecture

(abstraction layer) to accomplish similar goals, features found in ns-3, such as logging and trace

sources, would not be available in the same way on Protolib-based implementations.

The Click Modular Router (Click) is a flexible software architecture for developing config-

urable routers [27]. A router can be created by combining small elements in a graph-like architec-

ture. Each element has a defined number of input and output ports and implements some simple

functionality such as decrementing a packet TTL and looking up an IP route. The combination

of these elements can create routers with complex functionality providing a flexible platform for

researchers to experiment with new protocols. Click can run in several systems such as Linux and

FreeBSD. There are also tools that integrate it with ns-2 (nsclick [28]) and ns-3 (ns-3-click [29]).

The ns-3 simulation can even become more efficient in some cases by using Click to perform

the layer 3 functionality, although at the cost of increased memory consumption. Click also has

a steep learning curve since it uses a flow-based programming paradigm [30], which is different

from the more usual discrete event simulation used in ns-3. In addition, researchers have to learn

the configuration syntax that is used to describe the connections between the elements of a router.

The OPNET Modeler is a simulator that also allows integration of protocol models with real

systems, thanks to its “System-in-the-loop” functionality [31]. However, its closed and commer-

cial nature invalidates it being a viable alternative in many contexts. For instance, not having the

full source code available precludes porting it to certain router architectures.

The ns-3 Direct Code Execution (DCE) module [32] provides an environment that is able to

execute network protocols developed for Linux in ns-3 without source code changes [33]. Both

user space and kernel space protocols as well as applications can be used, for instance, the ping

tool and the real Linux TCP/IP stack. There are a number of problems when using the DCE

module as a way to achieve a shared protocol model implementation. First, there is simulation

performance degradation resulting from having to virtualize the protocol under evaluation [33].

18 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse

Second, it is more time consuming to develop protocols in Linux than in ns-3. Third, not all sys-

tem calls used by native Linux applications are supported by DCE, which implies the need for the

application to be open source (to make the necessary changes to the code, e.g., iperf modified for

DCE [34]) and the maintenance a second version to use in DCE, which can be error prone and

produce non-comparable results between both implementations. Finally, not all of the functional-

ity provided by ns-3 can be used, since there is no Linux counterpart. In some cases an alternative

is available; for instance, it is possible to add tracing support to a real protocol by using aspect

based programming [35], but this is not as simple as using the ns-3 tracing/log facilities.

There are some other tools that work with some form or subset of an operating system kernel

code. The ENTRAPID [36] project virtualizes just the networking portion of a BSD kernel,

thereby enabling hundreds of kernel instances to run on the same system, connected by virtual

links. A similar approach is followed by ALPINE [37]. The Network Simulation Cradle (NSC)
[38] also virtualizes a kernel, but instead of allowing real applications to communicate over the

network of virtualized kernels, it embeds the virtualized kernel instances into simulated nodes of

an existing simulator (ns-2 and ns-3 are supported), and supports multiple kernel stacks, not just

BSD; however, it was hard to maintain because it relied on source code modifications. The ns-3

DCE module can replace most of the functionality provided by NSC [39]. IMUNES [40] also

virtualizes the kernel networking code, but creates virtual nodes and virtual links inside the kernel,

instead of user space, to avoid frequent context switching and achieve greater efficiency. All these

kernel based approaches have the same basic problem: they require new networking protocols

to be developed inside the source code and framework of one of those operating system kernels.

That code base, although highly detailed, realistic, and well optimized, is not a very programmer-

friendly environment. Moreover, protocols (at least control plane protocols) are almost always

developed to run as user space daemons anyway, for security reasons, so the effort to develop

using a kernel space API may not be worth it.

Simulator-agnostic ns–3 applications are applications that can run both in simulation and in

real systems [41]. They are developed as traditional ns-3 applications but they can communicate

with the real environment via the socket API provided by the underlying OS. The actual socket

that is used is transparent to the application, so its code does not need to be rewritten. This can

be done by implementing the real socket functionality as classes derived from the base Socket

class of ns-3 and using the factory pattern to create the actual socket as needed (real or simulated).

This approach is very efficient [12] and works well for applications. Yet, for example, it does

not work for a routing protocol. A routing protocol needs to access and update routing tables.

Also, many protocols do not run on top of TCP or UDP, but instead on top of IP datagrams (e.g.,

OSPF [42]); others may even work on top of layer 2 protocols (e.g., WMRP [43]). Simulator-

agnostic ns-3 applications allow, for example, the control plane of a Layer 3 protocol developed

in ns-3 (operating at a specific TCP or UDP port) to communicate using real system sockets. Still,

on their own they can not offer a complete shared protocol implementation solution, as they lack

the data forwarding capabilities needed for Fast Prototyping.

2.4 ns-3 Emulation 19

2.4 ns-3 Emulation

In ns-3, a NetDevice is the class of objects responsible for simulating a layer 2 network interface.

In Linux systems, the EmuNetDevice subclass is available, allowing a ns-3 simulation to receive

real packets from a real network interface, and to send simulated packets through the same network

interface.

At the core of EmuNetDevice is a “packet socket” (PF PACKET, SOCK RAW) socket file

descriptor. When the simulator asks the EmuNetDevice to send a packet (ns3 class Packet), the

method Packet::CopyData is called, which extracts the packet contents into a byte buffer. Then,

the sendto() system call is performed, using the packet socket file descriptor and the packet byte

buffer as parameters. The code to receive packets is slightly more complicated. In fact, because

we cannot block the main simulation event loop, nor it is efficient to make a poll/select system call

between each simulation event iteration, a separate thread is created specifically to receive data

from the packet socket. This thread runs an infinite loop that 1) allocates a memory buffer, 2) calls

recvfrom() to receive the next packet, 3) schedules an EmuNetDevice method to be called from

the main simulator thread, passing a pointer to the memory buffer as parameter. The method that

is called in the main thread, by request from the receive thread, simply converts the raw memory

buffer into an ns-3 Packet (using an appropriate Packet constructor), releases the memory buffer,

and informs the simulated node that it has received a new packet.

The conversion between ns3::Packet and raw memory byte array, and back, is trivial in ns-3

because ns-3 Packets always store simulated packets in a raw memory format. The only exception

being that ns-3 Packets support a memory optimization wherein an application can choose to send

“dummy” bytes, i.e., a block of bytes whose value is not important for the simulation. In this case,

ns-3 avoids allocating memory for those bytes and just records the size and offset of that block of

dummy bytes. Nonetheless, the conversion is much simpler and natural than in almost any other

simulator.

With this emulation method, we can implement virtually any kind of network operation in ns-

3, as long as it works above layer 2. However, a question remains: how does this method behave

performance-wise?

2.5 Performance Evaluation of ns-3 Emulation

In order to better assess the computational and network performance footprint induced by using

the ns-3 emulation method in a real-world scenario, a set of tests were defined. These tests were

focused on aspects such as the impact on the host machine resources utilization and on network

performance impact, depending on the offered data rate and packet size used.

The hardware used to run the tests was a mini-itx Intel Atom D510. It had an x86 architecture

for ease of use and better compatibility, avoiding cross compiling. The hardware was chosen

having in mind a balance between cost, performance, power consumption, and physical size, so

that it could be easily deployed in a real-world testbed as a network element performing operations

20 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse

Figure 2.3: Data plane forwarding test scenarios.

such as routing and bridging. The Operating System (OS) used was Ubuntu 10.04 x86. The three

scenarios implemented to perform the tests are presented in Figure 2.3. While scenarios 1 and 2

were designed to compare IPv4 packet forwarding performance between kernel and ns-3 emulated

implementation, scenario 3 was used to derive the performance of a custom implemented routing

protocol, with its own data plane encapsulation operations.

Scenario 1 is composed by three nodes: 1) S runs an iperf client, generating an UDP flow to D.

S also runs the ping application, measuring the RTT while the flow is generated; 2) D runs an iperf

server, receiving the UDP flow from S and calculating network statistics such as received data rate

and packet loss ratio; 3) R represents the router, default gateway for S and D. It is responsible to

forward IPv4 packets between the two IP nodes. The IP forwarding operations are performed in

kernel space by enabling the IP forwarding option of the Linux kernel. Scenario 2 is similar to

Scenario 1. The difference resides on node R. Now, the IP forwarding operations are performed

by an ns-3 emulated node, in user space, connected through EmuNetDevices to the real network

interfaces. Scenario 3 employs WiMetroNet [43] RBridges elements, instead of an IP stack, which

use the standard IPv4/Ethernet stack on the access networks and MPLS encapsulation in the core

network. Two RBridge elements are used in order to introduce the need to perform “ingress” and

“egress” packet operations, as it happens in a real world scenario.

For each scenario, we ran a set of tests, gradually increasing the generated data rate between

1 and 90 Mbit/s1, and with two different UDP payload sizes: 160 and 1400 bytes. Packets with

1Approximately the maximum throughput attainable using IPv4 UDP packets with payload size of 1400 bytes on
100 Mbit/s Ethernet links

2.5 Performance Evaluation of ns-3 Emulation 21

1400 bytes represent the usual application traffic over TCP. While the Ethernet MTU is 1500

bytes, given the UDP/IP payload plus the encapsulation overhead in Scenario 3, a UDP payload

size larger than 1400 bytes would risk fragmentation. The 160 bytes packets are representative of

typical VoIP traffic. Each test, lasting 30 seconds, was repeated 5 times for confidence interval

purposes.

For each test, the received data rate, average round-trip time, packet loss ratio, and CPU load

were measured. The received data rate and packet loss ratio were extracted from the iperf output

statistical data. The average round-trip time was measured with the ping utility. The CPU load

was measured at the shaded nodes in Figure 2.3, using the “time” built-in command, computed as

the sum of “user” and “system” time divided by the real elapsed time. The CPU load can assume

values in the range 0–2 because the node has a dual-core processor and ns-3 has a multi-threaded

design for implementing Emulated Network Devices. For Scenario 1, the CPU load was not

measured because it revealed to be negligible, even when performing full link speed forwarding

with small packets.

Figure 2.4: Data plane forwarding results for 1400-byte packets.

The obtained results are represented in Figure 2.4 and Figure 2.5 for packets of 1400 and 160

bytes, respectively. For 1400-byte packets, both scenarios were able to attain a data rate of 90

Mbit/s without any packet loss. While in kernel space the CPU load is insignificant, at user space

the CPU load increases linearly with the offered data rate, reaching approximately 1.1. The RTT

measured in the scenarios running ns-3 increased roughly 0.4 ms, due to the user space processing

of each packet. For a 1400-byte packets, despite the high CPU load, the obtained results can be

considered very good, since the additional delay introduced has remained below 1 ms.

22 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse

Figure 2.5: Data plane forwarding results for 160-byte packets.

For an MTU of 160 bytes, the plots of Figure 2.5 show clearly a very high performance differ-

ence between Kernel and ns-3 IP forwarding solutions. When IP forwarding is done in kernel space

it is possible to reach a data-rate of approximately 60 Mbit/s, which is the maximum throughput

of 100 Mbit/s Ethernet links for an MTU of 160 bytes. The RTT remains very low and stable, and

the CPU load is also negligible. Although the offered data rate was configured up to 90 Mbit/s in

iperf, it did not have impact on the packet loss results in this scenario, because iperf client is aware

of the link capacity and does not attempt to transmit more than the link capacity.

In contrast, Scenario 2 reaches only a data rate of around 10 Mbit/s, which is approximately

six times lower than the kernel implementation. This happens due to the high number of packets

that has to be processed in user space. It now becomes evident that in these kind of emulated

scenarios the bottleneck is defined by the number of packets to be processed, and not so much by

their size. The RTT value stabilizes at around 120 ms, while the packet loss ratio steadily increases

because of a limit in ns-3 for the number of packets waiting in memory to be processed. While,

at a first glance, these results could seem unsatisfactory, if we consider that these 10 Mbit/s are

representative of VoIP traffic, which consume very small bandwidth (less than 64 kbit/s) per-flow,

it actually represents a very large number of VoIP flows.

Finally, the results of the third scenario are better than the results obtained for the second

scenario, attaining lower CPU usage per packet processed, which resulted in better measured data

rates and RTTs. For the packet plots of Figure 2.4, the average RTT of Scenario 3 appears to be

worse than the Scenario 2, but it is necessary to point out that each packet was then subjected to

two forwarding operations in each direction, instead of only one. The better results obtained for

this scenario could be mainly due to the fact that RBridges forwarding operations take place at

2.6 Summary 23

layer 2.5, not using the ns-3 layer 3 implementation and its associated computational footprint.

It is clear from the previous results that ns-3 has a considerable per-packet performance

penalty. The results confirm the hypothesis that the kernel to user space context switch and data

transfer are the main bottleneck. Most of the performance issues associated to ns-3 are related to

the number of packets to handle, and not so much to the size of the packets. Thus, the proposed

shared protocol model can handle reasonably well application flows dominated by large packets,

such as any TCP based protocol (HTTP, FTP), but it does not cope with high bitrates and small

packets. Fortunately, the combination of high bitrate and small packet size is not very common.

It is true that VoIP (Voice over IP) flows are composed mainly of small packets, but each of those

flows consumes a small bitrate. Only a high number of simultaneous VoIP flows will be able to

saturate a network link with a few tens of Mbit/s. For this type of scenario, implementing a data

plane using ns-3 is not recommended.

2.6 Summary

In this chapter we addressed the topic of improving the development process of network protocols.

The traditional protocol development process was reviewed, and the main problems associated

with it were identified. One recurring problem is the duplication of effort to write the simulation

model and, then, implementation prototype code. Another problem is the possible behavior differ-

ences that may be accidentally introduced between the two versions, leading to different results in

Simulation and Experimentation. We propose an alternative protocol development process, named

Fast Prototyping, that takes advantage of the built-in network emulation capability of ns-3. The

Fast Prototyping development process allows developers to write a single model for the protocol

that can be both simulated and deployed in a real node. The main difference between ns-3 and

other similar frameworks is that in ns-3 everything can be done in C++ and using C++ program-

ming best practices for ease of development.

In order to support the proposed Fast Prototyping process, the performance of ns-3 running

in emulation mode has been evaluated. The results show that the ns-3 IPv4 stack, in emulation

mode, is able to process packets at a rate high enough to exhaust an 100 Mbit/s Ethernet link,

when handling large packets, but can have problems forwarding traffic if it is composed mostly of

small packets, or if the network interface data rates increase. The Fast Prototyping development

process is the subject of further work in this PhD: in Chapter 3 we introduce the support for more

real-world network interfaces and configurations, while in Chapter 4 new forms of reducing the

performance footprint of ns-3 Emulation mode are proposed.

24 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse

Chapter 3

Improving ns-3 Emulation Support in
Real-World Networking Scenarios

Chapter 2 introduced the Fast Prototyping protocol development process, integrated in the concept

of improving the performance evaluation of wireless networks, which defines the use of a shared

ns-3 protocol model implementation for Simulation and Experimentation. Although this function-

ality is partially supported by using ns-3 emulation, there are still limitations regarding the support

of real network interfaces and the easy configuration of the network settings, such as IP and MAC

addresses.

In this chapter we propose an improved version of the ns-3 emulation component by introduc-

ing new functionalities that address these limitations. The new functionalities include the support

of new types of real network interfaces and the easier integration of emulation nodes with existing

networks by means of a new auto-configuration mechanism for ns-3 nodes. Finally, we evalu-

ate the proposed new functionalities through experimental results obtained in a laboratory testbed

and in a real vehicular network testbed, and demonstrate their proper operation and backwards

compatibility with previously coded ns-3 scenarios.

3.1 Overview of ns-3 Communication Types

ns-3 is an event-driven packet level network simulator, which is largely adopted by the scientific

community to evaluate networking solutions in simulation environment. Being a packet level sim-

ulator, ns-3 allows to produce fully detailed simulation environments that accurately represent the

real network behavior; for instance, each network packet exchanged in the simulator uses the same

exact structure of a real packet. This realism enabled the development of the ns-3 emulation func-

tionality that is essentially the ability to run a simulation scenario in real time with the capability

of exchanging network traffic between real and ns-3 nodes. From the real nodes’ perspective, the

ns-3 emulated network appears as an extension of the real network, with transparent exchange of

network traffic between them.

25

26 Improving ns-3 Emulation Support in Real-World Networking Scenarios

Figure 3.1: Overview of the communications provided by the ns-3 (a)NetDevice, (b)FdNetDevice,
(c)TapFdNetDevice and (d)EmuFdNetDevice.

In the real world, network nodes have network interface cards, allowing them to connect to

a network and exchange network traffic. Likewise, in ns-3, simulated nodes are connected to

a network using NetDevices. Figure 3.1 presents an overview of the two communication types

possible when using ns-3: 1) internal – between ns-3 nodes (Figure 3.1a); 2) external – between

an ns-3 node and the outside world, either the real Linux node hosting the ns-3 node or a real

network (Figures 3.1b–d).

In Figure 3.1a two ns-3 nodes exchange network traffic over a virtual channel using standard

NetDevices, hence the nodes can not communicate with the outside of the ns-3 process. In Fig-

ure 3.1b an ns-3 node uses a specific NetDevice – the FdNetDevice –, which allows exchanging

network traffic with the real Linux node using a file descriptor managed by the Operating System

(OS) of the real node. In Figure 3.1c an ns-3 node is using a specialization of the FdNetDevice

– the TapFdNetDevice – designed to exchange network traffic with the real Linux node using a

tap interface. Every write from the ns-3 node via the TapFdNetDevice appears to the real Linux

node as incoming network traffic via the tap interface, and vice versa. Finally, in Figure 3.1d an

ns-3 node is using another specialization of the FdNetDevice – the EmuFdNetDevice – designed

to allow direct communication to outside of the real Linux node using a raw socket bound to a real

network interface (e.g., eth0). This allows exchanging the ns-3 node’s traffic with that specific real

3.2 Problem and Motivation 27

Figure 3.2: Emulation in a vehicular network scenario, considering possible Wi-Fi and Cellular
network links.

network interface, thus enabling the emulation functionality.

The Fast Prototyping process proposed in Chapter 2 uses the EmuFdNetDevice module, taking

advantage of the built-in network emulation features of ns-3. In Figure 3.2 we have illustrated an

example of a real Linux node running a vehicular mobile router prototype developed using the Fast

Prototyping process, where a routing protocol implemented in ns-3 is reused. The EmuFdNetDe-

vices Em0 and Em1 shown in Figure 3.2 provide direct communications to the real networks as if

the ns-3 node was a real node. From the real networks’ perspective, the ns-3 nodes are real nodes

running a real network protocol instance.

3.2 Problem and Motivation

When the Fast Prototyping process is employed in a controlled, static testbed, the experimental

scenario is usually characterized by Ethernet or Wi-Fi real networks that are administered by the

experimenters themselves. The experimenters can then deploy emulated ns-3 nodes accessing

those real networks, with emulated network devices, using configurations (e.g., MAC and IP ad-

dresses) that are pre-defined for the experiment and remain constant and controllable during the

whole experiment timeframe. Yet, when the Fast Prototyping process is used in a more complex

and dynamic scenario – e.g., a vehicular network – different network access and usage character-

istics take place.

Figure 3.2 depicts the use of ns-3 emulation in a vehicular network scenario, where two in-

terfaces are available to access real networks as the vehicle moves along a given path. The ppp0

interface represents the cellular connectivity, and enables IP over the Cellular Network. This inter-

face is only present in the real Linux node when there is an active cellular connection. In practice,

it is common to have this interface intermittently available, due to possible intermittent cellular

28 Improving ns-3 Emulation Support in Real-World Networking Scenarios

connectivity and the dynamic IP renewal policy that may be imposed by the telecom operator. The

ath0 interface represents the Wi-Fi connectivity to multiple Wi-Fi networks available along the

vehicle path, to which the real node connects opportunistically. Each of these networks may have

its own administrator and assign specific dynamic IP level settings. Also, as an access control

policy, network administrators may use MAC addresses to identify the users and provide IP level

configurations.

The ns-3 emulation mode and the related emulated network devices, represented by Em0 and

Em1 in Figure 3.2, were tested in the SITMe’s [13] multi-technology vehicular network scenario,

where the real network interfaces had characteristics similar to those previously mentioned. These

characteristics precluded the use of Fast Prototyping in the vehicular network scenario due to the

existing ns-3 limitations. A detailed description of these limitations is introduced below.

3.2.1 Cellular PPP Interfaces Support

Point-to-Point Protocol (PPP) [44] interfaces enabling IP over cellular networks are unsupported

by ns-3. The EmuFdNetDevice module is designed to read and write Ethernet frames from/to real

interfaces, not IP packets as it is the case for the cellular PPP interfaces. As such, the EmuFd-

NetDevice must be modified and capable of detecting whether the real interface is operating at

L2 or L3 and adapt itself accordingly. Also, when working at IP level, the EmuFdNetDevice

does not need Ethernet Address Resolution Protocol (ARP) [45] support. This aspect needs to be

addressed as well; otherwise, the installation of the Internet Stack in the node associated to that

EmuFdNetDevice will fail due to the asserts that are made when installing the ARP protocol.

3.2.2 Cellular PPP Interfaces Intermittency

Cellular related PPP interfaces are only available in Linux when there is an active cellular connec-

tion established. Throughout the experiment duration, the cellular connection can be lost due to

1) the lack of network coverage in some geographic areas, 2) forced re-connection by the operator

to allow dynamic IP renewal, and 3) any sort of other communications problems preventing com-

munications between the PPP Client and Server. This leads to the PPP session shutdown, and the

interface ppp0 disappears. The EmuFdNetDevice module does not support this intermittency and

has two possible undesirable behaviors: 1) if the real interface is not available when the emulation

starts, ns-3 aborts the execution; 2) if the real interface is available when the emulation starts but

it disappears, the ns-3 process detects that the raw socket was closed, stops the EmuFdNetDevice,

but does nothing to restart it.

3.2.3 Manual MAC Address Configuration

In a simulation scenario there is full control of the elements interacting in the simulation. Typically,

ns-3 self-generated MAC addresses are used and assigned sequentially to every simulation node to

avoid MAC address collisions. However, when Fast Prototyping is used, we may not fully control

the scenario and the interactions with other nodes. So, in order to avoid MAC address collisions

3.3 Proposed EmuFdNetDevice 29

and network access control problems, the MAC address of the real interface has to be used by the

emulated node. ns-3 does not include any MAC cloning functionality, which results in the need

for error-prone, additional manual configurations.

3.2.4 Dynamic IP Configuration Settings

In IP networks, the interface auto-configuration provided by the Dynamic Host Configuration

Protocol (DHCP) [46] is frequently used. This auto-configuration mechanism allows a node to

establish IP connectivity with other nodes using the given network settings, such as the IP ad-

dress, network mask, and default gateway, leased by the DHCP server. In a vehicular network

environment it is usual for a node to connect to different networks with the same interface, or

use a mobile network that imposes IP address renewal from time to time. In the current version

of the ns-3 EmuFdNetDevice, there is no mechanism to keep the network settings updated in the

emulated node whenever the real network interface settings change. This will make the emulated

node use wrong network settings and lose connection with other nodes.

3.3 Proposed EmuFdNetDevice

Motivated by the problems described in Section 3.2, we expanded the functionality of ns-3 by

proposing an improved backwards compatible EmuFdNetDevice module. The improved EmuFd-

NetDevice supports new features to further improve the capability of running emulated and hybrid

environments – emulated and real nodes interacting – over different real network scenarios. The

solutions proposed to address the problems identified in Section 3.2 are detailed in what follows.

3.3.1 Detection of the Operating Layer of Real Network Interfaces

The current EmuFdNetDevice is hardcoded to read and write Ethernet frames; as such, it only

supports real network interfaces operating at MAC level. Conversely, the improved EmuFdNet-

Device inspects the underlying real interface, checks whether it has a MAC address assigned, and

classifies the real interface as an IP or MAC level real interface accordingly. This information is

saved in the new flag named m_isL2NetDevice, associated with the FdNetDevice, which is setup

during the Helper execution. When the real network interface is operating at IP level, the im-

proved EmuFdNetDevice disables the “NeedArp” setting, in order to avoid assertion errors when

installing the Internet Stack in the node. The automatic detection of the network stack, associ-

ated to the underlying real interface, effectively avoids the need for additional configurations and

enables backwards compatibility with previously coded scenarios.

