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ABSTRACT

Previous work on multiple wavetable interpolation syn-
thesis has focused on modeling single instrumental tones,
using a different set of basis spectra for each. However,
the amount of space used to store the wavetable banks
needed to resynthesize many different tones would be re-
duced if at least some of the wavetables were selected for
their general-purpose use in synthesizing multiple tones.
This paper presents the results of our research on match-
ing and synthesizing 198 tones played at various pitches
by a variety of different instruments using common wave-
table banks. We introduce two new techniques: the group-
ing of tones by pitch so that the highest expected partial
frequency will be less than the Nyquist frequency, and
the construction of shared wavetable banks by applying a
clustering algorithm to all the breakpoint spectra of all the
tones in a given group and selecting the spectrum nearest
the centroid of each class as a basis spectrum.

1. INTRODUCTION

Multiple wavetable interpolation [10, 3] is a form of mu-
sic analysis/synthesis. It begins by converting a digital
waveform to the frequency domain by a short-time Fourier
transform and reducing it to a set of shared breakpoints [4]
by piecewise linear approximation (PLA) of the spectral
envelopes of its harmonics. A single weighted-average
frequency differential is also computed and stored for each
breakpoint, since wavetable interpolation requires that the
corresponding harmonics of the wavetables involved in
the interpolation be in phase [10].

Next, a number of basis spectra are selected to com-
prise a wavetable bank. 1 Typically, these basis spectra
are selected from the breakpoint spectra of the analyzed
tone, but they could be selected by other means, includ-
ing spectral principal components analysis (PCA) [9], a
genetic algorithm [2, 5], or by hand-selection [10, §2.2].

The spectrum at each breakpoint of the spectral enve-
lope of the tone is then matched by determining weight-
ings for a small number (typically, 2 to 5) of basis spectra
selected from the wavetable bank, and the sound is resyn-
thesized using multiple wavetable additive synthesis [2, 5]

1 The basis spectra are collectively referred to as a wavetable bank,
although for the purposes of breakpoint matching they are initially rep-
resented in the frequency domain as vectors of harmonic amplitudes. At
synthesis time, each vector is converted to an actual wavetable—a table
of the time-domain amplitude values of one cycle of the waveform—for
use by a table-lookup oscillator.

by interpolating between the weightings for each wave-
table at consecutive breakpoints.

A different set of wavetables can be selected for use at
each breakpoint, subject to the restriction that a wavetable
that is used at one breakpoint but not at the next must be
faded out and a wavetable that comes into use at a par-
ticular breakpoint must be faded in, since audible clicks
and spectral discontinuities would result from the sudden
change of wavetables [3].

Previous work on multiple wavetable interpolation syn-
thesis [10, 3] has focused on modeling a single instru-
mental tone with each set of basis spectra. However, the
amount of space used to store the wavetable banks needed
to resynthesize many different tones would be reduced if
at least some of the wavetables were selected for their
general-purpose use in synthesizing multiple tones. This
paper presents the results of our research on matching and
synthesizing multiple tones played at various pitches by a
variety of different instruments using common wavetable
banks. We introduce two new techniques: the grouping
of tones by pitch so that the highest expected partial fre-
quency will be less than the Nyquist frequency, and the
construction of shared wavetable banks by clustering all
the breakpoint spectra of all the tones in a given group
and choosing a representative spectrum from each cluster.

2. MULTIPLE TONE MATCHING

A set of 198 tones played by sixteen different instru-
ments, spanning the range from A1 to B6 by minor thirds,
were selected from the McGill University Master Sam-
ples collection for the purpose of testing the proposed
analysis-synthesis method. As indicated in Table 1, all
tones of pitch classes 2 A�, C�, E and G in the chosen
range as played by the bassoon (abbreviated as bsn in
the table), B� clarinet (cla), bass clarinet (clb), English
horn (eng), flute (flt), glockenspiel (glk), French horn
(hrn), oboe (obo), piano (pno), the saxophone family 3

(sax), C trumpet (tpt), trombone (trb), viola (vla),
string bass (vlb), ’cello (vlc), and violin (vln) were
selected.

2 All references to pitches specify sounding pitch, not written pitch.
3 Because the McGill collection does not include tones spanning the

full range of each member of the saxophone family (bass, baritone, tenor,
alto, and soprano) but uses about an octave from each instrument such
that the recorded tones span the full range of the family, the saxophones
were regarded as a single instrument for the purposes of this research.