3.3.2 Support for Intermittent Real Interfaces

The EmuFdNetDevice was designed assuming that the real interface to which it is bound has an

identifier always present in the Linux’s interfaces list. As explained in Section 3.2, this is not

30 Improving ns-3 Emulation Support in Real-World Networking Scenarios

Figure 3.3: State machine representing how the improved EmuFdNetDevice handles communica-
tion using intermittent real interfaces.

always true – e.g., the PPP interfaces representing cellular connections. The current EmuFd-

NetDevice has the two possible undesirable behaviors referred in Section 3.2.2. The improved

EmuFdNetDevice expects and handles gracefully this behavior, according to the state machine

presented in Figure 3.3. The improved EmuFdNetDevice allows the user to configure the support

of intermittent behavior. When the related flag – named m_isIntermitentInterface – is set, the im-

proved EmuFdNetDevice assumes the link is down, allowing the emulation process to be executed

even if the real interface is not listed. In the ‘’Link Down” state, the simulator checks periodically

whether the real interface ID becomes listed again in the real Linux node. As soon as the interface

ID becomes listed, a new raw socket is created and the communication is restarted, assuming the

“Link Up” state. When the raw socket is unexpectedly closed, the ns-3 process sees the socket

returning “-1”. Instead of just stopping the device, the improved EmuFdNetDevice assumes again

the “Link Down” state and actively tries to re-establish communication by creating and binding a

new raw socket to the new real interface. The ns-3 process can be stopped from either state.

The improved EmuFdNetDevice enables the support for intermittent real interfaces while

keeping full compatibility with previously coded scenarios. The user creating the emulation sce-

nario only needs to be sure about the identifier of the real network interface. In the current EmuFd-

NetDevice, the process is terminated and the user is informed about the non-existing/erroneous

interface identifier. With the improved EmuFdNetDevice, if the identifier supplied by the user is

wrong and the user configures the interface as being intermittent, the emulation process will run

without ever binding to a real interface nor triggering the error.

3.3.3 MAC Address Cloning

Simulated nodes, running inside ns-3, use self-generated MAC addresses by default – e.g.,

00:00:00:00:00:01. This is not an issue when running simulations, but can be a problem when

using the emulation capability in a real network scenario – e.g., the case of Fast Prototyping of

network protocols. In such case there will be a number of ns-3 instances running independently

from each other, with emulated ns-3 nodes acting as real nodes. Being different ns-3 instances,

3.4 Solution Validation 31

means that the ns-3 mechanism for self-generating MAC addresses will assign, by default, coin-

cident MAC addresses (starting in 00:00:00:00:00:01) to the ns-3 nodes running in the different

instances. Manually managing the MAC addresses of each emulated node accessing a real network

to avoid MAC collisions can be difficult and error-prone. Also, often the MAC address used by

the EmuFdNetDevice has to match the MAC address of the real interface of the real node, in order

to allow communication in the real network. Using the real interfaces’ MAC addresses could then

solve the MAC addresses collision problem and ensure compatibility with real networks requiring

the use of the MAC address of the real interface. Because ns-3 lacks a MAC cloning feature, a

configuration option was added to the EmuFdNetDevice instances, in order to allow automatic

cloning in run time of the MAC address of the real interface to which the specific EmuFdNet-

Device is bound. This feature is disabled by default, so that the EmuFdNetDevice operation is

unchanged when running previously coded scenarios.

3.3.4 IP Address Cloning

In a real network scenario, IP level network configuration is often carried out using the DHCP

protocol. This is common when connecting to real networks in a vehicular scenario, for example,

where multiple networks can be used and each network has a different IP configuration. Also,

usually Internet Service Providers (ISPs) do not provide fixed public IP addresses; as an example,

every time a PPP connection is established over a public 3G operator link, a new dynamic IP

address is leased. Because the IP address changes every time a new connection is established, even

during the same emulation process execution, the emulation scenario rapidly becomes outdated,

with an IP address associated to the EmuFdNetDevice that is no longer valid nor corresponds to

the real PPP interface anymore. When the emulated node tries to write packets with an outdated

IP, they can be discarded or lead to an IP address collision. In order to avoid this problem, we

added an IP address cloning feature to the EmuFdNetDevice, which is enabled by configuration in

every EmuFdNetDevice instance. When enabled, ns-3 periodically verifies the IP address, network

mask, and default gateway of the real interface and applies those settings to the node running the

emulated interface. This simplifies the deployment and auto-configuration of emulated nodes in

a real environment. IP address cloning is disabled by default, assuring the EmuFdNetDevice’s

behavior expected by previously coded scenarios.

3.4 Solution Validation

This section describes the tests performed to validate the proper operation of the improved EmuFd-

NetDevice. Two scenarios were used to perform the tests: 1) a laboratory testbed, used to test the

new features and assist the debug process in a controlled environment; 2) a real world testbed

using the SITMe’s project vehicular network.

32 Improving ns-3 Emulation Support in Real-World Networking Scenarios

Figure 3.4: Laboratory testbed scenario.

3.4.1 Laboratory Testbed

The first approach to validate the improved EmuFdNetDevice was to conduct the experiments in a

small laboratory testbed, in order to easily test the proper operation in a fully controlled scenario.

Figure 3.4 presents the components that characterize the laboratory testbed, which was composed

by two Real Linux x86 nodes:

Real Node #1 is a multi-interface real network node hosting an ns-3 emulated node. The real

node has two physical Ethernet interfaces: 1) eth0, auto-configured at IP level using the

DHCP client; 2) eth1, to establish a PPPoE connection from the PPPoE Client to the PPPoE

Server. When the PPPoE connection is established, the ppp0 interface is listed in Linux.

eth0 represents the use of real network interfaces operating at MAC level and ppp0 repre-

sents a real network interface working at IP level. The ns-3 node has two emulated network

devices, one bound to the real node’s eth0 and the other to the intermittent ppp0.

Real Node #2 is a communication peer used to interact with the emulated node, but it also imple-

ments the access control and auto-configuration mechanisms present in most real networks,

such as DHCP server and PPPoE server. Real Node #2 has two Ethernet interfaces con-

nected directly to the equivalent interfaces in Real Node #1. Real Node #2 also captures the

network traffic from the two Ethernet interfaces, in order to assess the correct operation of

the emulated node when communications between Real Node #2 and ns-3 emulated node

are attempted.

In order to reproduce the conditions needed to test each functionality of the improved EmuFd-

NetDevice, the following procedures were considered:

PPP intermittent behavior. The PPPoE Server was periodically stopped and restarted in order

to close and reestablish the PPPoE connection and make the ppp0 interface disappear and

reappear in Real Node #1.

3.4 Solution Validation 33

Dynamic IP configuration on eth0. Short duration IP leases were used, in order to generate fre-

quent lease renewals. By using manual MAC-IP address associations in the DHCP Server

that were periodically changed to different IPs, led to periodic IP address changes in the

eth0 interface of Real Node #1.

Dynamic IP on ppp0. Every time the PPPoE Server was stopped, the configuration file was

changed to assign a different IP addresses range to the PPPoE client, so that the ppp0 IP

address was changed every time the PPPoE connection was re-established.

In order to generate network traffic between Real Node #2 and the ns-3 node running in Real

Node #1, two mechanisms were used: 1) ICMP echo requests/replies between the two nodes; 2)

an UDP echo server running in Real Node #2, which replied to UDP packets sent by the ns-3 node

with exactly the same UDP payload. The traffic generated was captured using Wireshark [47],

which was running in Real Node #2.

To validate each new feature of the improved EmuFdNetDevice, the following observations

were made:

Detection of the operating layer of real interfaces. The use of two EmuFdNetDevices bound to

eth0 and ppp0 interfaces confirmed the correct operation of this feature. In the case of the

eth0 interface, the lower level transfer unit used by EmuFdNetDevice0 was the Ethernet

frame, while with the ppp0 interface, EmuFdNetDevice1 exchanged IP packets.

Support for intermittent real interfaces. The use of the PPPoE protocol led to the creation of

the ppp0 interface in Real Node #1. This interface was only listed intermittently according

to the test conditions referred above, which allowed the test of the EmuFdNetDevice ability

to recover from the following conditions: 1) ns-3 process started without the ppp0 interface

available; 2) ppp0 interface unexpectedly becomes unavailable. In both situations, the ns-3

process detected the anomalous conditions and successfully kept the emulation running.

MAC Address Cloning. The EmuFdNetDevice0 successfully cloned the real eth0 MAC address,

and every communication made to Real Node #2 appeared in the Wireshark logs as originat-

ing from the MAC address of the real eth0 interface. Also, the ns-3 emulated node replied

successfully to every communication directed to it.

IP address cloning. The usage of different IP addresses during the tests, in both ppp0 and eth0

interfaces, allowed to successfully test whether the IP addresses were updated in the ns-

3 node. This mechanism worked with success. The time interval between checks of the

real interface’s IP address is configurable. If the IP address changes very frequently, it is

recommended to use low interval checks to keep the ns-3 node settings updated; yet, too

small time interval uses more CPU resources.

After validating each new feature, the correct operation of the improved EmuFdNetDevice

was confirmed.

34 Improving ns-3 Emulation Support in Real-World Networking Scenarios

Figure 3.5: Elements present in each bus of the Vehicular network testbed scenario.

3.4.2 Vehicular Network Testbed

With the improved EmuFdNetDevice tested in the laboratory testbed, the next step was to test it in

a real world testbed. The selected testbed was the one used in the real pilot of the SITMe’s project,

composed by 11 buses with an on-board Linux router, supporting multiple access technologies to

provide Internet access to bus passengers.

Figure 3.5 depicts the elements composing each of the 11 buses used in the SITMe’s real pilot.

This testbed used the Wireless Metropolitan Routing Protocol (WMRP) [19], a proactive multi-

technology routing protocol based on OLSR, entirely developed in ns-3. Each bus had a Linux

computer installed with five network interfaces, one to give network access to the passengers

and other bus equipment, and the other four to connect to the outside world. Using the Fast

Prototyping process, the routing protocol ran in an ns-3 emulated node, as illustrated in Figure

3.5. This emulated node had as many Emulated NetDevices (EmuFdNetDevice) as the number

of real interfaces connected to the real node. Through this mechanism, the ns-3 router had direct

access to the real networks and acted as a real router from the real networks’ perspective.

All features introduced in the improved EmuFdNetDevice were tested in this scenario: multi-

ple interfaces were configured using dynamic IPs obtained via DHCP; the 3G operator provided IP

level PPP interfaces, which were intermittent; MAC address cloning was used in all the interfaces

with MAC address, to avoid MAC address collisions and obey to the ISP policy. WiMAX traffic

was only allowed by the operator for specific real interfaces’ MAC addresses.

This experiment ran successfully for more than one year with good results and very good

feedback from the bus passengers. The real world usage of the improved EmuFdNetDevice proved

its correct operation and usefulness. This was especially relevant in a heterogeneous real world

scenario such as the SITMe’s real pilot, where multiple emulated instances needed to be deployed

and auto-configured to allow communications in a demanding real network environment.

3.5 Summary 35

3.5 Summary

The Fast Prototyping process has several possible applications and was already proven useful, al-

though it fully depends on the ns-3’s emulation capabilities. Currently, ns-3 emulation capabilities

are enabled by running simulation code in real time and establishing network communications

with real networks using the EmuFdNetDevice, which is bound to the real network interfaces of

the real node running the ns-3 process. However, if used in complex and dynamic real network

scenarios – e.g., a vehicular network – the current EmuFdNetDevice has limitations, thus invali-

dating the use of the Fast Prototyping process in such scenarios. This is due to the incompatibilities

with some real interfaces operation and the overhead and error-prone methods needed to configure

each emulated instance.

Motivated by the need to overcome these problems, we proposed an improved, backwards

compatible EmuFdNetDevice. The improved EmuFdNetDevice includes a set of features that

addresses interface compatibility problems and introduces self-configuration mechanisms to en-

able the Fast Prototyping process in demanding real network conditions, such as those associated

to vehicular network scenarios. Using a laboratory testbed and a real-world vehicular network

testbed, it was possible to confirm the proper operation of the improved EmuFdNetDevice. Also,

the usefulness of such features was demonstrated in a complex real network scenario, such as the

SITMe’s real pilot. With this contribution in place, we can now use the improved EmuFdNetDe-

vice over layer 3 real PPP interfaces, such as the ones provided by cellular networks and layer 3

VPNs.

On top of this, the improved EmuFdNetDevice also supports IP layer and MAC cloning auto-

configuration settings, which are helpful when using ns-3 emulation in large scale and complex

mobile experiments. These experiments have often dynamic network configurations, connecting to

different networks not managed nor owned by the experimenter. We plan to integrate this function-

ality into the ns-3 release, bringing the aforementioned benefits to the ns-3 simulation community.

This can also have a positive impact on the adoption of the Fast Prototyping development process,

especially for those complex scenarios in which the current EmuFdNetDevice cannot operate.

36 Improving ns-3 Emulation Support in Real-World Networking Scenarios

Chapter 4

Improving ns-3 Emulation Performance
for Fast Prototyping of Network
Protocols

Chapter 2 introduced the Fast Prototyping protocol development process for improving the per-

formance evaluation of wireless networks. Chapter 3 addressed the limitations of ns-3 emulation

and presented our improved version of the ns-3 EmuFdNetDevice to overcome them. Although

the Fast Prototyping process is improved by the proposed EmuFdNetDevice, the additional packet

processing involved when the shared protocol model is run in emulation mode brings up overhead

that results in a network performance bottleneck.

In this chapter we propose a solution to improve the performance associated with Fast Proto-

typing that consists in moving the data plane processing operations to outside of the ns-3 process,

running such operations natively in the host Operating System (OS). In a well-designed network

most of the traffic should be data. By moving the data plane operations to outside of ns-3 the

overhead associated with data traffic is greatly reduced, while control plane protocols may still be

reused. In order to validate our proposed solution, we extended the Wireless Metropolitan Routing

Protocol (WMRP) and the Optimized Link State Routing (OLSR) protocol accordingly, evaluated

their performance in real environment when using the proposed solution, and verified the amount

of code reuse between the Simulation Model and the Implementation Prototype.

4.1 Problem and Motivation

The Fast Prototyping process was already presented in Chapter 2 and its compatibility with real-

world networks was studied and improved in Chapter 3. The main problem of Fast Prototyping is

related to running the ns-3 implementation in a real testbed. The impact on performance due to

the processing of the real traffic inside ns-3, using ns-3 emulation, can be substantial.

With improved performance, Fast Prototyping can represent a viable complementary approach

to existing shared protocol implementation solutions such as Direct Code Execution (DCE) [33],

37

38 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

but from the ns-3 starting point rather than from the existing implementation starting point. This is

especially relevant when creating new routing protocols, where developers may start by an easier

to code ns-3 implementation, taking also advantage of the ns-3 tracing capabilities. On the other

hand, with improved performance, Fast Prototyping can enable hybrid scenarios (combining em-

ulated and real resources) where we may need to run multiple emulated nodes in the same host

machine. In hybrid scenarios a real testbed composed by fast prototyped nodes can be interacting

with a node emulation server. The emulation server may be responsible for augmenting the com-

plexity and scale of the real testbed by introducing a number of fully emulated nodes, which are

able to interact, in real time, with other fast prototyped and real nodes. Being able to maintain the

necessary real-time network performance, while running these complex networking scenarios is

very relevant for the evaluation and validation of networking solutions in large scale; this is usu-

ally very difficult or impossible to achieve with real testbeds only, due to the resource limitations

to build, manage, and operate large scale testbeds.

4.2 Migrating the Data Plane to Outside of ns-3

In a network node there are two planes: the control plane and the data plane. The control plane is

responsible for control functions such as discovering and maintaining network routes and ensuring

connectivity. The data plane uses, for example, the routing information generated by the control

plane to forward network packets. In a well designed network, most of the traffic corresponds

to data packets. Processing large amounts of packets in ns-3 is less efficient than doing it in user

space or in kernel space. Thus, by moving the data plane operations to outside of ns-3 the overhead

associated with the data traffic can be greatly reduced.

We propose two alternative approaches for doing this: 1) executing the Data Plane in User

Space (DPU); 2) executing the Data Plane in Kernel Space (DPK). The two approaches are de-

scribed in what follows.

4.2.1 Data Plane in User Space (DPU)

The first approach consists in running the data plane outside of ns-3 in user space. The data plane

is executed in a user space process to avoid the overhead of processing the large amount of data

traffic in the simulator. The control plane is executed in ns-3 and communicates with the real

environment through emulation, as illustrated in Figure 4.1.

The two planes are executing in different processes; Inter-Process Communication (IPC) is

used to exchange information. For example, the control plane needs to update the routing table

information in the data plane, so that data packets can be forwarded correctly. The data plane may

have to send feedback to the control plane or request a route in the case of reactive protocols.

The classification of the packets that should be delivered to the control and data planes is done

through filters applied to the raw sockets using the Linux Socket Filter (LSF) mechanism [48].

Listing 4.1 shows an example filter that accepts only IPv4 packets. At line 0 we load the halfword

(16 bits) at position 12 in the frame (the EtherType field). Line 1 compares the previously loaded

4.2 Migrating the Data Plane to Outside of ns-3 39

ns-3

Control Plane

FdNetDevice
Data Plane

Filtered
Raw Socket

Real Device

Filtered
Raw Socket

IPC

Control Data

Userspace

Kernelspace

Figure 4.1: Data plane in user space (DPU) approach.

halfword to 0x800 (the IPv4 EtherType). If both are equal we jump to line 2, which returns 65535.

This will result in the first 65535 bytes of the frame being accepted and delivered to the user space

process. If the comparison of line 2 fails, we jump to line 3 which returns 0. This means that no

bytes of the frame are accepted and the frame is dropped.

A simple way to obtain the code of socket filters is to run tcpdump with the -d option. For

example, running tcpdump -i eth0 -d ip will return the code in Listing 4.1.

Listing 4.1: Linux Socket Filter code that only accepts IP packets.

l d h [1 2]

j e q #0 x800 j t 2 j f 3

r e t #65535

r e t #0

Socket filters are configured in user space but they are executed in kernel space on received

frames. As such, they are very efficient because packets not accepted by the filter are not delivered

to user space. In this way, the control and data planes only receive their respective traffic, avoiding

the overhead caused by processing all packets received from the real interface.

Using the DPU approach, the control plane code can be reused between the Simulation Model

and Implementation Prototype although the data plane code needs to be rewritten for the Imple-

mentation Prototype. However, because the data plane is usually much simpler than the control

plane, only a relatively small amount of code needs to be ported, for instance, to maintain a cached

routing table, correctly interpret and manipulate the frame/packet headers, and forward the traffic

to the right network interfaces.

40 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

4.2.2 Data Plane in Kernel Space (DPK)

For L3 proactive routing protocols it is possible to specialize the DPU approach, depicted in Fig-

ure 4.1. We name this the Data Plane in Kernel Space (DPK) approach. For protocols of this

type, whose objective is to forward IP packets, we can update the kernel routing tables with the

information gathered by the control plane. In this way, the kernel will forward the traffic received

from the real device (Figure 4.2), which is more efficient than doing it in user space.

ns-3

Netlink Socket

Route Updater

Real Stack

Control Plane

FdNetDevice

Real Device

Filtered
Raw Socket

IPC

DataControl

Userspace

Kernelspace

Figure 4.2: Data plane in kernel space (DPK) approach.

In the DPK approach, a route updater process receives the routing information from the control

plane and updates the kernel routing tables accordingly. To do this, the route updater process uses

a netlink socket [49]. Netlink is a communication channel between kernel space and user space

and, among other functionalities, allows user processes to update and retrieve routing information.

Root access is needed to use this functionality. In order to avoid running the whole simulation as

root, the route updater is executed in its own process as root. The route updater communicates with

ns-3 through IPC to receive the routes generated by the control plane. As in the DPU approach,

the raw socket used by the control plane needs to be filtered to avoid the overhead of processing

all network traffic.

The DPK approach is more efficient than the DPU approach since the forwarding is done in

kernel space. In addition, there is even less code that needs to be rewritten because the route

updater code can be reused by all routing protocols that use the DPK approach. The downside

is that the DPK approach is only applicable to proactive L3 protocols, where the control plane

is typically independent from the data plane. For example, reactive protocols such as AODV

need to know if a route was not found for a given packet in order to initiate the route request

procedure [50]. To support this type of protocols the proposed architecture can be extended with

a kernel module that listens on the desired events and reports them back to the control plane.

4.2 Migrating the Data Plane to Outside of ns-3 41

Real Routing Module

Most of the DPK approach code can stay the same across different protocols, namely the route

updater and the IPC. The only part that is specific to each protocol is the socket filter used. This

is a clear advantage over the DPU approach, which requires the data plane to be ported to the real

system. To enable researchers to easily use the DPK approach, an implementation was developed

for ns-3, the real routing module [51].

The real routing module implements a route updater (RtNetlinkRouteUpdater) that uses Netlink

sockets to update the kernel routing tables and runs in a privileged user space process to avoid hav-

ing to execute the whole simulation with root privileges. Inside ns-3, the class RealRouteUpdater

was created to spawn and configure the RtNetlinkRouteUpdater process, receive the routes from

the routing protocols, and send them to the created process, which in turn updates the kernel. The

IPC, used to send the routes from the simulator to the route updater, is implemented with Unix

domain sockets.

In order for ns-3 routing protocols to be able to update the routes of the system without hav-

ing to be coupled to the new real routing module, three new optional callbacks were added to

Ipv4RoutingProtocol – the base class of all IPv4 protocols. Support for IPv6 was not implemented

but it can be easily added when needed. The new callbacks are: RouteAddedCallback, called when

the protocol creates a new route; RouteRemovedCallback, called when the protocol deletes a route;

and RoutingTableUpdatedCallback, called when the protocol updates the whole routing table at

once. Protocols that use these callbacks will work with the real routing module. The RealRou-

teUpdater will register its route updating functions with each of the protocol’s callbacks. Thus,

every time one of the callbacks is called, the corresponding function in the RealRouteUpdater is

also called and the received information is sent to the RtNetlinkRouteUpdater process, which, in

turn, updates the kernel routing tables, as it is illustrated in Figure 4.3.

ns-3
Real Routing Module

Routing
Protocol

Real Route
Updater

RtNetlink
Route Updater

Kernel
Routing Tables

IPC

RouteAddedCallback

RouteRemovedCallback

RoutingTableUpdatedCallback

Netlink

Figure 4.3: Real Routing module architecture.

Finally, two other new features were added to the EmuFdNetDeviceHelper in the fd-net-device

module to support 1) the DPK approach and 2) the emulation of multiple nodes using network

namespaces by setting a socket filter in the raw socket and selecting a network namespace for the

socket.

42 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

With the real routing module implemented, a researcher must take the following steps to use

the DPK approach for a new routing protocol. When implementing the routing protocol in ns-

3, the new callbacks must be called when a route is added, removed, or the whole routing table

is updated at once. Then, when using the protocol in real environments, the simulation script

needs to consider the following: 1) set the socket filters in the EmuFdNetDeviceHelper and, if

emulating multiple nodes, set the network namespace as well; 2) for each emulated routing node,

create an instance of the RealRouteUpdater and configure it with the routing protocol being used,

the network namespace of the node, and the mapping between the ns-3 interfaces and the real

interfaces of the host. With this configurations done, the created scenario will then be executed

using the DPK approach. All the patch files needed to add the real routing module to ns-3.21

source code are available in [51]. The patch files have to be applied by the order they are numbered.

4.2.3 Emulating Multiple Nodes

The DPU and DPK approaches assume that a single node is being emulated by each machine of the

testbed. However, it may be desirable to emulate multiple nodes in a single machine, as discussed

in Section 4.1. Figure 4.4 shows an example of a single host emulating three nodes, where the

network traffic coming from one real device is forwarded to other real device by traversing the

data plane of the three nodes.

ns-3

Host

Node

Fd
Net
Device

Real
Device

Raw
Socket

Net
Device

Net
Device

Net
Device

Net
Device

Fd
Net
DeviceChannel Channel

Real
Device

Raw
Socket

Node Node

Figure 4.4: Emulation of multiple nodes in a single host machine.

To apply the DPU and DPK approaches for emulating multiple nodes, we need to have execu-

tion environments in the host system where the data plane of each node will run. These environ-

ments must have the following properties:

1. Be independent of each other. Any modification to a given environment must not affect

the others (e.g., adding routes to the routing table of one environment must not affect the

routing tables of the other environments).

2. Be able to forward data traffic. They must enable data traffic forwarding between each

other and with the nodes outside the system.

4.2 Migrating the Data Plane to Outside of ns-3 43

3. Be efficient. They must not introduce more overhead than what is saved by moving the data

plane to outside of ns-3.

The Linux OS provides environments with these properties named network namespaces [52].

Namespaces allow the network resources of the system to be isolated into different independent

environments. Each network namespace has its own set of components, including devices, ad-

dresses, ports, routing tables, and firewall rules. For an efficient emulation architecture, network

namespaces are more appropriate than virtual machines or Linux containers, because they isolate

what is needed for the DPU and DPK approaches – the network resources.

The topology of the simulated nodes in ns-3 must be replicated outside by using the network

namespaces. This is done by creating a network namespace for each node and connecting them

in the same way they are connected in the simulator. The network namespaces also need to be

connected to each other in a way that replicates the connections between the simulation nodes.

To do that, virtual network devices (veth) are used. These virtual devices are created in pairs

and assigned to two namespaces that need to be connected. What is written in one veth can be

read in the other, and vice-versa. In this way, the network namespaces can forward the data traffic

between each other. The virtual devices can also be configured to match the characteristics of the

link connecting the simulation nodes (e.g., delay, bitrate, and packet loss ratio). This is possible by

using the netem kernel module [53]. For example, to set the delay of virtual device veth1 to 100

ms, we can use the command tc qdisc add dev veth1 root netem delay 100ms.

Figure 4.5 shows how the DPK approach can be applied to the example in Figure 4.4 by

using network namespaces and virtual devices. The same approach can also be used by the DPU

approach. The only difference is the data plane would be processed in a user space process for

each network namespace needed, instead of being processed in the Linux kernel as in the DPK

approach.

For each emulated node, a network namespace is created and a route updater for that node is

executed in that namespace. In this way, each node has its own set of routing tables in the kernel

that are independent of the other nodes. To connect the nodes, virtual network device pairs are

created. Each veth is assigned to a network namespace and configured to match the correspond-

ing net device of the simulation (e.g., IP address, subnet mask, and emulation characteristics that

can be set with netem, such as delay and packet loss ratio). The real devices (cf. Figure 4.5) of the

host are also moved to the network namespace of the nodes that should be connected to the real

network. The filters of the raw sockets are applied in the same way for the emulation of a single

node.

The control traffic is thus processed completely within ns-3, while the data traffic never leaves

kernel space, as illustrated by the bidirectional arrows in Figure 4.5. Data packets that arrive in

a real device are processed by the real stack of a network namespace and forwarded to the next

namespace through a virtual device. This process continues until the data packets leave the host

through a real device.

44 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

ns-3

Network
Namespace

Network
Namespace

Network
Namespace

Netlink Socket

Route Updater

Real Stack

Control Plane

Fd
Net
Device

Real Device

Fi
lt
er
ed
R
aw
S
oc
ke
t

Virtual
Device

Net
Device

Netlink Socket

Route Updater

Real Stack

Virtual
Device

Virtual
Device

Control Plane

Net
Device

Net
Device

Netlink Socket

Route Updater

Real Stack

Virtual
Device

Real Device

Control Plane

Net
Device

Fd
Net
Device

Fi
lt
er
ed
R
aw
S
oc
ke
t

Channel Channel

IPC

Data Control

Userspace

Kernelspace

IPC IPC

Figure 4.5: DPK approach for emulation with multiple nodes.

4.3 Validation

In this section we validate the DPU and DPK approaches focusing on two main metrics: 1) per-

formance – assessing the gains introduced by running the data-plane outside of ns-3, resulting

from the lower expected per packet processing overhead; 2) code reuse – assessing how much

extra code in necessary by each approach when compared to the original Fast Prototyping process.

The performance was validated by selecting routing protocols already implemented in ns-3 and

extending them to use the new DPU and DPK approaches. The performance of the DPU and DPK

approaches was then compared to the performance of traditional emulation in real experiments to

calculate the respective gains. The code reuse was validated by analyzing the number of lines of

code that were added to the Protocol Model for supporting the DPU and DPK approaches.

4.3.1 Data Plane in User Space (DPU)

4.3.1.1 Performance Validation

To validate the DPU approach we used the Wireless Metropolitan Routing Protocol (WMRP), an

ad-hoc, proactive routing protocol that operates over Layer 2 [18][43][54]. The nodes running

WMRP are called Routing Bridges (RBs). RBs encapsulate the L2 traffic from a source legacy

terminal, forward it between RBs using MPLS tags, and decapsulate the original L2 traffic when

it reaches the RB containing the destination legacy terminal attached.

The performance gain obtained in real environments was validated by comparing the perfor-

mance of WMRP running in ns-3 emulation mode with the performance of WMRP when the

4.3 Validation 45

DPU approach is used. We then analyze the performance gains obtained with the DPU approach.

Without loss of generality, the network topology illustrated in Figure 4.6 was considered. It was

composed of four nodes connected by 100 Mbit/s Ethernet links: the source S used the iperf tool

to generate UDP traffic destined to D; at the same time it pinged D to measure the round-trip time

(RTT). The destination D ran an iperf server. The Routing Bridges RB1 and RB2 forwarded the

frames between S and D.

Figure 4.6: Network topology of the test scenarios related to the DPU approach.

Two scenarios were tested. In the first scenario, the two RBs were implemented using the

traditional ns-3 emulation mode. In the second scenario, the DPU approach was implemented in

both RBs. For each scenario a series of tests was executed, starting with S generating 1 Mbit/s

of UDP traffic to D and then increasing that value to 2, 4, 8, 16, 32, 64, and 70.8 Mbit/s. Each

test had a duration of 30 seconds and was repeated 5 times. The payload of the UDP packets was

160 bytes, representing typical VoIP traffic. The small packets induce a network load representing

a worst case scenario where the network had to process a large number of packets per second and

maxed out the CPU processing capabilities. This was especially important due to the absence of

Gigabit Ethernet cards in the test host machine. The maximum offered data rate was of 70.8 Mbit/s

because that is the maximum throughput that can be achieved in 100 Mbit/s Ethernet links for UDP

packets with 160 bytes of data. For each of these tests, four performance metrics were measured:

the received data rate in D, the packet loss ratio, the average round round-trip time, and the average

CPU load in RB2. The host machine running RB2 has an Intel Atom N270, which is a single core

processor. Yet, it uses the Hyper-Threading technology, so it behaves as having two logical cores.

The Linux OS used was Ubuntu 14.04 LTS x86.

The results are shown in Figure 4.7, where the lines represent the average value and the error

bars represent the standard deviation. The traditional ns-3 emulation implementation is able to

forward packets until the offered rate is around 8 Mbit/s. After that, performance degrades and

when the offered rate hits 70.8 Mbit/s, ns-3 emulation has 87% of packet loss ratio, can only

forward at 9 Mbit/s, and the round trip time (RTT) is around 85 ms. The reason why ns-3 emulation

goes above 100% load is that the CPU of RB2 has two logical cores (due to Hyper-Threading) and

ns-3 uses a dedicated thread for reading operations.

46 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

10

20

30

40

50

R
e
ce

iv
e
d
 d

a
ta

 r
a
te

 M
b
it

/s

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

10

20

30

40

50

60

70

80

90

P
a
ck

e
t

lo
ss

 (
%

)

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

20

40

60

80

100

120

140

R
o
u
n
d
-t

ri
p
 t

im
e
 (

m
s)

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

20

40

60

80

100

120

140

C
P
U

 l
o
a
d
 (

%
)

ns-3 emulation Userspace forwarding

Figure 4.7: DPU performance validation results for UDP traffic with payload of 160 bytes.

The DPU approach is able to forward packets until the offered rate is 32 Mbit/s while keeping

RTT low (1 ms until 16 Mbit/s and 2 ms at 32 Mbit/s). For higher data rates the performance starts

degrading, but at 70.8 Mbit/s it can forward packets at around 44 Mbit/s (4.9 times more than

the traditional emulation mode) while keeping RTT at 16 ms (5.3 times lower than the traditional

emulation mode). Additionally, while the offered data rate is lower than 64 Mbit/s the CPU load of

the DPU approach is lower than that of ns-3 emulation. For higher data rates both implementations

present similar loads, but the user space implementation is processing more traffic for the same

load.

From the tests presented in Chapter 2, we know that the processing bottleneck is mostly related

to the number of packets processed rather than to the size of the packets forwarded by the node.

This is easily understandable as “bulk” memory copy operations are usually much faster than the

multiple function calls and processing involved with the handling of each packet object, such as the

interpretation of the header and routing/forwarding tables lookups. Based on this information, it

is expected a ten-fold performance improvement in the forwarding data rates if RB2 was handling

1500 bytes Ethernet frames in Gigabit Ethernet links.

4.3 Validation 47

4.3.1.2 Code Reuse Validation

To validate that using the DPU approach does not require writing a large amount of new code,

we counted the lines of code that were developed to implement the DPU approach on top of the

existing ns-3 implementation of WMRP. In this process we discarded the blank and comment

lines.

The original implementation of WMRP has 5057 lines of code, while the same protocol im-

plementation using the DPU approach has 5608 lines of code. This means that only around 11%

more lines of code were written to implement the data plane of WMRP in user space. This is

in part because the implemented data plane was simplified and assumes that the topology of the

network does not change. Implementing the full operations of the data plane would increase the

number of lines of code. Yet, in general, the data plane is much simpler than the control plane. So,

only a relatively small amount of code needs to be ported.

Ultimately, the researchers developing the protocol have to decide whether the extra amount

of code that has to be written is worth the performance gains that can be obtained.

4.3.2 Data Plane in Kernel Space (DPK)

4.3.2.1 Performance Validation

The DPK approach was validated using the Optimized Link State Routing Protocol (OLSR), a

link state, proactive, L3 protocol [55]. The performance gain obtained in real environments was

validated by comparing the performance of three different implementations: OLSR using tradi-

tional ns-3 emulation mode; OLSR using our proposed real routing module; and olsrd, a Linux

implementation of OLSR [56].

Figure 4.8: Network topology of the test scenarios related to the DPK approach.

Without loss of generality, the network topology illustrated in Figure 4.8 was considered. It

was composed of three nodes connected by 100 Mbit/s Ethernet links: the source S ran OLSR and

used the iperf tool to generate UDP traffic destined to D; while at the same time it pinged D to

measure the RTT. The destination D ran OLSR and an iperf server to receive the UDP traffic

48 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

from S; R ran OLSR and forwarded the packets between S and D. Three scenarios were tested.

In the first, R ran a traditional ns-3 emulation of OLSR. In the second scenario, R ran a ns-3

emulation of OLSR using the real routing module developed to implement the DPK approach. In

the last scenario, R ran olsrd. In all scenarios, S and D ran olsrd. The router R ran on an Intel Atom

N270 with Ubuntu 14.04 LTS x86. For each scenario, a series of tests was executed, following the

same procedure and parameters used to validate the performance of the DPU approach. For each

of these tests, four performance metrics were measured: the received data rate in D, the packet

loss ratio, the average RTT, and the average CPU load in R.

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

10

20

30

40

50

60

70

R
e
ce

iv
e
d
 d

a
ta

 r
a
te

 M
b
it

/s

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

20

40

60

80

100

P
a
ck

e
t

lo
ss

 (
%

)

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

100

200

300

400

500

600

R
o
u
n
d
-t

ri
p
 t

im
e
 (

m
s)

0 10 20 30 40 50 60 70
Offered data rate Mbit/s

0

20

40

60

80

100

120

140

C
P
U

 l
o
a
d
 (

%
)

ns-3 emulation ns-3 real routing olsrd

Figure 4.9: DPK approach performance validation results for UDP traffic with payload of
160 bytes.

The results are shown in Figure 4.9, where the lines represent the average and the error bars

represent the standard deviation. The traditional ns-3 emulation implementation is able to forward

packets until the offered rate is 8 Mbit/s. After that, performance degrades and when the offered

rate hits 70.8 Mbit/s, ns-3 emulation has 95% packet loss and can only forward at 3.5 Mbit/s. The

round trip time (RTT) also increases to 342 ms, while until 8 Mbit/s it was around 1 ms. The

reason why ns-3 emulation goes above 100% load is the same as explained for the DPU approach

performance validation.

The real routing implementation and olsrd are able to forward packets at all offered rates

except at 70.8 Mbit/s. At this highest rate there is packet loss of 4% and 2% for real routing

4.3 Validation 49

and olsrd, respectively, and they forward traffic at 67.5 Mbit/s and 69 Mbit/s, respectively. Both

implementations provide very low round trip times, less than 0.5 ms until 32 Mbit/s, around 1 ms

at 64 Mbit/s, and around 23 ms at 70.8 Mbit/s. This means that, at the highest rate, real routing

provides an increase in throughput of around 19 times when compared to traditional emulation, as

well as a decrease in RTT of around 14 times.

The reason that real routing performs slightly worse than olsrd is because it incurs a higher

CPU load (around 3 times more at 70.8 Mbit/s). This can be attributed mainly to the socket filters,

which must be executed for every packet that is received in the system. One way to reduce the

overhead incurred by the filters is to enable them to be JIT (just-in-time) compiled, which means

that instead of the kernel interpreting them for each packet, it will compile them to the underlying

processor architecture just once and then run the compiled code for the received packets. However,

we could not enable this optimization in the system we were using because it is a x86 machine

and Ubuntu 14.04 only configures the kernel to allow JIT compilation of filters in x64 systems.

As explained in the performance results for the user space implementation using WMRP, in

this OLSR scenario it is also expected a ten-fold performance improvement in the forwarding data

rates if the router was handling 1500 bytes Ethernet frames in Gigabit Ethernet links.

4.3.2.2 Code Reuse Validation

To validate that using the DPK approach only requires writing a small amount of new code we

counted the lines of code that were developed to use the real routing module with the existing ns-3

implementation of OLSR. In this process we discarded the blank and comment lines.

The existing ns-3 implementation of OLSR has 5067 lines of code, while the same protocol

implementation including the extension to work with the real routing module has 5140 lines of

code. The lines of code of the real routing module itself are not counted because it is a generic

module that can be used with any proactive L3 protocol without having to be re-implemented.

This means that only around 1.4% more lines of code were written to use the real routing module

callbacks to update the routing table; the rest of the lines correspond to code that sets the socket

filters and initializes the real routing module. We can thus conclude that the increase in code is

negligible, especially when compared to the performance gains that are obtained when using the

DPK approach.

4.3.3 Emulating Multiple Nodes

4.3.3.1 Performance Validation

Because the DPK approach presented the best performance and code reuse results for a single

emulation node, and also considering the fact that the DPU approach was already maxing out the

CPU load for the emulation of a single node, we opted to use the DPK approach for validating the

emulation of multiple nodes. We compared the performance of OLSR running on traditional ns-3

emulation of multiple nodes and OLSR using the real routing module and network namespaces.

50 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

Without loss of generality, the network topology illustrated in Figure 4.10 was considered. It

was composed of three physical nodes connected by 100 Mbit/s Ethernet links: the source S ran

OLSR and used the iperf tool to generate UDP traffic destined to D while at the same time it

also pinged D to measure the RTT; the destination D ran OLSR and an iperf server to receive

the UDP traffic from S; the machine R sat between S and D and emulated a network of OLSR

nodes that were connected in a line topology.

S D

R

10.0.0.0/24

.1

.2
.1

.2 eth0

eth1eth0

eth0

10.0.100.0/24

10.0.1.0/24

.1 .2
...

Figure 4.10: Network topology of the test scenarios regarding the DPK approach for emulating
multiple nodes.

The line topology was used to determine how performance varies with the number of hops in

a real scenario. Two scenarios were tested. In the first scenario, R ran a traditional ns-3 emulation

of multiple OLSR routers. In the second scenario, R ran an ns-3 emulation of multiple OLSR

routers using the real routing module and the network namespaces architecture. In both scenarios,

the links between the emulated nodes (simulated channels in ns-3 and virtual devices in network

namespaces) were configured to have zero latency and 1 Gbit/s of maximum throughput.

For each scenario, two series of tests were executed to assess the UDP (first) and TCP (second)

throughput. Both series started with R emulating a single node, and then increasing the number

of emulated nodes in R to 2, 4, 8, 16, 24, and 32. Each test had a duration of 30 seconds and

was repeated 5 times. In the first series of tests S generated 16 Mbit/s of UDP traffic to D. This

value was chosen because it is the maximum value that allows for some traffic to be received when

using traditional emulation of 32 nodes. The payload of the UDP packets was 160 bytes. For each

of the tests in the first series, four performance metrics were measured: the received data rate in

D, the packet loss ratio, the average RTT, and the average CPU load in R. In the second series of

tests, S generated TCP traffic to D. For each of the tests in this series, three performance metrics

were measured: the received data rate in D, the average round round-trip time, and the average

CPU load in R. The machine R ran on an Intel Atom N270, which is a single core processor that

uses the Hyper-Threading technology; so it behaves as having two logical cores. The OS used was

Ubuntu 14.04 LTS x86.

4.3 Validation 51

12 4 8 16 24 32
Number of nodes

0

2

4

6

8

10

12

14

16

18

R
e
ce

iv
e
d
 d

a
ta

 r
a
te

 (
M

b
it

/s
)

12 4 8 16 24 32
Number of nodes

0

20

40

60

80

100

P
a
ck

e
t

lo
ss

 (
%

)

12 4 8 16 24 32
Number of nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

R
o
u
n
d
-t

ri
p
 t

im
e
 (

m
s)

12 4 8 16 24 32
Number of nodes

0

20

40

60

80

100

120

140

C
P
U

 l
o
a
d
 (

%
)

ns-3 emulation ns-3 real routing

Figure 4.11: Results of emulating multiple nodes for UDP traffic with payload of 160 bytes.

The results for UDP traffic are shown in Figure 4.11, where the lines represent the average

and the error bars represent the standard deviation. Even with only one node, the traditional ns-

3 emulation can only forward packets at 9.5 Mbit/s. With 8 emulated nodes there is already an

89% packet loss, a forwarding rate of less than 2 Mbit/s, and a RTT of more than 1.5 seconds.

When the number of emulated nodes reaches 32, the packet loss is 97% and the throughput is only

0.38 Mbit/s. RTT also peaks at 7.4 seconds.

The real routing implementation with network namespaces is able to achieve significantly

better performance. Until 8 emulated nodes it forwards traffic at 16 Mbit/s (8 times more than

traditional emulation). The RTT is low as well, around 0.5 ms until 4 nodes and 2 ms for 8 nodes

(750 times less than traditional emulation). With more than 8 nodes the performance starts de-

creasing and with 32 nodes, real routing only forwards at 1.5 Mbit/s (4 times more than traditional

emulation) with a packet loss of 88%. RTT also increases to around 312 ms (24 times less than

traditional emulation). The CPU load for real routing is lower up to 8 nodes. After that, both

implementations have equivalent CPU load, but the real routing implementation can process more

traffic for the same load. The results for TCP traffic are shown in Figure 4.12, where the lines

represent the average and the error bars represent the standard deviation. With only one node, tra-

ditional emulation can forward 55 Mbit/s of traffic. At 8 nodes, throughput decreases to 10 Mbit/s

52 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

1 2 4 8 16 24 32
0

20

40

60

80

100

R
e
ce

iv
e
d
 d

a
ta

 r
a
te

 (
M

b
it

/s
)

1 2 4 8 16 24 32
0

500

1000

1500

2000

2500

3000

R
o
u
n
d
-t

ri
p
 t

im
e
 (

m
s)

1 2 4 8 16 24 32
Number of nodes

0

20

40

60

80

100

120

140

160

C
P
U

 l
o
a
d
 (

%
)

ns-3 emulation ns-3 real routing

Figure 4.12: Results of emulating multiple nodes for TCP traffic.

and RTT is 389 ms. With 32 nodes, traditional emulation can only achieve 2.6 Mbit/s and an RTT

of 1.9 seconds.

Real routing can achieve throughputs of 94 Mbit/s with up to 8 nodes (9.4 times higher than

traditional emulation) and 93 Mbit/s with 16 nodes. The RTT at 8 nodes is 38 ms (10 times lower

than traditional emulation). When the number of nodes reaches 32, real routing can forward at a

rate of 60 Mbit/s (23 times more than traditional emulation) and has a RTT of 124 ms (15 times

less than traditional emulation). The CPU load of real routing is also lower until 8 nodes but is

slightly higher with 16 or more nodes.

We can conclude that by applying the DPK approach with network namespaces to support

multiple emulated nodes increases the performance significantly when compared to traditional ns-

3 emulation. Consequently, the DPK approach allows increasing the number of emulated nodes

4.4 Comparing the DPU Approach with the Traditional ns-3 Emulation using Oprofile 53

per real host while attaining the same or better performance than traditional emulation.

4.4 Comparing the DPU Approach with the Traditional ns-3 Emula-
tion using Oprofile

As presented in Section 4.3.2.1, the DPU approach was able to forward network traffic at a higher

throughput than using traditional ns-3 emulation. Because both approaches process the network

traffic in user space, in this section we focus on studying the cause for their performance differ-

ences by recurring to software profiling techniques using the Oprofile Linux profiling tool.

To measure the overhead introduced by ns-3 when handling simple packet forwarding opera-

tions, we emulated a simple Ethernet bridge in ns-3 and in a user space process. The computer

emulating the bridge was composed by two Fast Ethernet network interfaces, an Intel Atom D625

CPU, and 1 GB of RAM. This computer ran Ubuntu 14.04 LTS x86 OS. The emulated bridge was

responsible to perform L2 traffic forwarding operations between two real Linux nodes – Source

(S) and Destination (D) – connected to the Fast Ethernet ports. The S node used iperf to send

UDP traffic at 5 Mbit/s to node D, using packets of 160 bytes.

Oprofile was then used to profile 120 s of execution for each approach (the ns-3 emulation

process and the user space process) while forwarding the UDP traffic, allowing to collect the

number of CPU “CLK_UNHALTED” events associated with each binary image. The results for

ns-3 emulation are presented in Table 4.1; the results for the user space process (DPU approach)

are presented in Table 4.2.

Table 4.1: Number of CPU “CLK_UNHALTED” events associated to each binary image, when
using the traditional ns-3 emulation.

CPU “CLK_UNHALTED” Events % Binary Image
1032489 100.00 TOTAL
572912 55.49 vmlinux-4.4.0-148-generic (kernel)
113370 10.98 libns3.21-core-optimized.so
105014 10.17 libns3.21-network-optimized.so

96978 9.39 libc-2.19.so
39045 3.78 libpthread-2.19.so
31276 3.03 libns3.21-fd-net-device-optimized.so
18252 1.77 libstdc++.so.6.0.19
18147 1.76 libns3.21-bridge-optimized.so
9946 0.96 libns3.21-lr-wpan-optimized.so
5461 0.53 usbnet (eth1 driver)
5053 0.49 libgcc_s.so.1
2144 0.21 ld-2.19.so
2127 0.21 r8169 (eth0 driver)

Complementary to the previous results, oprofile allowed an in-depth analysis for calculating

the amount of CPU cycles spent per each function offered by the binary images listed in Table 4.1

54 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

Table 4.2: Number of CPU “CLK_UNHALTED” events associated to each binary image, when
using the DPU approach.

CPU "CLK_UNHALTED" Events % Binary Image
296421 100.00 TOTAL
280442 94.61 vmlinux-4.4.0-148-generic (kernel)

4378 1.48 libc-2.19.so
4028 1.36 usbnet (eth1 driver)
2794 0.94 DPU user space program
2070 0.70 r8169 (eth0 driver)

and Table 4.2. Based on this information, the number of CPU “CLK_UNHALTED” events where

then thoroughly compared between the two approaches, resulting in Table 4.3.

Based on the results presented in Table 4.3 we can conclude that the traditional ns-3 emulation

spends over 3 times more CPU cycles to forward the same network traffic than the DPU approach,

which is in-line with our previous DPU performance validation (1032k vs. 296k CPU cycles).

This difference is expected to increase when adding the complexity of the IP stack processing

and forwarding operations. Table 4.3 also presents, in detail, the components in which the CPU

cycles are being spent. The CPU cycles spent by the Ethernet drivers are equivalent for the two

approaches, which is expected as the network traffic was equivalent for both test scenarios. The

Linux Kernel operations more than doubled from 573k to 280k CPU cycles. The libc-2.19 op-

erations represented a difference of 93k CPU cycles, from which the vast majority are related to

memory allocation, copying, and freeing operations. The ns-3 also introduced a significant over-

head by itself (275k CPU cycles), with its core needing 113k CPU cycles and the packet handling

operations (headers, buffers, tagging, etc) needing 105k additional CPU cycles. Finally, the tradi-

tional ns-3 emulation approach also used other methods available via three additional libraries –

libpthread, libstdc++ and libgcc – which also accounted for 59k additional CPU cycles.