Instrument
Pitch bsn cla clb eng flt glk hrn obo pno sax tpt trb vla vlb vlc vln Count
A�1 • • • •

43

C�2 • • • • • •
E2 • • • • • • • •
G2 • • • • • • • •
A�2 • • • • • • • •
C�3 • • • • • • • • •
E3 • • • • • • • • • • •

67
G3 • • • • • • • • • • • • •
A�3 • • • • • • • • • • • • • •
C�4 • • • • • • • • • • • • • • •
E4 • • • • • • • • • • • • • •
G4 • • • • • • • • • • • •

46
A�4 • • • • • • • • • • • •
C�5 • • • • • • • • • • • •
E5 • • • • • • • • • •
G5 • • • • • • • • • • •

34
A�5 • • • • • • • • •
C�6 • • • • • • • • •
E6 • • • • •
G6 • • • •

8
A�6 • • • •

Count 11 12 9 10 12 6 12 11 21 18 11 12 13 11 15 14 198

Table 1. Pitches and grouping of the instrument tones selected for testing.

2.1. Grouping of Tones by Pitch

Since these tones have fundamental frequencies that span
a broad range of frequencies, it was necessary to parti-
tion the tones into groups, each spanning a smaller range
of fundamental frequencies, and to select a different bank
of wavetables for each group, due to the restrictions im-
posed by the sampling theorem. If a spectrum were se-
lected from a low-pitched tone for inclusion in the wave-
table bank, complete with all its harmonics, and then used
in synthesizing a tone at a higher pitch, the upper partials
would wrap around the Nyquist frequency, creating syn-
thesis artefacts. If all the spectra in the wavetable bank
were band-limited to the frequency range between the
highest expected fundamental frequency and the Nyquist
frequency, then all the energy in the upper harmonics of
the lower-frequency tones would be lost on resynthesis,
resulting in audibly degraded tone quality. As indicated in
Table 1, the sample tones, spanning five octaves, were par-
titioned into five groups so that more partials could be re-
tained in the wavetable banks for the lower-pitched tones
than for the higher-pitched ones. The number of harmon-
ics retained in the basis spectra for each group are indi-
cated in Table 2.

The scheme of selecting tones a minor third apart was
used by Horner in his testing of multiple tone match-
ing [2]. Horner tested his multiple wavetable synthesis
method 4 on ten English horn tones, twelve trombone
tones, fourteen violin tones, and an unspecified number
of clarinet, saxophone, viola, and glockenspiel tones; re-
sults are given for only the first three instruments. How-

4 This method does not use interpolation; it uses the same set of wave-
tables throughout the synthesis of a tone, with no changing wavetables.

Group Harmonics
1 146
2 61
3 31
4 15
5 11

Table 2. Number of harmonics retained in the basis spec-
tra for each group of tones.

ever, Horner does not discuss the problem of avoiding au-
dible artefacts due to wrapping around the Nyquist fre-
quency when using harmonic-rich basis spectra selected
from lower tones in the synthesis of higher tones; the four-
teen violin tones were divided into two sets of seven tones
each, but this was done because “matching this extensive
space of tones with just six basis spectra did not work” [2,
p. 119].

Stapleton and Bass [11] grouped tones into classes ac-
cording to the instruments that produced the tones, but did
not group the tones by pitch; they did observe, however,
that their “basis functions must be band-limited to prevent
aliasing, resulting in loss of information at higher frequen-
cies for any tone” [11, p. 318].

Beauchamp and Horner [1] clustered spectral en-
velopes from 15 trumpet tones according to their spec-
tral centroid, a correlate of the perceptual attribute bright-
ness. Tones were synthesized from the average spectral
envelopes of 10 clusters using spectral centroid, RMS am-
plitude, and frequency differential as control functions.
The method worked well for trumpet tones, but not as well
for other instruments.



Hrn G3 Pno G3 Sax G3
Time Class Time Class Time Class
0.015 0 0.003 72 0.020 5
0.028 9 0.013 72 0.041 57
0.043 0 0.018 72 0.054 57
0.059 20 0.033 17 0.120 57
0.151 20 0.049 17 0.261 57
0.200 63 0.056 17 0.562 57
0.276 63 0.074 17 0.680 57
0.384 20 0.079 17 0.828 57
0.588 20 0.095 17 0.907 57
0.634 20 0.102 17 1.025 57
0.783 20 0.130 17 1.130 57
0.813 20 0.143 17 1.176 57
0.952 20 0.161 17 1.331 57
1.003 20 0.245 17 1.380 57
1.125 20 0.427 4 1.526 57
1.212 20 0.527 4 1.738 57
1.264 20 0.685 4 1.771 57
1.315 20 0.959 4 1.945 57
1.376 20 1.237 4 1.975 57
1.489 20 1.618 1 2.006 57
1.591 9 2.109 1 2.037 27
1.701 9 2.521 26 2.060 4
1.791 15 2.838 26 2.078 27
1.824 15 3.259 26 2.190 18

Table 3. The classes to which the breakpoint spectra
of three example tones are assigned by clustering. Each
spectrum is identified by its time index in seconds.

2.2. Selection of Basis Spectra

The basis spectra to be used to construct the wavetable
bank for each group of tones were selected using the
public domain unsupervised Bayesian classification sys-
tem AutoClass C 5 on the breakpoint spectra of all the
tones in that group; the spectrum nearest the centroid of
each cluster was used as a basis spectrum.