4.5 Comparison with the new NetmapNetDevice and its Impact on
Fast Prototyping

Recent related work by P. Imputato et al. [57][58], published after our work on the DPU and DPK

approaches, added new capabilities to ns-3 emulation. The authors propose an alternative method

for ns-3 to read and write Ethernet frames from a real network interface. Traditional ns-3 emulation

relies on the EmuFdNetDevice, which reads and writes Ethernet frames to a real network interface

using a raw socket from the OS of the host machine that is bound to a real interface. P. Imputato

et al. propose a new NetmapNetDevice that uses the netmap fast packet processing framework

to bypass the host networking stack and have direct access to the real network interface. This

bypass reduces the per packet processing overhead, which results in a gain of 20% more packets

per second when compared to the original raw socket approach; it also increases the realism of

the packet queuing operations which affect the queue’s backlog, the packets in-flight, and the

4.5 Comparison with the new NetmapNetDevice and its Impact on Fast Prototyping 55

Table 4.3: Detailed comparison of CPU “CLK_UNHALTED” events count between using tradi-
tional ns-3 emulation and DPU approaches.

L2 Forwarding - “CLK_UNHALTED” events
(thousands)

Component ns-3 Emulation Userspace (DPU) Overhead
difference

TOTAL 1032 296 736
Ethernet drivers 8 6 2
Linux Kernel 573 280 293
libc-2.19 97 4 93

SyscallTemplate (gettimeofday) 3
Malloc+Free 65
Memcopy 17

Bridge functionality 278 3 275
ns-3 core 113

UnixSysCondition+UnixSysMutex 22
WallClockSynchronizer 20
Synchronizer 15
RealtimeSimulatorImpl 13
UnixFdReader 5
MapScheduler+StlMap+StlTree 5
Simulator 5
EventImpl 2

ns-3 network 105
(Ethernet)Header+MacAddress 27
Buffer operations 19
Packet+PacketMetadata 18
ByteTagList 9
Node (ReceiveFrom) 8
Address+AddressUnits 5

ns-3 fdNetDevice 32
ns-3 bridge 18
ns-3 lr-wpan 10

New methods 59 0 59
libpthread 39
libstdc++ 18
libgcc 5

56 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

packet delay. Although the processing overhead is reduced, the authors acknowledge that the ns-3

emulation performance using netmap is lower and has higher overhead than processing the traffic

in kernel space.

Netmap is compatible only with real network interfaces operating in netmap mode. Real net-

work interfaces operating in this mode are disconnected from the host OS stack, while the original

raw socket approach allows for both the emulated nodes and the OS stack to use the same real

network interface. This ability to share the same real network interface between ns-3 emulation

and the real stack is what enables the DPU and DPK approaches, as they rely on migrating the

data plane operations to outside of ns-3 but keeping the control plane in ns-3. Thus, the DPU and

DPK approaches are incompatible with the new NetmapNetDevice. Nonetheless, the Fast Proto-

typing process will benefit from the use of the NetmapNetDevice if neither the DPU nor the DPK

approaches are employed.

Based on the results presented by P. Imputato et al., we can infer that by using the Fast Pro-

totyping process with this new interface we would obtain 1.2 times higher throughput when the

CPU is fully loaded. In comparison using the Fast Prototyping with DPU and DPK approaches

will enable us to obtain respectively 4.9 and 19 times higher throughputs.

In conclusion, although NetmapNetDevice is a relevant contribution which reduces the over-

head of ns-3 emulation and improves its network performance realism, our DPU and DPK ap-

proaches are characterized by a lower per packet processing overhead. When using the Fast Proto-

typing process without DPU and DPK, the new NetmapNetDevice should be used instead, as long

as the real host does not need to communicate over the same real network interface.

4.6 Discussion

The DPU and DPK performance results show a significant reduction of the per packet processing

overhead while using ns-3 emulation, overcoming the performance problem associated with the

Fast Prototyping development process. With the DPU and DPK approaches the emulation perfor-

mance is greatly improved, producing performance results much closer to a real implementation

than before. For protocols compatible with the real Linux stack, the DPK approach should be used

to obtain the best emulation performance as it is the most efficient and only requires around 1.4%

of additional code to be used. The excellent performance results obtained with the DPK approach

enables the use of Fast Prototyping in more traffic demanding scenarios or in real nodes with lim-

ited processing power. If the protocol is not compatible with the DPK approach, we provide the

more generic DPU approach, with around 11% of additional code.

With the improved performance presented by DPU and DPK approaches, the Fast Prototyping

process can also be used to emulate multiple nodes in the same host while maintaining realistic

performance. Using network namespaces each emulated node becomes isolated from its peers,

having its own network configurations and routing tables. This enables hybrid scenarios (com-

bining emulated and real resources in the same experiment) where we can run multiple emulated

nodes in the same host machine. In hybrid scenarios a real testbed experiment composed by fast

4.7 Summary 57

prototyped and/or real nodes can be interacting with a node emulation server. The emulation

server may be used for augmenting the complexity and scale of a real testbed by introducing a

number of fully emulated nodes able to interact, in real time, with other fast prototyped and real

nodes. Being able to maintain the necessary real-time network performance, while running these

complex networking scenarios is relevant for the evaluation and validation of networking solutions

in large scale; this is usually difficult, if not impossible, to achieve with real testbeds only, due to

the resource limitations to build, manage, and operate large scale testbeds.

The use of the Fast Prototyping protocol development process has the following limitations:

1) if we are improving a protocol already having a real implementation, it may be difficult and

error-prone to re-implement its data plane and control plane from scratch in ns-3. In that case, a

better alternative would be to use the ns-3 DCE which allows to run a real implementation in ns-3,

if the source code is available and it is compatible with DCE; 2) the DPK approach only supports

protocols having data planes compatible with the Linux kernel. Otherwise, the DPU approach is

a valid alternative and its performance, although worse than the DPK, is better than the traditional

ns-3 emulation approach running the data plane inside ns-3; 3) in its current version the Real

Routing module, developed for the DPK approach, only supports proactive L3 protocols.

The integration of the real routing module in the main ns-3 distribution will be considered in

order to reach more protocol developers and researchers. In addition, we will develop a module

to automatically generate the network namespaces and their connections based on the topology of

the nodes created in the simulator; at the moment, users have to manually create the namespaces

and configure the emulated nodes with their corresponding namespace. An extension of the Real

Routing module to support reactive L3 protocols is also for future work.

4.7 Summary

In this chapter we focused on improving the performance of ns-3 emulation supporting the Fast

Prototyping protocol development process. Since in a well-designed network most of the traffic

corresponds to data packets, we focused on moving the data plane operation to outside of ns-3.

This solution improves the network nodes efficiency at the cost of having to port the data plane

code. We argue this is not a significant problem because the data plane is much simpler than

the control plane, resulting in a relatively small amount of code to be ported. We proposed two

approaches to implement this solution: the DPU and DPK. The former is more generic and works

for any protocol; the latter is more efficient and allows more code reuse but it is only applicable

to proactive L3 protocols. In the case of the DPK approach we created a new ns-3 module named

real routing which implements the generic parts of the proposed approach. This allows researchers

to easily extend their ns-3 protocols to use the DPK approach. Additionally, we presented an

approach that enables the proposed optimizations to be used even when emulating multiple nodes

in the same machine. This is done by using network namespaces, which are environments where

network resources are isolated from each other.

58 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols

In order to validate the proposed solution, we compared the performance of the new ap-

proaches against traditional ns-3 emulation, both for single and multiple emulated nodes in the

same physical node, running multiple tests with different configurations. The evaluation results

showed that when emulating a single ns-3 node, the maximum throughput can be improved by as

much as 4.9 times in user space and 19 times in kernel space, while having the RTT lowered by

respectively 5.3 and 14 times; when emulating multiple ns-3 nodes, the maximum throughput can

be improved, in kernel space, by as much as 23 times while having 15 times lower RTT. These re-

sults show that the proposed DPU and DPK approaches allow much better data plane performance

when compared against traditional ns-3 emulation.

The amount of code reuse obtained was also characterized. The DPU approach only requires

the development of around 11% additional lines of code on top of traditional emulation implemen-

tations; for the DPK approach that value can be reduced to 1.4% by using the real routing ns-3

module.

As a result of this work, ns-3 users will be able to reuse their simulation code in real networks,

now with reduced packet processing overhead, enabling them to benefit from the Fast Prototyping

process without the previous performance problems.

Chapter 5

Trace-based ns-3 Simulation Approach
for Perpetuating Real-World
Experiments

In the previous chapters we focused on improving Experimentation using Simulation. In Chapter 2

we proposed the Fast Prototyping development process, which uses ns-3 emulation as a basis for a

shared protocol model implementation between Simulation and Experimentation. In Chapter 3 and

Chapter 4 we proposed solutions to improve the functionality and performance of ns-3 emulation.

Pursuing the thesis goal of promoting a Simulation-Experimentation synergy, in this chapter

we close the cycle of cooperation between Simulation and Experimentation, now improving Sim-

ulation using Experimentation. We present the Trace-based Simulation (TS) approach, the related

approaches found in the state of the art to achieve repeatable and reproducible experiments, and

the new ns-3 TraceBasedPropagationLossModel. Finally, we describe the evaluation of the TS

approach carried out using a set of experiments run over three different experiments, considering

a comparison with pure simulation and experimentation.

5.1 Problem and Motivation

Although both simulation and experimentation phases are used for the performance evaluation of

networking solutions, as depicted in Figure 5.1, in wireless networking research and development

we typically depend on experimentation to further evaluate a solution, as simulation is inherently a

simplification of the real-world. However, experimentation is limited in aspects where simulation

excels, such as repeatability and reproducibility. Real experiments can be difficult to repeat when

external phenomena such as noise, interference and multipath create time time-varying channels.

Due to this variability, given the same input real experiments can produce very different output

results. Real experiments can be reproducible if the methods are documented clearly, although

very often they are difficult to reproduce due to testbed operational constrains and availability.

59

60 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

Figure 5.1: Enhanced Simulation-Testbed Synergy via Shared ns-3 Protocol Model and Perpetua-
tion of Experiments.

Our experience in past and current research projects led us to realize that the aforementioned

limitations regarding the repeatability and reproducibility of past experiments are clear and more

significant in emerging networking scenarios, such as aerial networks (e.g., SUNNY project [14])

and maritime networks (e.g., BLUECOM+ project [15][59]). The related testbeds are becoming

increasingly complex and costly to maintain due to the involved difficult logistics operations and

reduced duration of the experiments. This has to do with the characteristics of the communications

nodes, such as limited battery and fuel autonomy, and the high costs related to renting ships and

reserving airbase time slots. On top of this, the radio link quality – herein also referred to as the

Signal to Noise Ratio (SNR) at the receiver – is highly unstable and the mobility of the nodes

in these scenarios is difficult to reproduce. Furthermore, it is important to realize that in these

complex scenarios 1) simulations usually provide very optimistic results, forcing Experimentation

to more accurately evaluate a networking solution, and 2) experiments are more difficult to repeat

and reproduce, given the temporary and costly nature of many of these testbeds.

A more detailed example of such scenarios was the SUNNY testbed [14]. In the SUNNY

testbed there is a static node that acts as a gateway to the ground control operations – the Base

Station (BS) – and UAVs that fly in trajectories such as the one presented in Figure 5.2. These

UAVs use TV White Spaces (TVWS) wireless links and can fly at altitudes ranging from 100 to

600 m and reach speeds up to 400 km/h. The resulting radio link quality and UAV mobility are very

hard to repeat, reproduce, and model due to multiple factors including: 1) the constant movement

of the UAV that affects the relative position of the antenna to the BS, due to changes of atmospheric

and sea conditions that affect both the signal and UAV mobility; 2) the high noise floor that is often

present on these sub-GHz frequencies, due to Electromagnetic Interference (EMI) and/or Radio-

Frequency Interference (RFI) caused by close-by hardware and digital TV emissions in the order

of kW in neighboring frequency channels.

Contrary to more stable and controlled scenarios, these emerging scenarios may lead to the

lack of repeatability and reproducibility of experimental results, and the lack of simulation ac-

curacy, which may impair the fine-tuning and evaluation of a networking solution. This greatly

impacts the confidence on the solution’s performance results and its scientific relevance. What if

we could make any wireless experiment repeatable and reproducible under the same exact condi-

5.2 Related Work 61

Figure 5.2: UAV path recorded in real-world experiment performed in the SUNNY project.

tions? What if we could use past execution conditions to test different or fine-tuned networking

solutions? What if we could share the same testbed execution conditions among an "infinite" num-

ber of users (even for peer reviewing of scientific publications)? What if we could run wireless

experiments in faster than real time? These are the questions we address by using the TS approach.

5.2 Related Work

To achieve repeatability and reproducibility of realistic performance evaluation results, different

experimentation, simulation, and emulation approaches have been proposed in the state of the art,

exploring different alternatives to achieve the same objective. Some of them focus on improving

the experimentation, while others focus on improving simulation and emulation. Pure simulation,

although repeatable and reproducible, produces results which accuracy highly depends on how

well the simulation model (e.g., channel model) represents the real scenario. In emerging net-

working scenarios, very often the channel model in real-world experiments may not be described

by classical stochastic models. The channel model has a high impact on the network performance,

so the use of an improper channel model in simulation can make simulations less accurate. This

lack of accuracy (by inadaptation of the simulation models) related to pure simulation is a common

conclusion from different authors [60][61][62] and may limit the validation of new networking so-

lutions.

The CONCRETE [63] tool used in federated testbeds such as Fed4FIRE+ [64] allows to

achieve repeatable experiments by analyzing the correlation of the experimental results obtained

for different executions and selecting the ones representing the system stable operation (excluding

the “outliers”). This needs to happen both for the initial validation, and then also for the repro-

duction of the experiments; only then the results become comparable. In practice, the “outliers”

62 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

are equally important and representative of the system operation, as they test the system operation

boundaries and often reveal unpredicted phenomena that shall be evaluated too. This solution also

depends on the availability of the testbed and requires a mainly stable and repeatable environment.

This renders it incompatible with emerging wireless testbeds, where the trajectory of the nodes

and the complex multipath phenomena are highly dynamic.

Papadopoulos et al. [60] support the use of experimentation in testbeds in order to obtain

more realistic results than pure simulation. An important conclusion is that for all the papers with

experimental results that they have analyzed, only 16.5% were reproducible. This was mainly

due to missing or wrong setup information provided (from possible human error), which made

it impossible to replicate the experiments. For emerging networking scenarios, even having the

same setup conditions, due to the dynamic nature of these testbeds, the results may be hardly

reproducible.

Subsequently, Papadopoulos et al. [61] improve upon their previous study by presenting an

approach to evaluate the repeatability and reproducibility of solutions running in a testbed, and

its impact on a proper validation. This approach runs the same solution multiple times along

the time. If the results remain reproducible, the solution is validated; otherwise, the results are

considered a proof-of-concept needing further validation. Due to the complex logistics operations

of emerging network testbeds and their dynamic nature, this approach is not adequate for the

emerging networking scenarios.

Bun-Laguna et al. [62] explore how reproducible the experimental results are between dif-

ferent testbeds, more specifically, between laboratory testbeds and real-world IoT testbeds. One

important conclusion is that laboratory testbeds are suffering from some of the problems found in

simulation: due to its stable environment or unrealistic node density, the results often become too

optimistic. In this work the authors present a methodology to test if the laboratory results are real-

istic enough to be considered valid and to allow their reproduction using the same or other testbed.

For that purpose, they capture the Packet Delivery Ratio (PDR) and RSSI of the radio links along

the time by running a specific firmware. They realize that some scenarios provide highly unstable

link connectivity along a day, providing results which may be inconsistent or difficult to repro-

duce. This is the case with the emerging vehicular networks. They suggest as future work to feed

simulators with such captured radio link quality data to reproduce more accurate simulations. This

idea is aligned with our goals of improving the simulation accuracy (for reproducing past exper-

iments). It is important to note that our TS approach was originally published in June 2017, one

year and a half before [9].

The following related work approaches are focused on the concept of replaying real-world

experiments in simulation and emulation.

Mininet-WiFi [65], based on the mininet emulator, is a solution focused on emulation for

Software-Defined Wireless Networks, which supports replaying nodes positions and Wi-Fi Re-

ceived Signal Strength Indication (RSSI). It only supports Emulation Mode and symmetrical Wi-

Fi links. According to [66], Mininet-WiFi is lacking the support for Minstrel [67] rate control

algorithm (thus not reproducing so accurately the rate adaptation observed in real experiments,

5.3 Proposed Trace-based Simulation Approach 63

which use Minstrel by default), channel contention mechanisms (e.g., CSMA-CA), MAC layer

retransmission and interference. Many of these limitations result from the fact that Mininet-WiFi

uses netem which cannot easily model the lower layers faithfully. Our approach focuses on replay-

ing the physical conditions of a Wi-Fi scenario in ns-3, aims at supporting all the aforementioned

missing Mininet-WiFi functionality, while also supporting asymmetric Wi-Fi links and simulation

mode.

Regarding simulation, two main approaches can be found: 1) Packet Based Replay such as

the one proposed in [68], where the authors capture traffic of real networks and try to reproduce the

same experimental condition in simulation down to the per packet resolution, including the same

throughput and packet rate; 2) Application Layer Replay, as the one presented in [69], where

the authors try to abstract all low level variables and reproduce the traffic delays and performance

bottlenecks experienced in the real network at the application layer. These approaches do not

allow to keep improving the solution under evaluation.

In summary, the related work is focused on two approaches 1) improving the experimentation

or 2) improving simulation and emulation. The former depends heavily on the testbed being

available for multiple runs, and on its stability. The latter is more aligned with our goals. To the

best of our knowledge, we did not find a related work solution that allows to replay the conditions

of the scenario both in simulation and emulation, thereby enabling to keep improving the solution

under evaluation.

5.3 Proposed Trace-based Simulation Approach

Considering the problem described in Section 5.1, the Trace-based Simulation (TS) approach aims

to improve the simulation accuracy1 as a means to achieve repeatability2 and reproducibility3 of

past real experiments, thus allowing to continue fine-tuning and evaluating a networking solution

through more accurate simulations. The TS approach focuses on 1) capturing traces of the execu-

tion conditions of an experiment and 2) enable the repetition and reproduction of such conditions

using the past traces in ns-3. To attain this goal the TS approach relies on the ns-3 good simu-

lation capabilities from the MAC to the application layer, combining them with the reproduction

of traces characterizing relevant physical parameters, such as the variation of the position of the

communications nodes and the quality of the radio links over time, to create realistic simulations.

Figure 5.3 depicts a high-level comparison between a pure ns-3 simulation and a trace-based ns-3

1Simulation accuracy for emerging wireless networking scenarios highly depends on the simulation models being
used, especially the channel model. In the context of this dissertation, we use the term “accuracy” to represent how well
we can reproduce the performance results of past experiments in simulation using the TS approach. The TS approach
can be seen as an intermediate solution to bring realistic channel conditions to simulation, while there is not enough
data to create new, or fine-tune current stochastic models.

2Ability of the same experimenter/researcher to repeat the experiment in simulation, obtaining comparable results,
even though the hardware is, understandably, not the same between a real experiment and a simulation.

3Ability of other experimenters/researchers, not the authors of the original experiment, to reproduce accurate per-
formance results close to the original experiment.

64 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

simulation (TS approach), showing that the ns-3 simulation remains the same except for the Mo-

bility and the Propagation Loss Models used. By only replaying and reproducing the experimental

conditions, the TS approach allows the evaluation of an unlimited number of solutions in the ex-

act same conditions (e.g., an improved or fine-tuned version of a network protocol adapted to the

conditions experienced in past experiments).

Figure 5.3: High-level comparison between pure ns-3 simulation and a trace-based ns-3 simulation
approaches.

The TS approach is illustrated in Figure 5.4. For capturing the execution conditions of an

experiment, the TS approach uses every Wi-Fi node participating in a real-world wireless experi-

ment as a probe, automatically capturing traces of radio link quality (RSSI, noise floor), positions

of the nodes, and Wi-Fi card configurations such as TX-Power, channel center frequency, channel

bandwidth, and the Wi-Fi standard used. Each execution of the same experiment produces unique

traces. These traces are gathered and stored by the user in its “Experimental Traces” database or

logfiles, where they are identified by the Testbed, Experiment, and specific Execution in which

they were produced. A user can now: 1) manage his/her traces by adding, manually, further rel-

evant information to help with the experiment reproduction (e.g., gain of the antennas and cable

losses); 2) configure trace-based ns-3 simulation scenarios, according to the real experiments, and

use the respective execution traces to reproduce the real experiments in simulations, which can

run concurrently using different ns-3 instances; 3) share the traces with the scientific community

to foster new research activity and enable repeatability and reproducibility of the experiments.

Figure 5.4: High-level model of the Trace-based Simulation approach.

5.3 Proposed Trace-based Simulation Approach 65

Our proposed TS approach enables better reproducibility of the experimental channel condi-

tions in the simulator, when compared to the state of the art approaches described in Section 5.2.

For experimentation, the TS approach can reproduce each of the real experiments executions, in-

stead of discarding the “outliers” and considering only the stable network operation, and it does

this without the need for multiple executions of the same experiment nor access to the real testbed,

apart from capturing the traces. For emulation, while the state of the art approaches only support

emulation mode, the TS approach, being based on ns-3, supports both emulation and simulation

modes, and does this with better realism at modeling the MAC layer operation. For simulation,

the state of the art alternatives focus on full reproduction of the real experiment – e.g., same net-

work traffic, delays –, while the TS approach only reproduces the physical characteristics and

allows to repeat and reproduce the same or other network solutions in the same conditions. The

TS approach can then be used to continue improving a solution under evaluation in simulation

environment, which enables: 1) concurrent user access to the same exact experimental setup; 2)

running simulations in faster than real time; 3) running multiple simulation instances at the same

time, exploring different variants of the solution under evaluation.

In summary, the TS approach relies on recording in real experiments and replaying in ns-3

the physical characteristics that are complex to model in pure ns-3 simulation, due to their highly

unstable and unpredictable nature. In the following we identify the physical characteristics to be

recorded into variable traces. In addition, we explain how those characteristics can be reproduced

in ns-3 and analyze whether ns-3 natively supports the required functionality or new models need

to be developed.

5.3.1 Traces to be Collected from Real Experiments

The TS approach assumes the physical conditions experienced by real nodes can be characterized

by means of two variables: 1) the node position along the time, e.g., GPS Coordinates; 2) the

quality of the radio links established with peer nodes, e.g., RSSI, noise floor. This information is

used to feed the trace-based ns-3 simulation. In what follows, we refer to each of these variables

and point out the way they can be collected in a real testbed.

Node GPS Coordinates. In a real-world mobile testbed, the position of the nodes is frequently

changing throughout the experiment. As such, its value shall be collected periodically. Using a

GPS receiver and gpsd in any Linux based Operating System (OS) it is possible to obtain the

3D GPS coordinates of the node (latitude, longitude, altitude) per second, along with the UTC

timestamp. This is enough to move the nodes in ns-3, according to the real waypoints.

Radio Link Quality. In a real-world testbed, the radio link quality is constantly changing

throughout the experiment, so it shall be collected periodically. The wireless interfaces installed

in the real nodes are capable of reporting: 1) the Received Signal Strength Indication (RSSI) (in

dBm) for each of the neighboring nodes in radio range; 2) the total Noise Floor power (also in

dBm) that includes the white noise, noise figure of the RX circuit, EMI, and RFI. Note that the

RSSI results from the combination of multiple variables from the sender, the environment itself,

and the receiver. Examples of such variables are the effective TX power, insertion losses, antenna

66 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

Figure 5.5: Frame success ratio of NIST OFDM model for a frame size of 200 bytes using IEEE
802.11a PHY rates. [1]

cables losses, antenna gains and polarization used (e.g., vertical, horizontal) and path losses that

are a function of the propagation medium, obstacles, multipath, and other propagation phenomena.

For trace-based simulations, the RSSI can be used as the variable that captures the combination

of the multiple variables above mentioned. Based on the Noise Floor and the RSSI, the expected

Signal to Noise Ratio (SNR) (in dB) at the receiver can be calculated. It is important to note that

this information should be collected at both ends of the radio link, because very often radio links

are asymmetric [70]. For instance, UAVs tend to have higher noise floor than Ground Station

nodes, due to the proximity of the antennas to other electronic equipment in the UAV and the lack

of physical obstacles to block interfering signals originated from distant sources on the ground.

The variable that better represents the radio link quality is the SNR, i.e., how much stronger the

signal is being received above the total Noise Floor when considering dBs. There are models, such

as the NIST OFDM error model [1], which determine the Frame Error Ratio (FER) – probability

of a frame being received with errors and discarded at the receiver – based on the SNR, the frame

size, and the PHY rate used. Figure 5.5 shows the frame success ratio (the complement of FER)

of NIST OFDM error model for a frame size of 200 bytes using IEEE 802.11a PHY rates. In

conclusion, if the real traces of link quality need to be compressed, using the SNR is a good

alternative to save both the RSSI and Noise Floor, as it is the metric that will be used by the

simulator error models.

5.3 Proposed Trace-based Simulation Approach 67

Using a bash script it is possible to compile the output of the command “date” (outputs the

time that can be synchronized with gpsd using ntp), the command “iwinfo wlan0 info” (outputs the

noise floor) and the command “iw wlan0 assocli” (outputs the current RSSI per associated peer)

to obtain the radio link quality once per second. If more resolution is needed, a packet capture

program such as horst can be used to collect the RSSI per frame successfully received. To increase

the number of samples captured by horst, DATA frames as well as ACK and BEACON control

frames can be used. Also, in a multiple access scenario, if a node overhears frames exchanges

between its peers (interface in monitor mode) those samples can also be used as if they were sent

to it.

Other characteristics also need to be collected once per real-world experiment, such as Channel

Center Frequency (MHz), Channel Bandwidth (MHz), TXPower (dBm), Physical Rate (Fixed/Auto),

and Wi-Fi standard (a/b/g/n), as they remain constant throughout the experiment. These character-

istics are essential to make the ns-3 simulation scenario consistent with the real-world experiment.

5.3.2 Reproducing Real Node Positions in ns-3

ns-3 already implements the MobilityModel, which defines the node position and enables node

movement. The WaypointMobilityModel is specifically suitable for reproducing the positions of

real nodes in ns-3. The WaypointMobilityModel accepts a list of Waypoints – each Waypoint

composed by a Cartesian Coordinate Vector – that can be directly derived from GPS coordinates.

Between each Waypoint, ns-3 moves the node at a constant speed such that the node arrives at the

next Waypoint in the defined time. We just need to adjust the necessary offset between Simulation

Time (starts at 0 s) and the experiment WallClockTime.

5.3.3 Reproducing Radio Link Quality in ns-3

As explained in Section 5.3.1, the metric that represents all the phenomena affecting the radio

link quality is the SNR. We argue that the same applies in ns-3 simulation if we use an adequate

ns-3 error rate model such as the NistErrorRateModel [1]. For a given combination of SNR at the

receiver, frame size, and PHY rate/modulation used the probability of a frame being lost can be

calculated using the functions represented in Figure 5.5. Then, ns-3 uses random variables streams

to decide whether the frame is dropped due to transmission errors. Data frames or ACKs being

dropped result in MAC layer retransmissions, which lowers the throughput and increases link

delay. Frames being dropped can also trigger the auto-rate adaptation mechanism (e.g., Minstrel)

to lower the PHY rate used, also lowering the throughput and increasing the link delay. Because of

the realism of ns-3, we assume that reproducing the same SNR in ns-3 will enable more accurate

reproduction of the radio link quality, achieving FER equivalent to the real experiment and closer-

to-real link behavior.

To reproduce the same radio link quality in ns-3 we need to look for mechanisms to replay the

SNRs observed in the real experiment along the simulation. Instead of changing both the ns-3 RSS

and noise floor to recreate the necessary SNR, we found that it is enough to maintaining the ns-3

68 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

noise floor constant and only change the ns-3 RSS to achieve the desired SNR. In what follows,

we explain how the ns-3 RSS is calculated and how we control the ns-3 RSS during a trace-based

simulation.

ns-3 Wi-Fi nodes communicate using a Channel abstraction that is a shared medium between

them. Two nodes need to be in the same Channel to communicate via a wireless link. In order to

account for propagation loss, ns-3 supports several PropagationLossModels that can be associated

to a Channel. When a node is sending a frame, ns-3 calculates the Received Signal Strength (RSS)

– the equivalent of the RSSI in the real wireless cards – for the destination node, considering the

following characteristics: 1) the TX-Power of the source node; 2) the antenna gain of the source

node; 3) the path loss calculated by the PropagationLossModel associated to that Channel taking

into account the distance between the nodes, using the function DoCalcRxPower; 4) the antenna

gain of the destination node. By manipulating these four characteristics in ns-3 we can recreate the

desired RSS in simulation. The characteristics 1, 2 and 4 are constant throughout the simulation

and the PropagationLossModel is used as a way to reproduce the real link quality in simulation,

changing the simulation RSS according to the traces of real link quality, which consist of the SNR

values collected.

There is an ns-3 PropagationLossModel named FixedRssPropagationLossModel which allows

setting an RSS for a given channel, ignoring the attenuation calculated for the distance between

the communicating nodes; the antenna gain of the destination node is considered after the Propa-

gationLossModel, so it should be set to 0 dBi when using the FixedRssPropagationLossModel, as

recommended by the ns-3 manual. Using the FixedRssPropagationLossModel allows to change

the RSS value during the simulation execution, which is important to reproduce the radio link

quality changes along the simulation. The problem is that the RSS is only defined per Channel. It

cannot be defined per link between each pair of nodes nor per link direction. This means that all

the nodes communicating in the same Wi-Fi Channel have the same RSS. This is not suitable for

trace-based simulations as the link quality between each pair of nodes is usually heterogeneous

and asymmetric. In order to properly reproduce the real radio link behavior, the RSS shall depend

on 1) the peers involved in the communication and 2) the link direction. For this purpose, a new

PropagationLossModel was developed for ns-3, called TraceBasedPropagationLossModel. The

new model is described in Section 5.4.

5.4 TraceBasedPropagationLossModel

The new TraceBasedPropagationLossModel, characterized by the class diagram shown in Fig-

ure 5.6, is a subclass of the existing PropagationLossModel. The new class includes the new

attributes and operations necessary to implement the functionality required to reproduce asymmet-

ric radio link quality in multiple access scenarios, based on real-world radio link quality traces.

Throughout this section we present its implementation details. The ns-3 version 3.28 was used for

implementing the model. The source code of the TraceBasedPropagationLossModel implementa-

tion can be found in [71].

5.4 TraceBasedPropagationLossModel 69

Figure 5.6: Class diagram for the proposed TraceBasedPropagationLossModel.

The following attributes are included in the proposed TraceBasedPropagationLossModel:

• m_2dRssArray – a two-dimensional array to store the current RSS (in dBm) of all nodes

with respect to all other nodes. Table 5.1 represents an example snapshot of this two-

dimensional array for a trace-based ns-3 simulation containing three nodes experiencing

asymmetric SNR.

• m_mobilityModelsArray – an array to store the pointer of the Mobility Model Object be-

longing to every node. This helps identifying the sender and receiver of each frame to be

sent, whenever the DoCalcRxPower method is called.

• m_nrTraceBasedNodes – an auxiliary variable representing the number of nodes using the

TraceBasedPropagationLossModel.

The following new methods are featured in the proposed TraceBasedPropagationLossModel:

• InitMobilityModelForEachNode – method that must be called before the simulation starts,

in order to initialize the m_mobilityModelsArray.

• SetRssOfNodeXFromNodeY – method that updates a given position of the m_2dRssArray,

allowing the dynamic change of the RSS of the link between Node X and Node Y according

to the real experiment traces.

Table 5.1: Example of the 2D RSS (in dBm) array for a trace-based ns-3 simulation containing
three nodes, where the lines represent the receiver nodes and the columns represent the sender
nodes.

TxNode0 TxNode1 TxNode2
RxNode0 - -60 -70
RxNode1 -65 - -40
RxNode2 -71 -45 -

70 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

• DoCalcRxPower – method that calculates RSS of the node receiving a given frame. Each

time the method is called, the Mobility Model pointers “a” – the sender node – and “b” –

the receiver node – are matched with the ones present in m_mobilityModelsArray to find the

IDs of the corresponding nodes. These IDs are then used to fetch the respective RSS value

from the m_2dRssArray two-dimensional array.

While in a real node the wireless card reports the RSSI – an indicator that greatly depends on

the Auto-Gain Control (AGC) being applied on the RX circuit – ns-3 uses the actual (theoretically)

calculated Received Signal Strength (RSS). When the radio signal is too weak to be decoded the

AGC increases the gain, while when signal is too strong the AGC reduces the gain (attenuates the

signal) to avoid distortion by overwhelming the receiver. This causes a problem on the reported

RSSI and noise floor, as they do not account for the current gain, making the reported RSSI lower

than expected in scenarios with very strong radio signal, and higher than expected for scenarios

when we are about to loose radio link connectivity. This AGC problem that affects the RSSI also

affects the Noise Floor reported by the real wireless cards, although the resulting SNR remains

realistic. Due to this, when reproducing the radio link quality in ns-3, the proposed TraceBased-

PropagationLossModel considers the SNR of the real system. We can reproduce such real-world

SNR by setting a user defined RSS in ns-3 above the ns-3 noise floor.

The SNR is used in the ErrorRateModel to calculate the probability of receiving a frame with

an error and dropping it. The ErrorRateModel used is the NistErrorRateModel which is considered

in the ns-3 documentation to be a more realistic model for OFDM modulations than the traditional

“YansErrorRateModel”.

5.4.1 Trace-based Simulation Settings

Before running the ns-3 simulation, the user should consider the following settings to better rep-

resent the real-world experiment:

• TX Power End, TX Power Start and TX Gain – no need to alter as the RSS is set based

on traces.

• RX Gain – should be kept as “0” so that it is not added to the RSS based on the real traces.

• WiFi Standard, Wi-Fi Mac, Frequency, Channel BW and Remote Station Manager –

should be set with the values assumed in the real world experiment, for instance, 802.11g,

AdhocWifiMac, 739 MHz, 5 MHz and ConstantRateWifiManager.

• Data Mode and Control Mode – should be set to the corresponding rates, if constant, for

instance, ErpOfdmRate6Mbps and DsssRate1Mbps.

• Propagation Delay – the ConstantSpeedPropagationDelayModel should be used.

• Propagation Loss – use the new TraceBasedPropagationLossModel.

5.5 TraceBasedPropagationLossModel Functional Testing 71

• Error Rate Model – the NistErrorRateModel should be used.

• Mobility Model – use the ConstantPositionMobilityModel for fixed nodes, and the Way-

PointMobilityModel for the mobile nodes.

• 2dRssArray – events should be scheduled throughout the simulation to reflect the correct

trace values over the simulation time, and can be accessed by Config::Set.

5.5 TraceBasedPropagationLossModel Functional Testing

To assess the correct operation of the proposed TraceBasedPropagationLossModel two functional

tests were performed to cover all fundamental functionalities: 1) asymmetric point-to-point ra-
dio link test, which tests both the ability to represent asymmetric radio link qualities and the

capacity to change the RSS along the simulation time; 2) asymmetric multiple-access radio
link test, which tests the ability to represent different radio link qualities per each pair of nodes,

considering also the direction of the communication.

5.5.1 Asymmetric Point-to-Point Radio Link Test

A simple simulation scenario was created containing two nodes that stayed in static positions

throughout the simulation. Each node had a Wi-Fi 802.11b/g interface configured in Ad-Hoc

mode, and operating at 739 MHz with a channel bandwidth of 5 MHz. Node 0 is set as the

GroundNode and Node 1 acts as the MobileNode. The initial simulation RSS values were set to

-50 dBm for both nodes. The MobileNode (Node 1) ran an UdpEchoServerApplication and the

GroundNode (Node 0) ran an UdpEchoClientApplication. The GroundNode sends UDP packets

with 1400 bytes to the MobileNode at a rate of 1 packet per second. The packet capture option

was enabled in both nodes. The RSS values were Scheduled to change 3 times for both nodes at

different time periods during the same simulation, as follows. This simulation scenario is defined

in file “first_scenario.cc”, available for download in [72].

1 Node 0 RSS = -50.0 dBm and Node 1 RSS = -80.0 dBm;

2 Node 0 RSS = -60.0 dBm and Node 1 RSS = -81.0 dBm;

3 Node 0 RSS = -70.0 dBm and Node 1 RSS = -82.0 dBm.

After running the simulation, two output .pcap files generated by ns-3 were obtained – one for

each node – with RadioTap header included. By opening those files in Wireshark we got the data

represented in Figure 5.7, Figure 5.8, and Figure 5.9. In the three selected time periods, the RSSI

values reported for each frame had the same values that were defined by the trace. Therefore,

for this test we could conclude that the new TraceBasedPropagationLossModel was working as

expected.

72 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

Figure 5.7: Wireshark screenshot #1 showing RSSI for Node 0 and Node 1 after the first Scheduled
update.

Figure 5.8: Wireshark screenshot #2 showing RSSI for Node 0 and Node 1 after the second Sched-
uled update.

Figure 5.9: Wireshark screenshot #3 showing RSSI for Node 0 and Node 1 after the third Sched-
uled update.

5.5 TraceBasedPropagationLossModel Functional Testing 73

5.5.2 Asymmetric Multiple-Access Radio Link Test

The simulation scenario consisted of three IEEE 802.11a nodes configured in channel 36 (center

frequency of 5180 MHz) with 20 MHz of bandwidth. The three nodes were set to fixed through-

put in the simulation using the ConstantPositionMobilityModel. Node1 ran an UdpEchoServer-

Application, while Node0 and Node2 ran an UdpEchoClientApplication. The clients sent UDP

packets with 1400 bytes to Node1 at a rate of 1 packet per second. The packet capture option

was enabled in the three nodes. The IP addresses configured for Node0, Node1, and Node2 cor-

respond, sequentially, to the range of 10.0.0.1–10.0.0.3. The RSS for each node was configured

based on the example values presented in Table 5.1. The simulation scenario is defined in file

“first_scenario_2018.cc” available for download in [71].

Figure 5.10: Wireshark screenshots showing Node0 RSSI perspective of the network.

Figure 5.11: Wireshark screenshots showing Node1 RSSI perspective of the network.

Figure 5.12: Wireshark screenshots showing Node2 RSSI perspective of the network.

After running the simulation, we obtained three output .pcap files generated by ns-3 with Ra-

dioTap header included. By opening those files in Wireshark we got the data represented in Figure

5.10, Figure 5.11, and Figure 5.12. Each node was able to capture the network traffic, including

the unicast flows between its neighbors, and the RSSI values reported by Wireshark correspond to

74 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

the values defined by the trace. This proved the new version of the TraceBasedPropagationLoss-

Model was working as expected for this scenario, now with support for Multiple Access wireless

scenarios.

5.6 Evaluation of the Trace-based ns-3 Simulation Approach

The TS approach was evaluated considering a set of experiments over three testbeds: 1) SUNNY
UAV-Ground Communications Testbed – over which one 2000 s experiment using a TVWS

IEEE 802.11b/g point-to-point link with fixed PHY rate was run; 2) Isolated Laboratory Testbed
– over which ten 60 s experiments were conducted using a multiple-access Wi-Fi IEEE 802.11a

scenario with 3 nodes and auto PHY rate; 3) Fed4FIRE+ w-iLab.2 Testbed – over which hun-

dreds of 300 s experiments were conducted considering multiple IEEE 802.11a point-to-point

scenarios using both fixed and auto PHY rate. These experiments were replayed via their phys-

ical condition traces in trace-based ns-3 simulation. Pure ns-3 simulations were also performed

to establish a comparison baseline. In the end, the accuracy of the TS approach was compared

against pure ns-3 simulation, considering as reference the experimental results obtained for two

network performance metrics: throughput and Round-Trip Time (RTT). The accuracy of the TS

and pure simulation approaches was measured using the relative error for the throughput and the

absolute error for the RTT network performance metrics. The absolute error is calculated using

Equation 5.1 and the relative error is calculated using Equation 5.2, where PMi is the value of the

network performance metric PM obtained for the approaches i (TS and pure simulation) and PMe

is the value of the network performance metric PM obtained in the real experiment. The accuracy

gain introduced by the TS approachwith respect to pure simulation approach is calculated using

Equation 5.3, where RelativeErrorT S is the relative error for the TS approach and RelativeErrorPS

is the relative error for the pure simulation approach.

AbsoluteErrori = |PMi−PMe| (5.1)

RelativeErrori =
AbsoluteErrori

PMe
×100(%) (5.2)

AccuracyGain =

(
1− RelativeErrorT S

RelativeErrorPS

)
×100(%) (5.3)

5.6.1 SUNNY UAV-Ground Communications Testbed

Experimental Setup and Results

In this experiment, which ran along 2000 s, there was a static node on the ground – the SUNNY

Base Station (BS) – and one UAV flying. The BS was positioned near shore in a control room 50

m above the sea level. The BS antenna was placed in a 5-meter mast, which assured line-of-sight

propagation with clearance of the first Fresnel Zone at the radio frequency used (739 MHz). The

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 75

UAV altitudes ranged from near 30 m during launching operations and 100 to 600 m during the

flight. Figure 5.2 shows the path of the UAV during the flight, while Figure 5.13 shows the distance

between the UAV and the BS along the experiment. Both nodes were transmitting at 25 dBm. In

the UAV a 2 dBi dipole antenna was used; the BS had a 6 dBi dipole antenna. The network

link was loaded primarily with TCP traffic, but also with some residual UDP traffic generated by

UAV on-board equipment communicating with the control systems installed at the BS. During the

experiment the UAV position and radio link quality shown in Figure 5.14 for both link directions

were collected, in order to reproduce the experiment in ns-3. The throughput was measured along

the experiment.

Figure 5.13: Radio link distance between UAV and BS.

Figure 5.14: SNR recorded in the real-world experiment for the UAV and BS.

76 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

Figure 5.15: Real Throughput vs. 2-Ray Ground Model Simulation vs. Trace-Based Simulation.

Pure and Trace-based Simulation Results

A pure ns-3 simulation was executed considering the node positions, channel frequency, band-

width, transmission power, physical rate, and Wi-Fi standard used in the real-world experiment.

This simulation scenario is described in file “second_scenario.cc” available for download in [72].

The BS node (Node 0) was configured with a ConstantPositionMobilityModel using the real coor-

dinate. The UAV node (Node 1) was configured with the WaypointMobilityModel for replicating

the real positions of the UAV. The PropagationLossModel used was the TwoRayGroundPropaga-

tionLossModel [73]. As in simulation we do not have the real traffic flows, an equivalent TCP

traffic flow was generated with the OnOffApplication from the UAV to a sink installed in the BS

node. The TCP packet Maximum Segment Size (MSS) was set to 1400 bytes – in order to repli-

cate the traffic observed in the real-experiment, where most of the packets were large and only

limited by an MTU of 1500 bytes – and the Constant Bit-Rate (CBR) value was set to 2000 kbit/s,

which is enough to keep the link fully loaded. For each simulated second, the throughput at the

sink application was measured in 5 different simulation runs and the average value was calculated.

The results are shown in Figure 5.15. The dotted line corresponds to a moving average using 2

consecutive samples of the simulated results, while the solid line of the upper plot represents the

real-world values. As we can see, the results are far from being realistic, as in ns-3 simulation not

even once the link was broken between the two nodes. This clearly shows the problem of using

pure simulation.

The same ns-3 scenario based on the real UAV positions was executed, but this time using the

TS approach with the real-world SNR traces via the proposed TraceBasedPropagationLossModel.

This simulation scenario is described in file “third_scenario.cc” available for download in [72].

For each simulated second, the throughput at the sink application was measured in 5 different sim-

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 77

ulation runs and the average value was calculated. The results are shown in Figure 5.15 (bottom

plot), using a moving average of 2 consecutive samples. We can see that the TS approach achieves

a throughput much closer to the one measured during the real-world experiment. Yet, the maxi-

mum real-world throughput does not reach the maximum value measured in simulation. This may

be related to the fact that CSMA/CA contention may be triggered by noise, which is abundant in

this real-world experiment and reached -68 dBm on the UAV side, lowering the MAC efficiency.

On the other hand, when using the TS approach, in some time-slots the nodes were able to

communicate but in the real scenario they were not (e.g., t = 1500 s), which can be related to three

other factors: 1) the TS approach only samples the channel with the SNR values of successfully

received frames, which acts as an high-pass filter and may falsely represent a more stable channel

in simulation than what happened in the real scenario, especially when the radio link connectivity

is on the verge of being lost (outage scenario); 2) the TCP Retransmission Timeout (RTO) of the

real-world applications could be out of sync with ns-3 RTO at those time-slots. If a TCP ACK

repeatedly fails to be delivered to the sender, the amount of time to wait to retransmit it again keeps

increasing, and it is difficult to reproduce in ns-3 the same TCP state that occurred in the real-world

TCP application; 3) the TCP Data Retries is another configurable parameter that can be different

between ns-3 and the real-world TCP applications. In the real experiment, there were time-slots

where the TCP connection was closed near the t = 1500 s; it had to be manually restarted later on

at t = 1550 s, hence the big difference between the real trace and the trace based simulation plots

in that specific time interval. In summary, this is an outage channel, and TCP is very sensitive to

this, so it is difficult to exactly reproduce throughput results over a channel in a single run, unless

everything is lined up and the implementations at the end points are the same. A lesson learned is

that, while continuing to evaluate the TS approach, we should use UDP instead of TCP to avoid a

possible out-of-think TCP state machine between the results of real experiments and trace-based

simulations.

Even though the TS approach did not attain a perfect match with the real experiment, its

realism is much better when compared to the pure ns-3 simulation approach, and it was able to

reproduce in simulation the radio link instability problems found in the real experiment.

5.6.2 Isolated Laboratory Testbed

Experimental Setup and Results

The SUNNY testbed was used to evaluate the TS approach in a real-world challenging scenario.

However, it was limited to a point-to-point link setup. In order to further evaluate the TS ap-

proach for multiple access communications scenarios, we created the laboratory testbed shown

in Figure 5.16. The testbed was composed by three static Alix 3D3 based nodes with MikroTik

R52 IEEE 802.11a/b/g wireless cards configured to use the IEEE 802.11a standard. These nodes

were placed on the floor of a storage room, at a distance of 2 m between each other, as illustrated

in Figure 5.16. There were no obstacles between the nodes and the antenna of each node was

oriented vertically. The LEDE operating system was running in each node and the clocks were

78 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

synchronized using the Network Time Protocol (NTP), so that the traces generated by the nodes

represented a correct collective snapshot of the radio link qualities at each moment. The IEEE

802.11 cards operated with auto-rate in channel 36 (center frequency of 5180 MHz) with 20 MHz

bandwidth, TX Power set to 10 dBm to lower the SNR and trigger auto-rate adaptation, and a 3 dBi

dipole antenna (Wi-Fi diversity disabled). There were no other concurrent IEEE 802.11 networks

operating in overlapping frequency channels.

Figure 5.16: Diagram of the real testbed used for the wireless experiments, with the average SNR
measured per link direction.

Based on our hands-on experience with testbeds and different IEEE 802.11 cards, we know

that there are differences of effective TX Power and RX sensitivity between different wireless

cards, even if the same model is used. This becomes even more evident when running experi-

ments with extensively used hardware. Also, the hardware components wear can affect more the

TX function than the RX function and vice-versa. This aspect, by itself, represents a source of

possible link asymmetry alongside with different noise and interference exposure for each node.

In practice, this is one further reason why experimental results are difficult to reproduce in sim-

ulation. Recognizing this fact we selected, on purpose, IEEE 802.11 cards from the same model

(MikroTik R52) but subjected to different wear levels. Figure 5.16 presents the average SNR val-

ues measured throughout all the experiments, clearly showing that: 1) NodeA has less sensitivity

on its RX circuit; 2) NodeC has TX Power lower than expected; 3) NodeB is the card with better

TX/RX performance. In conclusion, although at first sight this testbed scenario would be creating

optimal network conditions, the aforementioned characteristics create a richer scenario to test the

TS approach in a multiple access scenario with radio link heterogeneity and asymmetry. Also,

knowing these characteristics beforehand, leads us to expect the worst network performance in

flows from C to A.

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 79

In all experiments we used iperf2 to generate UDP flows with an application rate of 54 Mbit/s,

which exceeds the maximum possible effective rate of an IEEE 802.11a link, usually between 28

and 32 Mbit/s. The objective was to perform all the experiments using the full channel capacity, so

that we could latter compare the same limits in simulation. In each experiment, we generated the

necessary UDP flows during 60 seconds and recorded the obtained average UDP throughput per

second, alongside with traces containing the average values of SNR per second for each possible

bidirectional link. The closer the UDP throughput obtained using the TS approach is to the one

measured in the real experiment, the better the TraceBasedPropagationLossModel and ns-3 are

reproducing the real system. Since the three nodes are in wireless range, the first six experiments

consisted in each node generating one-hop traffic flows to each of its two neighbors. Table 5.2

presents the details of each flow tested per experiment, together with the obtained average UDP

throughput. Because of the lower radio link SNR, the worst performance was measured in Exp.#2

and Exp.#5 – communication between NodeA and NodeB – with Exp.#5 getting particularly low

throughput (5.9 Mbit/s), when compared to the 21.7 Mbit/s measured in Exp.#1, for example.