To illustrate the results of clustering with respect to the
spectral envelopes of individual tones, Table 3 shows, for
three example tones, the class to which each breakpoint
spectrum was assigned in the best clustering of the break-
point spectra in Group 2. Each breakpoint is identified by
its time index in seconds relative to the start of the tone.

The horn and sax tones illustrate a commonly occur-
ring pattern in which all or most of the spectra from the
sustain portion of a tone are clustered together, while spec-
tra from the attack and release segments are assigned to
various other clusters. The piano tone shows spectra pass-
ing through a sequence of classes as the tone decays from
an extremely quick attack.

The set of basis spectra was then augmented with some
hand-picked spectra, selected in order to reduce the ap-
proximation error for certain waveforms. Statistics were
also gathered on the number of times each basis spectrum

5 Available at http://ic.arc.nasa.gov/ic/projects/
bayes-group/autoclass/autoclass-c-program.html.
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Figure 1. Comparison of Horner’s constrained matching
with optimized multi-level exhaustive search results.

in the wavetable bank was used in matching the break-
point spectra of the tones in each group; on the basis of
these usage statistics, it was decided to remove the least-
used wavetable from two wavetable banks. A summary of
the final size of each wavetable bank and the ratio of the
size of each bank to the number of tones in its correspond-
ing group is provided in Table 4. The size of each bank
in bytes is also indicated, assuming that harmonic ampli-
tudes are represented as 4-byte floating-point values.

The overall ratio of wavetables to tones of 1.2 is ap-
proximately twice that of Horner’s experiment [2] with
multiple-tone matching of 10 English horn, 12 trombone,
and 14 violin tones with five, six, and two sets of five
wavetables, respectively. If Horner had divided the En-
glish horn and trombone tones into at least two groups
each and the violin tones into at least three groups (com-
pared to the four used in this research) in order to avoid
artefacts due to upper harmonics wrapping around the
Nyquist frequency, then the ratio of wavetables to tones
would have been approximately equal to the ratio reported
here.

3. RESULTS

Breakpoint spectra were matched using a new method that
optimizes wavetable matching and oscillator assignment,
the results of which have been reported elsewhere [6, 7, 8].

Figure 1 compares the average results of the con-
strained matching method proposed by Horner [3] with
those of optimized matching [6] using 3, 4, and 5 oscilla-
tors for the tones of Group 1. In the graph, lines connect
the data points for a given number of oscillators, where
each data point represents a different depth of search for
an initial match to the breakpoint spectra. It shows that,
while the constrained matching method is faster than any
of the types of optimized matching for a given number
of oscillators, the error levels produced by constrained
matching are significantly higher than those of the opti-
mized matches, and are closer to those achieved by opti-
mization with one fewer oscillators.



Wavetables Wavetables Breakpoints Bank Size
Group Tones Breakpoints in Bank per Tone per Wavetable (bytes)

1 43 1347 48 1.1 28.1 28032
2 67 3059 74 1.1 41.3 18056
3 46 2632 64 1.4 41.1 7936
4 34 2125 48 1.4 44.3 2880
5 8 416 12 1.5 34.7 528

Total 198 9579 246 1.2 38.9 57432

Table 4. Number of basis spectra selected for each wavetable bank, and the average number of wavetables per tone,
breakpoints per wavetable, and bank size for each group.

Significant data reduction can be achieved through
multiple wavetable interpolation analysis using shared
wavetable banks. As shown in Table 4, all five wavetable
banks occupy only 57.4 kilobytes. The oscillator assign-
ment control stream for each analyzed and matched tone
consists of a single-precision floating-point value (4 bytes)
for the time index of each breakpoint, another for the pitch
differential at that breakpoint, and, for each oscillator, an
unsigned integer (4 bytes) for the index of a wavetable in
the bank and a floating-point weighting (amplitude coeffi-
cient) for that wavetable. For a 5-oscillator control stream,
this totals only 48 bytes per breakpoint. The total space
occupied by the 198 5-oscillator control streams plus the
space required for the five wavetable banks is 513 kilo-
bytes, which is only 0.88% of the 58.2 megabytes used by
the 198 original CD-quality WAV files.

4. CONCLUSION

The generalization of multiple wavetable matching can be
thought of as the use of a horizontal rather than a vertical
grouping of tones. In previous studies that used a common
set of basis spectra to match multiple tones, the tones were
those of different pitches being played by the same instru-
ment [2] or by instruments that had been determined to
have similar timbres [11]. This might be characterized as
a vertical grouping of tones, since the tones ranged from
low to high in pitch, but did not range across different in-
struments or groups of instruments. In the current study, a
horizontal grouping of tones was used instead—grouping
together all the tones within a narrow pitch range from
across all the instruments being considered—in order to
address directly the Nyquist limit while generalizing the
multiple wavetable technique across many different in-
struments.
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