Then, we ran experiments for testing the multiple access scenario, where each node acted as

a sink for simultaneous flows originating from its two neighbors. The results obtained for the

three additional experiments are presented in Table 5.3. As expected by the lower SNR between

NodeA and NodeC, Exp.#7 and Exp.#9 were the ones exhibiting the most asymmetric UDP aver-

age throughput per flow, achieving respectively 4.1 Mbit/s and 9 Mbit/s.

Pure and Trace-based Simulation Results

The ns-3 scenarios “expX_scenario_2018_trace.cc” were coded to replicate the experimental setup

using the TS approach, with “X” representing the number of the experiment. The average real

SNR experimentally collected each second was used as a basis; these “.cc” files, as well as the

".csv" files with SNR traces are available in [71]. In ns-3, we generated the UDP traffic using the

ns-3 OnOffApplication traffic generator and measured the average UDP throughput for the same

exact set of experiments. The same was considered for pure simulation in order to compare what

would be the results assuming the FriisPropagationLossModel [74] and stable and symmetric link

qualities; the pure simulation scenarios “expX_scenario_2018_PURE_SIM.cc” are available in

[71]. Table 5.2 and Table 5.3 show the average UDP throughput results obtained as well as the

relative error with respect to the experimental results.

The maximum throughput achieved in simulation is higher than in the real experiments. This

may be related to limitations on the performance of the real hardware that are not accounted

in ns-3, such as the time of packet buffer copy and processing operations that in reality take

time and contribute to reduce the throughput. This is more evident for IEEE 802.11a as it does

not perform frame aggregation. Any processing inefficiency has impact, especially in high SNR

scenarios where any small amount of time not sending packets at the highest rate possible – 54

Mbit/s – increased the gap between simulation and experimental results. Because of this limitation,

every experiment for which the flows are transmitted through high SNR links do not bring added

value to this comparison. The TS approach is only able to lower the relative error with respect

80 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

Table 5.2: Average UDP throughput results obtained for each individual link, one flow direction at
each time, in the Real Experiment, the Trace-Based Simulation, and the Pure Simulation, including
the relative error with respect to the Real Experiment results.

Average UDP Throughput (Mbit/s) Relative Error
Exp.# Flow Real Exp. Trace Sim. Pure Sim. Trace Sim. Pure Sim.

1 A->B 21.7 28.5 28.5 31% 31%
2 A->C 19.2 22.6 28.4 18% 48%
3 B->A 21.8 28.4 28.4 30% 30%
4 B->C 21.1 28.3 28.3 34% 34%
5 C->A 5.9 9.9 28.3 68% 380%
6 C->B 22.8 28.2 28.2 24% 24%

Avg. all flows
34% 91%

Table 5.3: Average UDP throughput results obtained for two simultaneous flows from different
senders to each sink node, in the Real Experiment, the Trace-Based Simulation and the Pure
Simulation, including the relative error with respect to the Real Experiment results.

Average UDP Throughput (Mbit/s) Relative Error
Exp.# Flow Real Exp. Trace Sim. Pure Sim. Trace Sim. Pure Sim.

7
Sink A

B->A 11.3 12.2 14.3 8% 27%
C->A 4.1 5.7 14.1 39% 244%
Total 15.4 17.9 28.4 16% 84%

8
Sink B

A->B 11.9 14.3 14.3 20% 20%
C->B 14.1 14.0 14.0 1% 1%
Total 26.0 28.3 28.3 9% 9%

9
Sink C

A->C 9.0 4.0 14.2 56% 58%
B->C 20.8 19.3 13.9 7% 33%
Total 29.8 23.3 28.1 22% 6%

Avg. all individual flows
22% 64%

to pure simulation when the real SNR decreases to a point that it triggers the auto-rate adaptation

mechanism, caused by frames being lost and retransmitted. Due to this fact, we focus our analysis

on the results for the radio links that do not max out the IEEE 802.11a throughput performance.

Considering the radio links with lower quality, the benefit of the TS approach becomes appar-

ent, as demonstrated by the results highlighted in bold in Table 5.2 and Table 5.3. For instance: in

Exp.#2 the relative error drops from 48% to 18%, representing an accuracy gain (cf. Equation 5.3)

of 63%; in Exp.#5 the relative error drops from 380% to 68%, producing an accuracy gain of 82%.

In every case, considering the individual flows of all nine experiments, the TS approach reduced

the relative error. On average, from 91% to 34% (gain of 63%), for the single flow scenarios,

and from 64% to 22% (gain of 66%), for the multiple flows scenarios, when compared to pure

simulation.

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 81

Trace-Based Simulation Results using High SNR Sampling Rate

There were cases, such as Exp.#5, where the relative error was still considerably high, although

much lower than in pure simulation. That could be related to the fact that we were using real SNR

averages per second, maintaining that value constant during each simulated second. We could

easily add a random component to make the SNR less stable by using, for example, a Normal,

Rayleigh, or Rician distribution. Still, we would be simulating again and not using the actual

traces to reproduce reality. As such, we decided to repeat the experiment with the biggest relative

error when using the TS approach – Exp.#5 –, and assessed whether the relative error could be

reduced by increasing the real SNR sampling rate.

Table 5.4: Average UDP throughput results obtained when rerunning Exp.#5 and considering the
Trace-Based Simulation - High SNR Sampling Rate (HSSR), the Trace-Based Simulation, and the
Pure Simulation, including the relative error with respect to the Real Experiment results.

Average UDP Throughput (Mbit/s)
Exp.# Flow Real Exp. Trace Sim. HSSR Trace Sim. Pure Sim.

5
(second run)

C->A 5.4 5.3 8.3 28.2

Relative Error
1% 54% 426%

Figure 5.17: Comparison of UDP Throughput per second measured during 1) the repetition of real
Exp.#5, 2) the corresponding Trace-Based Simulation based on traces containing the real SNR
average per second, and 3) the corresponding Trace-Based Simulation based on traces containing
the real SNR with a per packet resolution.

The results after rerunning Exp.#5 with a higher real SNR sampling rate (once per packet re-

ceived) are presented in Table 5.4. The table shows the average UDP throughput and the relative

error for the three simulation-based alternatives to reproduce the real experiment. In this case, we

can see the relative error dropped from 426%, for pure simulation, to 54%, for trace-based sim-

ulation, resulting in a gain of 87%. But, using the higher number of SNR samples we were able

to reduce even further the relative error to 1% only, now with a gain nearing 100%. Figure 5.17

shows a plot comparing the instantaneous throughput per second for the trace-based simulation,

the trace-based simulation with high SNR sampling rate, and the real experiment. The pure simu-

lation throughput was not plotted as it remained almost constant at around 28 Mbit/s and it would

82 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

reduce the throughput resolution needed to better compare the other results. We can see that trace-

based simulation results using per packet SNR samples was significantly more accurate, almost

overlapping with the real UDP throughput results. This proves the potential of the TS approach.

Still, the disadvantages are: 1) more storage space is required to save per packet SNR samples

from real experiments; 2) the simulation time may increase due to the higher number of events

to update the SNR throughout the simulation. Nevertheless, we argue that it is computationally

lighter to just read and update SNR values that are already known than using simulation models to

calculate new values. Thus, we believe that even with the higher rate of SNR updates the running

time should remain lower than in pure simulation.

5.6.3 Fed4FIRE+ w-iLab.2 Testbed

The SIMBED project was proposed in the context of this thesis. It was approved in the Fed4FIRE+

Open Call 3 for medium and large experiments. The SIMBED project, as explained in Section

1.7, aims to carry out an extensive TS approach evaluation by benefiting from the high quality

and large number of resources provided by Fed4FIRE+ community testbeds. For that purpose,

SIMBED is running a set of wireless experiments on top of Fed4FIRE+ wireless testbeds in order

to demonstrate it is possible to use ns-3 together with the TS approach as a means for repeating

and reproducing wireless experiments. By the time of writing this thesis, SIMBED project is not

finished. Nonetheless, a large number of SIMBED experiments were already completed using

the w-iLab.2 testbed, an indoor and isolated testbed located in Belgium. The relevant evaluation

results obtained for the TS approach are presented herein.

Experimental Setup

To extensively validate the TS approach we ran a large number Wi-Fi experiments. The experi-

ments considered Wi-Fi point-to-point links established between a static transmitter and a static

receiver. The Wi-Fi links were tested for auto rate mode (using Minstrel) and fixed rate mode.

Because the SNR is the metric that better represents the impact of the testbed physical conditions

on the radio link quality – and the resulting throughput and RTT – we have run experiments to

measure the network performance of Wi-Fi point-to-point links ranging from very low SNR to

very high SNR at the receiver. This allowed us to test the TS approach from the lower to the upper

performance limits of a Wi-Fi point-to-point link.

For these experiments we reserved and used Wi-Fi nodes from the w-iLab.2 testbed. Figure

5.18 presents a map4 of the w-iLab.2 testbed showing its available resources and their relative

position. For our experiments, we have used a selection of Zotac (light blue colored) nodes. The

Zotac nodes are placed in a grid pattern, with a column width of 6 m and row height of 3.6 m.

These nodes have an Intel Atom D525 CPU (2 cores, 1.8 GHz), 4 GB of RAM and 2x IEEE

802.11abgn Sparklan Wi-Fi interfaces with AR9280 Atheros chipset. Attached to the AR9280

4Available on the following website: https://inventory.wilab2.ilabt.iminds.be/?viewMode=inventory [Accessed:
28th January 2019]

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 83

Figure 5.18: Map of the available resources, and their location, in w-iLab.2 testbed.

interfaces the nodes have 3 dBi gain dipole antennas with 10 dB attenuators inline – adding a total

of 20 dB to the path loss – to avoid overwhelming the receivers and limit the testbed interference.

The TX power of these interfaces can be controlled from 0 to 17 dBm; this was very important to

use the same set of nodes to create 18 different experiments when it comes to the SNR levels at

the receiver. The OS used was Ubuntu 14.04 LTS x64 with patched ath9k Wi-Fi driver to allow

setting up the interfaces in ad-hoc mode using the 5 GHz frequency band.

For each experiment executed we collected the following data per node: 1) traces of real

SNR at the receiver for each received frame, organized by peer node and time-referenced with

a microsecond resolution – HSSR was used for all experiments due to its improved accuracy, as

shown in Section 5.6.2; 2) the position of the nodes, once per experiment as the nodes are static;

3) network performance metrics measured for each link – average throughput and RTT. The traces

of real SNR and node positions are used to feed the trace-based ns-3 simulations. The network

performance metrics are used to evaluate the TS approach against pure ns-3 simulation.

The TS approach focuses on reproducing the experimental physical conditions. However,

the network performance can also be influenced by the number of queues and respective sizes,

and the related traffic control and queue management mechanisms used in the communication

nodes. If different between the real experiment and the ns-3 simulation we may end up with very

different results between simulation and experimentation; this is currently the case if we compare

ns-3 simulations with experiments ran over Linux. For this reason, we focused on measuring the

performance metrics in the following conditions:

• Throughput. This metric is measured at the receiver, considering the sender is generating

traffic with offered network load above link capacity. This assures that there are always

packets queued waiting to be sent. Only one flow is generated at a time.

• RTT. This metric is measured without concurrent network traffic. This assures the queues

are always empty when an ICMP request and reply is generated, as each subsequent ICMP

request is only generated after a reply or a timeout. This assures we are only considering

84 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

the delays related to the access and (re)transmissions over the Wi-Fi half-duplex multiple

access wireless medium, and discarding any queuing related delays.

In order to carry out the aforementioned experiments over w-iLab.2 we used the following

methodology:

1. Nodes reservation: We started by placing a reservation for 4 consecutive Zotac nodes in

the same grid row. The leftmost node was the Master; then we had ClientA, ClientB and

ClientC nodes respectively at 6, 12 and 18 m from the Master node.

2. Nodes startup: We selected our custom Ubuntu 14.04 LTS x64 OS image to boot in all

nodes, containing our experimentation scripts and patched ath9k driver.

3. Nodes configuration: After all the nodes finished booting, we needed to make the following

configurations:

(a) NTP client: We configured the NTP client so that all the nodes became clock synchro-

nized. This was very important so that the collected traces and network performance

metrics were correctly synchronized between the nodes participating in the same ex-

periment. Only in this way we can later repeat and reproduce a close-to-real scenario

in ns-3 using the TS approach, and then correctly compare the obtained performance

metrics.

(b) Wi-Fi standard: We used IEEE 802.11a operating in the 5 GHz frequency band as

we are focused on testing the TS approach for OFDM modulation operating in Single-

Input Single-Output (SISO) scenarios. Using regular ACK control frames, even if we

generate UDP flows only in one direction, we get an ACK control frame in the opposite

direction per DATA frame sent, which results in sampling both directions of the radio

link with higher resolution.

(c) Wi-Fi operation mode: ad-hoc.

(d) Channel bandwidth: 20 MHz.

(e) Channel center frequency: 5220 MHz, corresponding to channel 44. For each reser-

vation we performed a channel survey and avoided concurrent Wi-Fi networks. Chan-

nel 44 remained free during all the experiments performed in w-iLab.2.

(f) PHY rate: Depending if we were testing the auto or fixed PHY rate mode, we config-

ured the nodes to use auto PHY rate or fixed the PHY rate to 6, 9, 12, 18, 24, 36, 48 or

54 Mbit/s, according to the experiment we were running.

(g) TX power: The tx power varied according to the experiment. This setting accepts

a range from 0 to 17 dBm in 1 dBm steps. We found that a link distance of 18 m

associated to a TX power of 0 dBm was sufficient to create low SNR scenarios where

the link was becoming intermittent, hence the use of only 3 Client nodes up to 18 m.

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 85

4. Run batch of auto PHY rate experiments: We started by running a batch of auto PHY

rate experiments (up to a total of 216 unique experiments – 3 different clients, 18 TX power

levels, 4 different experiments between each Client and the Master node). We configured

all the 4 nodes with the same TX power. For each TX power value we ran the following ex-

periments, each one of them with the duration of 300 s and considering the communication

between the Master node and a single Client, going through the Client nodes one at a time:

(a) Idle network link between the Master and the Client: Without any concurrent traffic

flow, ICMP echo requests were issued from the Master node to the Client node. The

ping application was used and configured to generate 10 requests per second with a

packet size of 1472 bytes (frames of 1500 bytes including protocol headers). The

objective was to measure the RTT.

(b) Unidirectional UDP flow from Client to Master: The iperf3 application was used to

generate a UDP flow from the Client node to the Master node with offered load (54

Mbit/s) above link capacity (28-30 Mbit/s).

(c) Unidirectional UDP flow from Master to Client: Similar to the previous experiment,

except the UDP flow was generated in the opposite direction. This helped to identify

asymmetric radio link qualities and respective network performance results.

(d) Bidirectional UDP flows between Master and Client: Similar to the previous two

experiments, except this time the UDP flows were generated at the same time, in each

opposite direction.

5. Calculate the most common PHY rates: Analyzing the past auto PHY rate experiments,

we calculated the most common PHY rates of the received DATA frames (Relative Fre-

quency > 0.2) for each pair of nodes and for each TX power value.

6. Repeat the past experiments with fixed PHY rates. There were usually one or two PHY

rates selected as the most common per past auto PHY rate experiment. In this fixed PHY rate

scenario, we reran the same past experiments involving the same physical nodes, but now

using the most common PHY rates previously calculated (up to 2x 216 unique experiments).

After running the first batches of experiments we realized that we were getting more exper-

iments for higher SNR values than for lower SNR values. To overcome this problem of very

different sample sizes along the SNR range, and avoid biasing the TS approach evaluation results,

we ran batches of experiments only focusing on testing the network performance between Master,

Client2 and Client3 nodes with configured TX power below 5 dBm.

Trace-based Simulation Results

To assess the gains obtained by using the TS approach, all the real experiments were repro-

duced via trace-based ns-3 simulations feeding the TraceBasedPropagationLossModel with the

real traces of SNR. The same network performance metrics were measured in ns-3 (throughput

86 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

and RTT). To have a baseline of comparison, we reran the equivalent simulations using the pure

ns-3 simulation approach, where we tested four different path loss models trying to find the most

appropriate for w-iLab.2.

• FriisPropagationLossModel [74]: As the nodes have radio line-of-sight and the direct radio

ray is expected to be dominant due to the low distance and the absence of obstacles in

between the nodes. This path loss model is deterministic, so the SNR remains constant

throughout the duration of the simulation.

• LogDistancePropagationLossModel [75] (γ = 2.0) plus Rician fast fading [76]: With γ

= 2.0 the LogDistancePropagationLossModel has the same output as the FriisPropagation-

LossModel. The only difference for the previous path loss model is the addition of the Rician

fast fading obtained in ns-3 by configuring the NakagamiPropagationLossModel [77] with

m = 1.25.

• LogDistancePropagationLossModel (γ = 1.7) plus Rician fast fading: As the w.iLab.2 is

an indoor testbed, has radio line-of-sight, and may have a strong multipath component that

adds substantially to the direct ray, we decided to test a reduced path loss exponent γ .

• LogDistancePropagationLossModel (γ = 2.5) plus Rician fast fading: To complement the

two previous path loss model options, we considered a higher path loss exponent γ .

Apart from the ns-3 PropagationLossModel used, all other simulation parameters are the same

for both simulation approaches, except for the “RF gain” which is set to 0 dB in the case of the

trace-based simulations and set to -7 dB for the pure simulations. This is to adjust the path loss

calculation considering the 3 dBi gain from the antennas and the 10 dB attenuation from each inline

attenuator (3 - 10 = -7). Note that the “RF gain” is considered on both ends of the communication,

so the resulting “RF gain” becomes -14 dB, which are added to the path loss calculation. In ns-

3, we generated the UDP traffic using the ns-3 OnOffApplication traffic generator and the RTT

measurements were performed using the ns-3 V4Ping Internet application.

The most adequate resolution to compare the network performance results between the TS

approach and the pure simulation approach depends on the expected coherence time of the radio

channel, which is affected by the channel frequency, how dynamic the environment is, and the

velocity of the nodes. Because all the w-iLab.2 experiments ran on static nodes operating in a

static environment, we used a resolution of 1 second.

For each real second of a given experiment, and their corresponding trace-based and pure

simulated counterparts, we compared: 1) the average throughput per second (kbit/s); 2) the median

of the RTT samples per second (ms). By comparing these two network performance metrics for

the exact same time interval considering the real experiment, trace-based simulation, and pure

simulation we calculated the relative error for the trace-based and pure simulation approaches

using Equation 5.2. We found this method to be the most adequate to calculate the relative error,

as we are trying to reproduce real Wi-Fi experiments, which are influenced by phenomena that

cause SNR instability and considerable variations along the time.

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 87

Figure 5.19: CDFs of the throughput relative error when comparing the trace-based (TraceSim)
and pure simulations to the corresponding real experiments for auto PHY rate mode.

Figure 5.19 shows the CDF of the throughput relative error for the trace-based ns-3 simulation

and pure ns-3 simulation when the Wi-Fi point-to-point link is running in auto PHY rate mode.

For computing the CDFs, all the samples with real throughput equal to 0 kbit/s were discarded to

filter the initial experiment seconds where iperf3 did not yet start sending traffic or the cases where

iperf3 experienced some malfunction and stopped sending traffic for the rest of the real experiment.

In a total of 31058 samples, the filtered samples represent 1.2%. Table 5.5 summarizes the relevant

values extracted from the CDF plot and presents the 90th percentile, 50th percentile (median), and

the average throughput relative error. Analyzing the pure simulation results we can observe that

between the four pure simulation options the Friis model and the LogDistance model with γ=1.7

plus Rician fast fading (LogDist1.7) are the ones that better approach the real experiment results.

This shows that although the Friis path loss model does not consider fast fading it is the one that,

on average, more closely matches the real experiment results, which was expected considering the

isolated and very stable w-iLab.2 testbed. Analyzing the trace-based simulation results, we can

observe that it is the one that more closely reproduces the real experiment: for the 90th percentile,

Table 5.5: Throughput relative error when comparing the trace-based (TraceSim) and pure simu-
lations to the corresponding real experiments for auto PHY rate mode.

Throughput Relative Error (Auto PHY Rate) (%)
90th Perc. 50th Perc. (Median) Average

TraceSim 14 5 7
Friis 46 6 16

LogDist2.0 50 31 29
LogDist1.7 32 13 16
LogDist2.5 77 58 54

88 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

Table 5.6: Throughput relative error when comparing the trace-based (TraceSim) and pure simu-
lations to the corresponding real experiments for fixed PHY rate mode.

Throughput Relative Error (Fixed PHY Rate) (%)
90th Perc. 50th Perc. (Median) Average

TraceSim 26 5 12
Friis 69 5 19

LogDist2.0 73 29 34
LogDist1.7 31 11 15
LogDist2.5 99 85 72

the TS approach presents a gain (c.f. Equation 5.3) of 70% over Friis and 56% over LogDist1.7; for

the median, the TS approach introduces a gain of 18% over Friis and 66% over LogDist1.7; finally,

on average, using the TS approach results in a gain of 53% over Friis and 54% over LogDist1.7.

In conclusion, the results show that the TS approach is considerably better at reproducing a closer-

to-real throughput than pure simulation approach, showing also that the ns-3 NistErrorRateModel

and the ns-3 minstrel auto-rate algorithm are modeling very well the real system. We found that

the gains obtained in the relative error by replicating the real SNR resulted not only from better

representing the SNR changes along the time but also from better reproducing radio link quality

asymmetry; in many cases we found non-negligible differences between each direction of the same

link which affect the resulting throughput. The asymmetry obtained in this testbed may be related

to slight differences between the nodes transceivers hardware – even though they are identical –,

resulting in different effective RF losses both in TX and RX operations.

Figure 5.20: CDFs of the throughput relative error when comparing the trace-based (TraceSim)
and pure simulations to the corresponding real experiments for fixed PHY rate mode.

Figure 5.20 presents the CDF of the throughput relative error from trace-based ns-3 simulation

and pure ns-3 simulation in comparison to the throughput obtained in the real experiments for

5.6 Evaluation of the Trace-based ns-3 Simulation Approach 89

fixed PHY rate mode. As for the auto PHY rate mode, we filtered all real throughputs equal to

0 kbit/s. The filtered results account for 1.3% of the total of 32299, 1 second samples. Table 5.6

summarizes this CDF plot and presents the 90th percentile, 50th percentile (median), and average

throughput relative error values for all the trace-based and pure simulations. Analyzing the pure

simulation results we can observe that, as for the auto rate, the Friis and LogDist1.7 are again

the best ones at representing the real throughput. Analysing the trace-based simulation results

we can observe that, once again, TraceSim is the one that more closely reproduces the real-world

experiment: for the 90th percentile, the TS approach presents a gain of 63% over Friis and a gain

of 18% over LogDist1.7; for the median, the TS approach is only 2% more accurate than Friis and

56% more accurate than LogDist1.7; finally, on average, using the TS approach results in a gain of

37% over Friis and 21% over LogDist1.7. In conclusion, although the TS approach relative errors

are not as low as in the auto PHY rate mode, after analyzing the plot and table we can conclude,

once again, the higher accuracy associated to TS approach when compared to pure simulation

throughput results. The CDF curves of the throughput relative error for some pure simulation

scenarios show a very defined step around 100% of relative error. This is caused by a number of

experiments where the ns-3 underestimated the SNR. Because we were forcing a fixed PHY rate

based on the real experiment results (based on a higher SNR), that resulted in simulations with a

fixed PHY rate that was too high and caused a packet loss ratio of 100%.

Figure 5.21: CDF of the trace-based ns-3 simulation (TraceSim) and pure ns-3 simulation
(PureSim) RTT absolute error in comparison to the RTT obtained in the real experiments for
auto PHY rate mode with packet size of 1472 bytes .

Regarding RTT we chose to represent the absolute error instead of the relative error (cf. Equa-

tion 5.1). The reasons for that were the following: 1) a very small and insignificant difference of

delay for very low values of RTT can result in very high relative errors, e.g., 0.1 ms to 0.3 ms

would give a relative error of 200%, but 0.2 ms can be insignificant for most applications; 2) we

know in advance that ns-3 does not account for the nodes processing time, so we are expecting real

90 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

results shifted by a value close to half a millisecond which would cause very high relative errors

and make more difficult the results analysis. With absolute RTT errors, we can also easily estimate

the processing overhead introduced by the real node in comparison to ns-3. Figure 5.21 shows the

CDF of the absolute error of the RTT for trace-based ns-3 simulation and pure ns-3 simulation

in comparison to the median value of RTT obtained in each second of the real experiments for

auto PHY rate mode with packet size of 1472 bytes. In the case of RTT we filtered the seconds

in which we could not get a delay sample in either the real experiment, trace-based simulation, or

pure simulation, as we can only compare samples that contain RTT measurements. The filtered

results account for roughly 1.5% of all the 1 second samples. In the plot we can observe that the

median of the error for all simulated scenarios is around 0.7 ms, even for the TS approach. In this

case, the TS approach suffers from the same abstraction problem of the pure simulation: the fact

that ns-3 does not account for the nodes processing time. In the real experiments the RTT samples

were always above 1.2 ms, while in ns-3 the minimum delay was around 0.5 ms, thus explaining

this persistent error between all the simulation approaches and the real experiment. Taking this

aspect into consideration, we can conclude that if a CDF curve rises significantly before the 0.7 ms

absolute error mark it is a sign that the PropagationLossModel used in each simulation approach

is not representing well the reality, as the only way to get an error lower than 0.7 ms is to have

more frame retransmissions or using a lower PHY rate than the reality. Based on this conclusion,

we can see that the Friis and LogDist1.7 are, as in the case of the throughput performance metric,

the path loss models that represent more accurately the conditions of the real experiment. Never-

theless, the TS approach is again better. For the 90th percentile the TS approach presents a gain

of 35% (0.8 ms) over Friis, lowering the absolute error respectively from 2.3 to 1.5 ms, and a gain

of 21% (0.4 ms) over LogDist1.7, lowering the absolute error respectively from 1.9 to 1.5 ms.

After analyzing the results we can conclude that the TS approach provides RTT values closer to

the real experiments than a pure simulation approach. This gain over the pure simulation approach

is due to the fact that it is reproducing a more accurate SNR, which enables more realistic frame

retransmissions replication and the usage of closer-to-real PHY rates.

Based on the obtained results, we can conclude that even for the w-iLab.2 scenarios – where

we are dealing with static nodes in a isolated testbed – the TS approach brings significant gains

over pure ns-3 simulation, successfully reproducing closer-to-real network performance results by

perpetuating the SNR observed in the real experiment. A pure simulation approach, independently

of the ns-3 PropagationLossModel used, is unable to reproduce the asymmetric radio links quality

of the real testbeds. By using the TS approach in emerging testbed scenarios we expect to get

even higher gains when compared to the pure simulation approach, as was observed from the

preliminary evaluation of the TS approach in the SUNNY testbed presented in Section 5.6.1,

considering the highly complex and unstable nature of those testbeds physical conditions which

are even harder to model and reproduce in simulation.

5.7 Discussion 91

5.7 Discussion

The evaluation results presented in Section 5.6 demonstrate the added value of the TS approach.

For all the three testbeds over which experiments were run, and later reproduced in ns-3 using

the TS approach, we found significant gains introduced by the TS approach. Although the TS

approach was proposed to address the repeatability and reproducibility of real experiments over

emerging testbeds such as aerial testbeds – where its gains become more evident – throughout the

TS approach evaluation we concluded its scope of application is broader; for instance, it also has

significant gains in controlled environments such as the Fed4FIRE+ w-iLab.2 testbed. Nonethe-

less, our acquired hands-on experience on developing, testing, and using the TS approach for the

last years in different research projects gave us a better insight on its strengths and weaknesses. In

this section we discuss each of them. Regarding the weaknesses, we also discuss how they can be

overcome.

5.7.1 TS Approach Strengths

The TS approach major strength builds upon identifying 1) the aspects which ns-3 is able to model

accurately and 2) the aspects which ns-3 does not model accurately due to its inherent abstractions

of the real world phenomena. On the one hand, ns-3 is very realistic at modeling the operation

details of the MAC layer and upper layers. Based on a given SNR at the receiver, and using the

validated NistErrorRateModel [1], ns-3 realistically calculates the FER depending on the frame

size and the OFDM PHY rate used. Using a random variable stream, ns-3 randomly decides, per

frame, whether the frame will be delivered successfully or dropped. This will cause the simulation

of the necessary Wi-Fi MAC retransmissions, which affect directly the throughput and delay of a

given link; in addition, the PHY rate will be automatically adjusted – based on the widely used

Minstrel algorithm – to improve the frame delivery ratio. On the other hand, ns-3 is limited at

modeling the testbed physical characteristics that cause highly unstable SNR on mobile testbeds.

A node is represented by a dimensionless point without roll, pitch, yaw, and heading. This model

does not account for the antenna misalignment or node body obstruction of radio line-of-sight.

Also, the external phenomena such as multipath and different noise exposures that may make the

radio links highly asymmetric are not modelled. By reproducing traces of real SNR for each link

direction we overcome this ns-3 limitation. Using the real SNR traces we schedule SNR changes

synchronized with their original timestamp in the real experiment. Yet, we are unable to enforce

that the generation of simulated frames are synchronized with the timestamp of the SNR samples,

i.e., the timestamp of the real frames. We are only reproducing the same SNR values, not the

same frames. Although we do not reproduce a specific frame drop at a specific timestamp, by

reproducing the same FER, on average, we reproduce equivalent frame losses and retransmissions

triggering more realistic auto PHY rate adaptations. In turn, this enables the TS approach to

achieve closer-to-real network performance.

Due to the accuracy of the TS approach in reproducing past real experiments, it now enables:

1) concurrent user access to the real testbed conditions based on past traces – the past experiment

92 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

physical conditions become a virtual resource that can be shared by different users, without the

need to reserve real resources or wait for their availability; 2) running simulations in faster than

real time – past experiments can now be executed in simulation time, only limited by the process-

ing power of the node hosting the simulation, which can help save time to test different iterations

of the solution under evaluation; 3) running multiple simulation instances at the same time. Past

experiments can now be executed at the same time in the same or multiple hosts, exploring differ-

ent variants of the solution under evaluation. Using the Fast Prototyping process it is even possible

to reproduce the same experiment in real-time, connected to external real nodes, which allows to

keep improving and fine-tuning systems that depend on the communications to operate. E.g., in

SUNNY project we reproduced UAV flights multiple times in order to adapt the UAV and Ground

CS software applications to cope with the real radio link instability and throughput. Because the

number of flight experiments was very limited, the TS approach proved to be very useful.

Although implemented and evaluated over ns-3, the TS approach has the potential of being

used on other packet-level discrete event wireless network simulators, as long as an equivalent

TraceBasedPropagationLossModel can be implemented – e.g., a new OMNeT++ [78] PathLoss-

Model – and the realism of the Wi-Fi MAC implementation and upper layer in such network

simulation is as good as in ns-3.

5.7.2 TS Approach Weaknesses

In the TS approach, SNR sampling resolution depends on the network traffic. To increase the

number of samples captured we not only use the DATA frames as samples, but also the BEA-

CONS and ACK control frames. Also, in a multiple-access scenario, if a node overhears frames

exchanged between its peers (interface in monitor mode) it can also use those samples as if the

sending node was transmitting to it. If we saturate an high SNR IEEE 802.11a link with UDP traf-

fic with packets size of 1500 bytes, we can obtain around 2500 SNR samples per second in each

direction of the link (the DATA frames in one direction, the ACK frames in the other direction).

Nonetheless, in a real scenario the number of frames per second can be significantly lower. If the

nodes are configured in ad-hoc mode, each of them sends BEACONS at a default rate of 10 per

second; this provides at least 10 SNR samples per second in each direction, between each node in

radio range. If we use infrastructure mode (AP plus STAs) we may need to actively generate some

baseline traffic in the network, so that we can record the necessary traces to use the TS approach.

The minimum resolution needed may depend on how unstable the radio link is for each specific

testbed.

The TS approach is not currently focused on detecting link failures between peers. It only

records the SNR of frames that were successfully received. If a real frame is not received due to

a sudden drop of SNR, that phenomenon is not recorded in the SNR traces. However, from our

experience in the real UAV test flight, we could observe that when the SNR reaches a value so low

that the DATA frames are no longer delivered, the BEACONS – with lower FER – are still passing

through until the link is lost. When the link is lost, the very low SNR value of the last BEACON

remains constant in the trace-based simulation throughout the period of no connectivity. During

5.7 Discussion 93

this period, the ns-3 nodes experience an equivalent loss of connectivity at the network layer,

because no DATA frames are successfully transmitted with such low SNR even if the ns-3 MAC

layer remains with an established link. When the real link connectivity is established again, new

BEACONS and DATA frames start to populate the SNR trace again, which in turn raises the SNR

and re-establish the network layer connectivity in ns-3. Although this weakness was not evident

in the TS approach evaluation presented in Section 5.7, it may be overcome by adding a timeout

for the validity of the last SNR sample. If the timeout is triggered, it means there were no frames

received along that time period and we may assume the connectivity is lost and force a link failure

in that direction. This can be done, for example, by setting the ns-3 SNR equal to 0 dB until a new

SNR sample is collected.

Beamforming is currently supported by our ns-3 TraceBasedPropagationLossModel as it al-

lows to set any desired SNR for each specific link between two peers. Whether the real SNR trace

was sampled with beamforming gain or not, what matters is the resulting SNR. In beamforming

enabled networks, only DATA frames specifically sent to the receiving node taking the SNR sam-

ples can be considered as valid samples. In these scenarios there is a need for a mechanism to

actively generate baseline traffic for each possible one-hop radio link. This is especially relevant

for the more recent Wi-Fi standards.

The current TS approach only supports SISO links, where a given SNR variation over time

in the single radio stream directly translates to a FER, the respective auto PHY rate adaptations,

and a resulting network performance. In MIMO, a given SNR at the receiver does not directly

translate to the number of radio streams being used; for instance, we can have a radio link with

very high SNR but multipath radio propagation could not be favorable to spatial multiplexing.

The support for MIMO may be added to the TS approach by using two alternative approaches: 1)

record traces of real Modulation Codding Scheme (MCS) per frame, along with the SNR values.

A Wi-Fi card supporting MIMO uses the Channel State Information (CSI) to assess the radio

link quality for each OFDM subcarier between each pair of antennas., This information is used

alongside with Minstrel-HT to decide the MCS to be employed. In IEEE 802.11n, for the same

modulation used, different MCS indexes are reported according to the number of streams being

used. By reproducing the same MCS and SNR in ns-3, we could be able to obtain in ns-3 a closer-

to-real network performance for MIMO radio links; 2) record the CSI and evaluate how the radio

link quality could be replicated in ns-3 using the SpectrumPhy, which allows for controlling each

of the OFDM channel sub-carriers.

The TS approach assumes no other concurrent Wi-Fi network or other technology (e.g., IEEE

802.15.4 [79], LTE-U [80]) is sharing the spectrum with our testbed when we run the real experi-

ments, unless its signal is so low that it is reported in the total noise floor. Because a radio channel

is a shared medium, the resulting network performance (throughput and RTT) can also be affected

by the channel occupation generated by nodes of networks external to the testbed and out of the

experimenter control. The TS approach may be improved by recording the channel busy time per

second (the busy time caused by transmissions external to the testbed) and also reproducing that

characteristic in ns-3.

94 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments

The TS approach uses a “record and replay” methodology. Therefore, when using the TS ap-

proach we are limited to reproducing a specific real experiment, for the same amount of nodes,

the sequence of nodes positions observed in the real experiment, related SNR, and duration of the

experiment. Despite these limitations, the “record and replay” methodology is very useful in sce-

narios for which there are no adequate PropagationLossModels and MobilityModels. Eventually,

depending on the amount of traces collected over time, this data may be used to overcome this

weakness by, for example: 1) creating new (or adapting existing) stochastic models to the new

scenarios; 2) using an hybrid approach with stochastic and Machine Learning (ML) based models,

a concept explored (proof-of-concept) by a related MSc dissertation [81]. In this way we could

change and scale the simulation scenario while maintaining a closer-to-real performance than pure

simulation.

In the TS approach, we are gathering a SNR sample per each frame received. For large scale

experiments, the size of the traces becomes non negligible. It would be interesting to find a perfect

balance between sampling resolution and accuracy of the TS approach. For instance, by doing

an initial benchmarking of the network performance with full sampling resolution; then using an

automatic mechanism to run multiple trace-based simulations using the same traces – iteratively

lowering their resolution – until we reach a minimum accuracy threshold.

5.8 Summary

Wireless networking research and development is increasingly dependent on experimentation to

further evaluate and validate a solution in real environment. Experiments are also increasingly

complex and difficult to repeat and reproduce, especially over emerging testbeds but also in con-

trolled testbeds. With the goal of perpetuating past real experiments, we proposed the TS ap-

proach. The TS approach replicates real experiments by feeding traces into ns-3, using the new

TraceBasedPropagationLossModel, combined with the ns-3 TCP/IP and MAC simulation capa-

bilities.

The TS approach was evaluated using a large set of experiments over three different testbeds:

1) SUNNY UAV-Ground Communications Testbed; 2) Isolated Laboratory Testbed; 3) Fed4FIRE+

w-iLab.2 Testbed. The evaluation results showed the TS approach has significant gains when com-

pared to the use of a pure simulation approach; it achieved average gains above 53% and 90th per-

centile gains above 57%. The HSSR for SNR traces is highly encouraged, as it produces with more

detail the SNR variations along the time. The TS approach enables: 1) concurrent user access to

the real testbed conditions based on past traces; 2) running simulations in faster than real time; 3)

running multiple simulation instances at the same time, exploring different variants of the solution

under evaluation. Using the TS approach, it is also possible to reproduce the same experiment in

real-time, connected to external real nodes, which allows to keep improving and fine-tuning client

systems that depend on the communications system to operate. After a thorough evaluation of

the TS approach we can conclude that it truly enhances the cooperation between Simulation and

Experimentation performance evaluation phases, creating a virtuous cycle between them.

Chapter 6

Conclusions

In this final chapter we overview the work developed in this thesis, recall the major contributions

of our work, point out the limitations of the Fast Prototyping process and the TS approach, and

refer topics that may be the subject of future work.

6.1 Overview of the Work Developed

This thesis focused on improving the performance evaluation of wireless networks. Performance

evaluation typically depends on Simulation and Experimentation to properly evaluate and fine-

tune the operation of new protocols or enhancements of existing protocols. For this purpose, it is

important to have a simulation model and an implementation prototype that are coherent. Also,

it is desirable to obtain repeatable and reproducible results. New emerging vehicular network-

ing scenarios, such as aerial and maritime networking scenarios, have characteristics that present

special difficulties to the performance evaluation process. Simulation usually produces optimistic

results. Experimentation is mainly limited by the testbed availability. This affects the ability to

compare simulation and real results, and precludes the repeatability and reproducibility of the ex-

perimental conditions, which often makes proper evaluation difficult, if not impossible, to achieve.

Based on our hands-on experience in different research projects, in this thesis we proposed new

forms of cooperation between Simulation and Experimentation using ns-3, and a more suitable

more suitable performance evaluation process.

From Simulation to Experimentation, we reviewed the traditional protocol development pro-

cess and identified its main problems: 1) the duplication of effort to write the simulation model

and the implementation prototype; 2) the difficulty to maintain both implementations synchronized

without introducing errors. In order to address these problems, we proposed the Fast Prototyping

development process, which explores the concept of a shared ns-3 protocol model between Sim-

ulation and Experimentation. Fast Prototyping is based on the ns-3 emulation capability. In its

current version, the ns-3 emulation mode has functional and performance problems, which were

also addressed in this work. On the one hand, we proposed an improved version of the ns-3

EmuFdNetDevice by introducing new functionalities. The new functionalities include the support

95

96 Conclusions

of new types of real network interfaces and a new auto-configuration mechanism for ns-3 nodes

that makes easier the integration of emulation nodes with existing networks. On the other hand, we

explored the DPU and DPK approaches, for offloading the data-plane packet processing to outside

of ns-3, thus improving the performance of the ns-3 emulation mode. We compared the perfor-

mance of the new approaches against traditional ns-3 emulation. The evaluation results showed

that when emulating a single ns-3 node the maximum throughput can be improved by as much as

4.9 times for the DPU and 19 times for the DPK, while having the RTT lowered by respectively

5.3 and 14 times; when emulating multiple ns-3 nodes using DPK, the maximum throughput can

be improved by as much as 23 times while having 15 times lower RTT. The DPK approach has

the best performance, obtaining results very close to a real protocol implementation. This enables

the use of the Fast Prototyping process in traffic demanding scenarios or in real nodes with limited

processing power. The better performance and the ability to use the DPK approach to emulate

multiple nodes in the same host machine allows to extend (in scale or functionality) a real testbed

by means of emulated resources.

From Experimentation to Simulation, the proposed TS approach is supported by the new

TraceBasedPropagationLossModel and combines the ns-3 TCP/IP and MAC simulation capabil-

ities with the physical characteristics of the real experiments captured in traces of node positions

and radio link quality. The TraceBasedPropagationLossModel helped evaluating the TS approach

using traces from experiments ran over three different testbeds: 1) SUNNY UAV-Ground Com-

munications Testbed; 2) Isolated Laboratory Testbed; 3) Fed4FIRE+ w-iLab.2 Testbed. The eval-

uation results showed the TS approach has significant gains when compared to the use of a pure

simulation approach; it can achieve gains above 53% on average and above 57% for the 90th per-

centile. The TS approach also enables: 1) concurrent user access to the real testbed conditions

based on past traces; 2) running experiments in faster than real time; 3) running multiple sim-

ulation instances at the same time, exploring different variants of the solution under evaluation.

Using the ns-3 emulation mode, it is also possible to reproduce the same experiment in real-time,

connected to external real nodes, which allows to keep improving and fine-tuning systems that

depend on communications to operate. The TS approach truly enhances the cooperation between

Simulation and Experimentation performance evaluation phases, creating a virtuous cycle between

them.

6.2 Original Contributions

The working hypothesis has been validated. The Fast Prototyping process enables the use of a

shared ns-3 protocol model implementation for Simulation and Experimentation. The TS approach

enables the repeatability and reproducibility of past real experiments.

The two main original contributions provided by this thesis are the following:

1. Fast Prototyping Development Process. This is a new shared protocol model implementa-

tion process to be used during the performance evaluation phases of protocol development.

6.2 Original Contributions 97

By reusing the already implemented ns-3 protocol model over the real hardware prototype,

then installed in a testbed, we eliminate the duplicate effort to develop simulation and real

implementations. This reduces the coding effort and also the chance for error introduc-

tion, which could render the results non-comparable. This process relies on ns-3 emula-

tion functionality which allows to run simulated resources in real time, interacting with the

real network interfaces. This contribution includes the following specific contributions: 1)

improvements to the compatibility of ns-3 emulation to a larger set of real network inter-

face types and operational restrictions encountered in the real-world networks used by the

testbeds; 2) different approaches to improve the ns-3 emulation performance over the real

testbed hardware. The novelty of this process, when compared to the state-of-the-art alter-

natives, relies on maintaining the benefits of ns-3 regarding the easiness and flexibility of

implementation, the important log functionality it provides, and the ability to combine, in

the same run, simulated and emulated resources, which can improve the testbed in scale and

functionality.

2. Trace-based Simulation Approach. This is a novel simulation approach allowing to per-

petuate past real-world experiments and rerun them independently of the testbed availability

and the external phenomena influencing its physical conditions. This is possible by record-

ing traces of such physical conditions and reproducing them using a trace-based simulation.

Trace-based simulation is especially important considering very unpredictable and unstable

scenarios such as the emerging wireless vehicular networking scenarios. Using trace-based

simulations we can reproduce the same conditions encountered in the real experiment runs.

The novelty of our approach, when compared to the state-of-the-art, is that we only repro-

duce the physical conditions (radio links characteristics and the positions of the nodes) and

rely on ns-3 TCP/IP and MAC simulation capabilities for the upper layers.

With both contributions in place, the interactions between Simulation and Experimentation re-

sult in a Simulation-Experimentation synergy that improves the Performance Evaluation of Wire-

less Networks.

Five conference papers and two journal papers were produced as a direct result of this thesis:

1. ns-3 NEXT: Towards a Reference Platform for Offline and Augmented Wireless Net-
working Experimentation in Proceedings of the Workshop on ns-3, 2019, Florence, Italy

(Conference) [6];

2. Improving ns-3 Emulation Performance for Fast Prototyping of Routing and SDN Pro-
tocols: Moving Data Plane Operations to Outside of ns-3 in Simulation Modelling Prac-

tice and Theory, 2019 (Journal) [7];

98 Conclusions

3. Improving the ns-3 TraceBasedPropagationLossModel to Support Multiple Access Wire-
less Scenarios in Proceedings of the Workshop on ns-3, 2018, Surathkal, India (Conference)

[8];

4. A Trace-Based ns-3 Simulation Approach for Perpetuating Real-World Experiments
in Proceedings of the Workshop on ns-3, 2017, Porto, Portugal (Conference) [9];

5. Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols in

Proceedings of the Workshop on ns-3, 2016, Seattle, WA, USA (Conference) [10];

6. Improving ns-3 Emulation Support in Real-World Networking Scenarios in Proceed-

ings of the 8th International Conference on Simulation Tools and Techniques, 2015, Athens,

Greece (Conference) [11];

7. Fast Prototyping of Network Protocols Through ns-3 Simulation Model Reuse in Sim-

ulation Modelling Practice and Theory, 2011 (Journal) [12];

6.3 Fast Prototyping Process and Trace-based Approach Limitations

The Fast Prototyping protocol development process has the following major limitations:

• Applicability. In order to benefit from the shared protocol implementation between sim-

ulation and experimentation, as proposed by Fast Prototyping, we should be developing a

new network protocol. If we are just improving a protocol whose real implementation al-

ready exists, it may be difficult and error-prone to re-implement its data plane and control

plane from scratch in ns-3. In that case, a better alternative would be to use the ns-3 DCE,

which allows to run a real implementation in ns-3 if the source code is available and it is

compatible with DCE.

• Compatibility. The DPK approach only supports protocols whose data planes are com-

patible with the Linux kernel. Otherwise, the DPU approach is a valid alternative and its

performance, although worse than the DPK, is better than the traditional ns-3 emulation ap-

proach running the data-plane inside ns-3. In its current version, the Real Routing module,

developed for the DPK approach, only supports proactive L3 protocols. The extension of

the Real Routing module to support reactive L3 protocols is left for future work.

Our acquired hands-on experience on developing and using the TS approach along the last

years gave us a better understanding of its limitations. In what follows, we refer to each of them

and present possible ways to overcome the limitations:

• Accuracy gain depends on the realism of the ns-3 ErrorRateModel. In our scenarios we

have always used PHY rates based on OFDM. For that purpose, we used the NistErrorRate-

Model which was previously validated for IEEE 802.11a OFDM PHY rate modulations. If

6.3 Fast Prototyping Process and Trace-based Approach Limitations 99

we use different modulations (e.g., IEEE 802.11b DSSS) we should select the ErrorRate-

Model that best suites the experiment.

• ns-3 does not account for node processing time. For some experiments, such as measuring

a Wi-Fi link RTT with low network load, substantial differences between the results obtained

for trace-based simulations and real experiments can exist.

• SNR sampling resolution. We depend on network traffic to sample the asymmetric SNR

of each radio link. If we want high SNR sampling rate we may need to generate some

background traffic to have the necessary SNR samples, and assure adequate experiment

reproduction using the TS approach.

• Detection of link failure. Intermittent link failure is difficult to detect as we can only sample

SNR from frames that are received successfully. The link SNR only keeps updated if there

are new samples. At the moment, we do not have any timeout to define how long we can

consider the last SNR sample as valid and keep the link alive in simulation.

• Beamforming is not supported. In the current version we use the interface in monitor mode

to collect all frames, even the frames belonging to communications between neighboring

peers. We use all these frames, including the broadcasted control frames, to sample the

SNR for every possible link. For beamforming the nodes can only consider the frames that

are destined to themselves, so that the SNR is recorded with the correct gain.

• MIMO is not supported. The TS approach only supports SISO links, where a given SNR

variation over time in the single radio stream directly translates to a FER, the respective

auto PHY rate adaptations, and a resulting network performance. In MIMO, using the SNR

makes it insufficient for reproducing a realistic PHY rate in ns-3, as the SNR does not

represent the number of spatial streams being used. In experiments using MIMO-enabled

Wi-Fi interfaces, recording the number of streams being used and their SNR should be

considered in future work.

• Record and Replay methodology. The TS approach aims only at reproducing the exact

same conditions of the real experiment (e.g., number of nodes, trajectory, and duration).

There is no support to improve the pure simulation scenarios based on models derived from

the real traces.

• Amount of data generated. The TS approach records all the SNR samples. This can

become a problem for very large experiments. A good balance between sampling resolution

and TS approach accuracy should be considered in future work.

100 Conclusions

6.4 Future Work

In the following we refer to further developments that may be considered within the scope of the

Fast Prototyping process and the TS Approach. We also identify open research topics with high

potential to attain new original contributions on top of this thesis work.

6.4.1 Further Developments

When it comes to the Fast Prototyping process, we may consider the integration of the Real

Routing module in the main ns-3 distribution in order to reach more protocol developers and

researchers. In addition, we may consider the development of a module to automatically generate

the network namespaces and their connections based on the topology of the nodes created in the

simulator; at the moment, users have to manually create the namespaces and configure the emu-

lated nodes with their corresponding namespace. Finally, to increase the usefulness of the Real

Routing module, we may extend it to support reactive protocols. Concerning the TS approach, we

may improve the TraceBasedPropagationLossModel for overcoming the set of limitations identi-

fied in Section 5.7 and Section 6.3. In addition, we may develop a framework to assist the related

processes of traces capturing, managing, reusing, and sharing.

6.4.2 Open Research Topics

The use of the TS approach leads to the collection of a large number of datasets containing traces of

radio link quality and mobility of nodes from a multitude of real experiments. By taking advantage

of this large amount of data, we argue that Machine Learning techniques can be employed to, for

instance, learn new path loss and mobility models. Those models can then be used to better

simulate the physical characteristics of emerging communications environments such as aerial

and maritime. This will enable the use of the TS approach beyond the mere replication of past

real experiments. The benefits may include 1) the ability to scale the scenarios by using a higher

number of nodes and 2) the ability to simulate different node trajectories from the trajectories

observed in the real experiment using a custom-tailored mobility model.

Adding support for MIMO and beamforming in the TS approach is a relevant topic as it is a

core characteristic of more recent IEEE 802.11 standards, such as IEEE 802.11n, IEEE 802.11ac,

and the upcoming IEEE 802.11ax. By being able to capture more details from the real-world

radio link, such as the number of spatial streams used, or the Channel State Information, which

reports the radio link quality for each OFDM sub-carrier, will allow to broaden the application

scope of the TS approach. Also, the association of this new captured link quality information per

sub carrier to the new SpectrumPhy ns-3 module will enable more realistic MIMO simulation in

ns-3 simulator.

Emerging testbeds such as aerial and maritime have scarce resources and scale, and are avail-

able for short periods of time mainly due to the logistics and high operation costs involved. What

if we could create a kind of augmented reality lab to increase the scale of the real testbed? We

6.4 Future Work 101

imagine, for example, to have a room full of ns-3 emulation servers that are linked via the Internet

to real testbed or gateway near the real nodes. These servers can be running ns-3 emulated nodes

following mobility and path loss models previously obtained through Machine Learning. Imagine

two clusters of vehicle network testbeds operating in distant locations in a city. This emulation

server could allow to create emulated nodes interacting with the real ones to allow multihop com-

munications between the two clusters of real nodes, evaluating the solution in a larger scale and

with realism.

102 Conclusions

References

[1] Guangyu Pei and Thomas R Henderson. Validation of ofdm error rate model in ns-3. https:
//www.nsnam.org/pei/80211ofdm.pdf, 2010. Boeing Research Technology.

[2] WiN - Wireless Networks Group home page. http://win.inesctec.pt/, 2018. Ac-
cessed January, 2018.

[3] INESC TEC home page. http://www.inesctec.pt/, 2018. Accessed January, 2018.

[4] ns-3. ns-3 home page. http://www.nsnam.org, January 2018. Accessed January, 2018.

[5] George F. Riley and Thomas R. Henderson. The ns-3 Network Simulator, pages 15–34.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[6] Helder Fontes, Vitor Lamela, Rui Campos, and Manuel Ricardo. ns-3 next: Towards a
reference platform for offline and augmented wireless networking experimentation. In Pro-
ceedings of the 2019 Workshop on Ns-3, WNS3 2019, pages 65–72, Florence, Italy, 2019.
ACM.

[7] Helder Fontes, Tiago Cardoso, Rui Campos, and Manuel Ricardo. Improving ns-3 emulation
performance for fast prototyping of routing and sdn protocols: Moving data plane operations
to outside of ns-3. Simulation Modelling Practice and Theory, 96:101931, 2019.

[8] Helder Fontes, Rui Campos, and Manuel Ricardo. Improving the ns-3 tracebasedpropa-
gationlossmodel to support multiple access wireless scenarios. In Proceedings of the 10th
Workshop on ns-3, pages 77–83. ACM, 2018.

[9] Helder Fontes, Rui Campos, and Manuel Ricardo. A trace-based ns-3 simulation approach
for perpetuating real-world experiments. In Proceedings of the Workshop on ns-3, pages
118–124. ACM, 2017.

[10] H. Fontes, T. Cardoso, and M. Ricardo. Improving ns-3 emulation performance for fast
prototyping of network protocols. In Proceedings of the Workshop on ns-3, WNS3 ’16,
pages 108–115, Seattle, WA, USA, 2016. ACM.

[11] H. Fontes, R. Campos, and M. Ricardo. Improving ns-3 emulation support in real-world
networking scenarios. In Proceedings of the 8th International Conference on Simulation
Tools and Techniques, SIMUTools ’15, pages 261–266, Athens, Greece, 2015. ICST.

[12] G. Carneiro, H. Fontes, and M. Ricardo. Fast prototyping of network protocols through
ns-3 simulation model reuse. Simulation Modelling Practice and Theory, 19(9):2063–2075,
October 2011.

[13] SITMe’s project website. http://www.sitme.org. Accessed January, 2019.

103

https://www.nsnam.org/ pei/80211ofdm.pdf
https://www.nsnam.org/ pei/80211ofdm.pdf
http://win.inesctec.pt/
http://www.inesctec.pt/
http://www.nsnam.org

104 REFERENCES

[14] SUNNY. Sunny - smart unattended airborne sensor network for detection of vessels used
for cross border crime and irregular entry. http://www.sunnyproject.eu/, January
2018.

[15] BLUECOM+. Bluecom+ – connecting humans and systems at remote ocean areas using cost-
effective broadband communications. http://bluecomplus.inesctec.pt/, January
2018.

[16] SIMBED. Simbed – offline real-world wireless networking experimentation using ns-3.
http://win.inesctec.pt/Projects, January 2019.

[17] WISE. Wise – traffic-aware flying backhaul mesh networks. http://wise.inesctec.
pt/, January 2018.

[18] Helder Martins Fontes. Multi-technology router for mobile networks: layer 2 overlay net-
work over private and public wireless links, 2010. MSc Thesis, MIEIC, FEUP, Universidade
do Porto.

[19] M. Ricardo, G. Carneiro, P. Fortuna, F. Abrantes, and J. Dias. Wimetronet a scalable wireless
network for metropolitan transports. In Proceedings of the 2010 Sixth Advanced Interna-
tional Conference on Telecommunications (AICT), pages 520–525, May 2010.

[20] Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors, Computer
Aided Verification, pages 8–22, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[21] E. Weingartner, H. vom Lehn, and K. Wehrle. A performance comparison of recent network
simulators. In IEEE International Conference on Communications, 2009. ICC ’09, pages
1–5, Dresden, Germany, June 2009.

[22] A.R. Khan, S.M. Bilal, and M. Othman. A performance comparison of open source network
simulators for wireless networks. In 2012 IEEE International Conference on Control System,
Computing and Engineering (ICCSCE), pages 34–38, Penang, Malaysia, November 2012.

[23] ns-2. ns-2 home page. http://nsnam.sourceforge.net/wiki/index.php/
Main_Page, January 2018.

[24] ns-2 Emulation. ns-2 emulation. http://nsnam.sourceforge.net/wiki/index.
php/Wireless_Network_Emulation_Tutorials, January 2018.

[25] Shivkumar C. Muthukumar, Xiaozhou Li, Changbin Liu, Joseph B. Kopena, Mihai Oprea,
and Boon Thau Loo. Declarative toolkit for rapid network protocol simulation and exper-
imentation. In ACM SIGCOMM Conference on Data Communications (demo), Barcelona,
Spain, August 2009.

[26] U.S. NRL Networks and Communications Systems Branch. The Protean Protocol
Prototyping Library (Protolib). http://www.nrl.navy.mil/itd/ncs/products/
protolib. Accessed January 16, 2015.

[27] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The Click
Modular Router. ACM Trans. Comput. Syst., 18(3):263–297, August 2000.

[28] Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick: Bridging Network Simulation
and Deployment. In Proceedings of the 5th ACM International Workshop on Modeling Anal-
ysis and Simulation of Wireless and Mobile Systems, MSWiM ’02, pages 74–81, New York,
NY, USA, 2002. ACM.

http://www.sunnyproject.eu/
http://bluecomplus.inesctec.pt/
http://win.inesctec.pt/Projects
http://wise.inesctec.pt/
http://wise.inesctec.pt/
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://nsnam.sourceforge.net/wiki/index.php/Wireless_Network_Emulation_Tutorials
http://nsnam.sourceforge.net/wiki/index.php/Wireless_Network_Emulation_Tutorials
http://www.nrl.navy.mil/itd/ncs/products/protolib
http://www.nrl.navy.mil/itd/ncs/products/protolib

REFERENCES 105

[29] P Lalith Suresh and Ruben Merz. ns-3-click: click modular router integration for ns-3.
In Proceedings of the 4th International ICST Conference on Simulation Tools and Tech-
niques, pages 423–430, Barcelona, Spain, 2011. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[30] J. Paul Morrison. Flow-Based Programming, 2nd Edition: A New Approach to Application
Development. CreateSpace Independent Publishing Platform, Unionville, Ont., 2 edition
edition, May 2010.

[31] Matjaž Fras, Gregor Globačnik, and Jože Mohorko. Advanced method of network simula-
tions with opnet modeler. In proceedings of the 14th National Conference on High Education
TREND, Kopaonik. Citeseer, 2008.

[32] Direct Code Execution (DCE) Manual. http://www.nsnam.org/docs/dce/
release/1.4/manual/singlehtml/index.html. Accessed January, 2018.

[33] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini, Mathieu Lacage, Daniel Camara, Thierry
Turletti, and Walid Dabbous. Direct Code Execution: Revisiting Library OS Architecture
for Reproducible Network Experiments. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’13, pages 217–228, New
York, NY, USA, 2013. ACM.

[34] iperf for dce - iperf tool source code changes to be supported by ns-3 dce.
https://github.com/direct-code-execution/ns-3-dce/blob/master/
example/dce-iperf.cc, 2019. Accessed January, 2019.

[35] Mathieu Lacage. Experimentation Tools for Networking Research. Ph.D., Universite de
Nice-Sophia Antipolis, 2010.

[36] XW Huang, Rosen Sharma, and Srinivasan Keshav. The entrapid protocol development envi-
ronment. In INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1107–1115. IEEE, 1999.

[37] David Ely, Stefan Savage, and David Wetherall. Alpine: A user-level infrastructure for
network protocol development. In USITS, volume 1, pages 15–15, 2001.

[38] Sam Jansen and Anthony McGregor. Simulation with real world network stacks. In Simula-
tion Conference, 2005 Proceedings of the Winter, pages 10–pp. IEEE, 2005.

[39] Hajime Tazaki, Frédéric Urbani, and Thierry Turletti. DCE cradle: Simulate network proto-
cols with real stacks for better realism. In Proceedings of the 6th International ICST Confer-
ence on Simulation Tools and Techniques, SimuTools ’13, pages 153–158, Cannes, France,
2013. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[40] Marko Zec and Miljenko Mikuc. Operating system support for integrated network emulation
in imunes. In Workshop on Operating System and Architectural Support for the on demand
IT Infrastructure (1; 2004), 2004.

[41] John Abraham and George Riley. Simulator-agnostic ns-3 applications. In Proceedings of the
5th International ICST Conference on Simulation Tools and Techniques, SIMUTOOLS ’12,
pages 391–396, Sirmione-Desenzano, Italy, 2012. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

http://www.nsnam.org/docs/dce/release/1.4/manual/singlehtml/index.html
http://www.nsnam.org/docs/dce/release/1.4/manual/singlehtml/index.html
https://github.com/direct-code-execution/ns-3-dce/blob/master/example/dce-iperf.cc
https://github.com/direct-code-execution/ns-3-dce/blob/master/example/dce-iperf.cc

106 REFERENCES

[42] J. Moy. OSPF version 2. RFC 2328, IETF, April 1998.

[43] M. Ricardo, G. Carneiro, P. Fortuna, F. Abrantes, and J. Dias. WiMetroNet a scalable wire-
less network for metropolitan transports. In 2010 Sixth Advanced International Conference
on Telecommunications (AICT), pages 520–525, Barcelona, Spain, May 2010.

[44] W. Simpson. The Point-to-Point Protocol (PPP), July 1994. RFC 1661.

[45] D. Plummer. Ethernet Address Resolution Protocol: Or Converting Network Protocol Ad-
dresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware, November 1982.
RFC 826.

[46] Steve Alexander and Ralph Droms. DHCP Options and BOOTP Vendor Extensions, March
1997. RFC 2132.

[47] Wireshark website. http://www.wireshark.org/. Accessed: 2015-02-13.

[48] Gianluca Insolvibile. Kernel korner: Linux socket filter: Sniffing bytes over the network.
Linux J., 2001(86):8–, June 2001.

[49] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux netlink as an IP services protocol.
RFC 3549, IETF, July 2003.

[50] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector (AODV)
routing. RFC 3561, IETF, July 2003.

[51] Source code for real routing module - sequency of patches to ns-3.21. http://telecom.
inesctec.pt/~hfontes/real_routing_patches.zip, February 2016.

[52] Jake Edge. Namespaces in operation, part 7: Network namespaces. https://lwn.net/
Articles/580893, January 2014. Accessed June 01, 2015.

[53] The Linux Foundation. netem. http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem, November 2009. Accessed June 01, 2015.

[54] Gustavo João Alves Marques Carneiro. Transparent metropolitan vehicular network: design
and fast prototyping methodology. PhD thesis, Universidade do Porto, Porto, 2012.

[55] P. Jacquet and T. Clausen. Optimized link state routing protocol (OLSR). RFC 3626, IETF,
October 2003.

[56] OLSR.org. OLSRd. http://www.olsr.org. Accessed June 01, 2015.

[57] Pasquale Imputato, Stefano Avallone, and Tommaso Pecorella. Network emulation support
in ns-3 through kernel bypass techniques. In Proceedings of the 11th EAI International
Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2017,
pages 259–260, New York, NY, USA, 2017. ACM.

[58] P. Imputato. High performance emulation of real devices in ns-3. https://www.nsnam.
org/wiki/SOCIS2017, 2017.

[59] R. Campos, T. Oliveira, N. Cruz, A. Matos, and J. M. Almeida. Bluecom+: Cost-effective
broadband communications at remote ocean areas. In OCEANS 2016 - Shanghai, pages 1–6,
Shanghai, China, April 2016.

http://telecom.inesctec.pt/~hfontes/real_routing_patches.zip
http://telecom.inesctec.pt/~hfontes/real_routing_patches.zip
https://lwn.net/Articles/580893
https://lwn.net/Articles/580893
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.olsr.org
https://www.nsnam.org/wiki/SOCIS2017
https://www.nsnam.org/wiki/SOCIS2017

REFERENCES 107

[60] G. Z. Papadopoulos, K. Kritsis, A. Gallais, P. Chatzimisios, and T. Noel. Performance eval-
uation methods in ad hoc and wireless sensor networks: a literature study. IEEE Communi-
cations Magazine, 54(1):122–128, January 2016.

[61] Georgios Z. Papadopoulos, Antoine Gallais, Guillaume Schreiner, and Thomas Noël. Im-
portance of repeatable setups for reproducible experimental results in iot. In Proceedings of
the 13th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, &
Ubiquitous Networks, PE-WASUN ’16, pages 51–59, New York, NY, USA, 2016. ACM.

[62] Keoma Brun-Laguna, Pedro Henrique Gomes, Thomas Watteyne, and Pascale Minet. Mov-
ing Beyond Testbeds? Lessons (We) Learned about Connectivity. IEEE Pervasive Comput-
ing, December 2018.

[63] S. Keranidis, W. Liu, M. Mehari, P. Becue, S. Bouckaert, I. Moerman, T. Korakis, I. Kout-
sopoulos, and L. Tassiulas. Concrete: A benchmarking framework to control and classify
repeatable testbed experiments. In FIRE Engineering Workshop, Ghent, Belgium, 2012.

[64] Fed4FIRE+. Fed4fire+ – the largest federation of testbeds in europe. https://www.
fed4fire.eu/, January 2019. Last Accessed: January, 2019.

[65] mininet wifi. mininet-wifi – emulator for software-defined wireless networks. https:
//github.com/intrig-unicamp/mininet-wifi, January 2019. Last Accessed:
January, 2019.

[66] R. Fontes, M. Mahfoudi, W. Dabbous, T. Turletti, and C. Rothenberg. How far can we go?
towards realistic software-defined wireless networking experiments. The Computer Journal,
60(10):1458–1471, 2017.

[67] Description of the minstrel algorithm. https://sourceforge.net/p/madwifi/svn/
HEAD/tree/madwifi/trunk/ath_rate/minstrel/minstrel.txt, January 2019.
Last Accessed: January, 2019.

[68] P. Owezarski and N. Larrieu. A trace based method for realistic simulation. In 2004 IEEE
International Conference on Communications (IEEE Cat. No.04CH37577), volume 4, pages
2236–2239, June 2004.

[69] P. Agrawal and M. Vutukuru. Trace based application layer modeling in ns-3. In 2016 Twenty
Second National Conference on Communication (NCC), pages 1–6, March 2016.

[70] Mathias Kurth, Anatolij Zubow, and Jens-Peter Redlich. Multi-channel link-level measure-
ments in 802.11 mesh networks. In Proceedings of the 2006 international conference on
Wireless communications and mobile computing, pages 937–944. ACM, 2006.

[71] H. Fontes. Source code for the tracebasedpropagationmodel – use in ns-
3.28. http://telecom.inesctec.pt/~hfontes/trace_based_propagation_
loss_model2018.zip, February 2018.

[72] H. Fontes. Source code for the tracebasedpropagationmodel – use in ns-
3.28. http://telecom.inesctec.pt/~hfontes/trace_based_propagation_
loss_model2017.zip, February 2017.

[73] Zhigang Rong and Theodore S Rappaport. Wireless communications: Principles and prac-
tice, solutions manual. Prentice Hall, 1st ed. edition, 1996.

https://www.fed4fire.eu/
https://www.fed4fire.eu/
https://github.com/intrig-unicamp/mininet-wifi
https://github.com/intrig-unicamp/mininet-wifi
https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/ath_rate/minstrel/minstrel.txt
https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/ath_rate/minstrel/minstrel.txt
http://telecom.inesctec.pt/~hfontes/trace_based_propagation_loss_model2018.zip
http://telecom.inesctec.pt/~hfontes/trace_based_propagation_loss_model2018.zip
http://telecom.inesctec.pt/~hfontes/trace_based_propagation_loss_model2017.zip
http://telecom.inesctec.pt/~hfontes/trace_based_propagation_loss_model2017.zip

108 REFERENCES

[74] H. T. Friis. A note on a simple transmission formula. Proceedings of the IRE, 34(5):254–256,
May 1946.

[75] V. Erceg, L. J. Greenstein, S. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. Julius, and R. Jas-
trzab. An empirically-based path loss model for wireless channels in suburban environments.
In IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), volume 2, pages 922–927 vol.2, Nov
1998.

[76] W. Lindsey. Error probabilities for rician fading multichannel reception of binary andn-ary
signals. IEEE Transactions on Information Theory, 10(4):339–350, October 1964.

[77] MINORU NAKAGAMI. The m-distribution—a general formula of intensity distribution of
rapid fading. In W.C. HOFFMAN, editor, Statistical Methods in Radio Wave Propagation,
pages 3 – 36. Pergamon, 1960.

[78] András Varga and Rudolf Hornig. An overview of the omnet++ simulation environment.
In Proceedings of the 1st International Conference on Simulation Tools and Techniques for
Communications, Networks and Systems & Workshops, Simutools ’08, pages 60:1–60:10,
ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[79] Ieee standard for low-rate wireless networks. IEEE Std 802.15.4-2015 (Revision of IEEE Std
802.15.4-2011), pages 1–709, April 2016.

[80] Alireza Babaei, Jennifer Andreoli-Fang, Yimin Pang, and Belal Hamzeh. On the impact
of lte-u on wi-fi performance. International Journal of Wireless Information Networks,
22(4):336–344, Dec 2015.

[81] João Rafael de Figueiredo Cabral. A machine learning approach for path loss estimation in
emerging wireless networks, 2018. MSc Thesis, MIEIC, FEUP, Universidade do Porto.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Definition
	1.3 Objectives
	1.4 Challenges
	1.5 Thesis Hypothesis
	1.6 Original Contributions
	1.7 Related Research Projects
	1.8 Thesis Structure

	2 Fast Prototyping of Network Protocols through ns-3 Simulation Model Reuse
	2.1 Traditional Protocol Development Process
	2.2 Proposed Protocol Development Process
	2.3 Related Work
	2.4 ns-3 Emulation
	2.5 Performance Evaluation of ns-3 Emulation
	2.6 Summary

	3 Improving ns-3 Emulation Support in Real-World Networking Scenarios
	3.1 Overview of ns-3 Communication Types
	3.2 Problem and Motivation
	3.2.1 Cellular PPP Interfaces Support
	3.2.2 Cellular PPP Interfaces Intermittency
	3.2.3 Manual MAC Address Configuration
	3.2.4 Dynamic IP Configuration Settings

	3.3 Proposed EmuFdNetDevice
	3.3.1 Detection of the Operating Layer of Real Network Interfaces
	3.3.2 Support for Intermittent Real Interfaces
	3.3.3 MAC Address Cloning
	3.3.4 IP Address Cloning

	3.4 Solution Validation
	3.4.1 Laboratory Testbed
	3.4.2 Vehicular Network Testbed

	3.5 Summary

	4 Improving ns-3 Emulation Performance for Fast Prototyping of Network Protocols
	4.1 Problem and Motivation
	4.2 Migrating the Data Plane to Outside of ns-3
	4.2.1 Data Plane in User Space (DPU)
	4.2.2 Data Plane in Kernel Space (DPK)
	4.2.3 Emulating Multiple Nodes

	4.3 Validation
	4.3.1 Data Plane in User Space (DPU)
	4.3.2 Data Plane in Kernel Space (DPK)
	4.3.3 Emulating Multiple Nodes

	4.4 Comparing the DPU Approach with the Traditional ns-3 Emulation using Oprofile
	4.5 Comparison with the new NetmapNetDevice and its Impact on Fast Prototyping
	4.6 Discussion
	4.7 Summary

	5 Trace-based ns-3 Simulation Approach for Perpetuating Real-World Experiments
	5.1 Problem and Motivation
	5.2 Related Work
	5.3 Proposed Trace-based Simulation Approach
	5.3.1 Traces to be Collected from Real Experiments
	5.3.2 Reproducing Real Node Positions in ns-3
	5.3.3 Reproducing Radio Link Quality in ns-3

	5.4 TraceBasedPropagationLossModel
	5.4.1 Trace-based Simulation Settings

	5.5 TraceBasedPropagationLossModel Functional Testing
	5.5.1 Asymmetric Point-to-Point Radio Link Test
	5.5.2 Asymmetric Multiple-Access Radio Link Test

	5.6 Evaluation of the Trace-based ns-3 Simulation Approach
	5.6.1 SUNNY UAV-Ground Communications Testbed
	5.6.2 Isolated Laboratory Testbed
	5.6.3 Fed4FIRE+ w-iLab.2 Testbed

	5.7 Discussion
	5.7.1 TS Approach Strengths
	5.7.2 TS Approach Weaknesses

	5.8 Summary

	6 Conclusions
	6.1 Overview of the Work Developed
	6.2 Original Contributions
	6.3 Fast Prototyping Process and Trace-based Approach Limitations
	6.4 Future Work
	6.4.1 Further Developments
	6.4.2 Open Research Topics

	References

