
A TAXONOMY OF SEQUENCER USER-INTERFACES

Matthew Duignan, James Noble
School of Mathematics, Statistics & Computer Science

Victoria University of Wellington, New Zealand

Matthew.Duignan@mcs.vuw.ac.nz

Robert Biddle
Human Oriented Technology Laboratory

Carleton University, Ottawa, Canada

Robert Biddle@carleton.ca

ABSTRACT

Sequencing tools play a central role in our ability to
create computer music. Despite their importance, there
has been little structured analysis of how the characteris-
tics of sequencers impact our ability to use them effec-
tively. This paper addresses this through a new taxonomy
for classifying sequencing tools. This taxonomy can be
used to help us better understand the strengths and weak-
nesses of current sequencer tools, and suggest novel pos-
sibilities for future sequencers.

1. INTRODUCTION

Using computers to sequence music has a long and rich
history that has resulted in the development of a vast num-
ber of different sequencing tools. In this paper we use the
term “sequencer” to refer to all computer tools used to se-
quence music, not just those conventionally described as
“sequencers”. These tools have been developed in both
academic and commercial contexts and each have differ-
ent strengths and weaknesses. While much work has fo-
cused on conceiving new sequencing applications there is
a need for a high level analysis examining the major char-
acteristics of such applications and how these affect their
use.

In this paper we present a new high-level taxonomy for
sequencing software. This taxonomy consists of five axes
which cleanly categorise each of the four major classes of
sequencer in common use today. This taxonomy can be
used to highlight and explain the relative strengths and
weaknesses of various sequencer classes. Additionally,
our taxonomy lays out a landscape of actual and possible
sequencer types, only some of which have been explored.
In this way, the taxonomy can suggest new forms of se-
quencers that could complement existing sequencer tools.
This taxonomy can be used by sequencer designers who
wish to gain insight into the impacts of high level inter-
face decisions on the resulting system.

2. TAXONOMY

This section presents the taxonomy we have developed
which categorises computer sequencing tools. The aim
of this taxonomy is to present an analytical framework for
understanding the characteristics of sequencer interfaces.

This taxonomy can be used to classify and analyse any
music tool with a sequencing component, including sys-
tems that have synthesis or effects processing features in
addition to sequencing abilities. In these cases the classi-
fication is based solely on the sequencing characteristics.

2.1. Four common approaches to sequencing

As a starting point, our taxonomy must distinguish be-
tween the major groups of sequencing applications avail-
able today. The earliest sequencer applications were ex-
tensions and developments of programming systems built
in the computer languages of the time. These evolved into
special purpose textual based music programming languages
such the MusicN languages, and SuperCollider, and also
into extensions for existing programming languages such
as Siren in the Smalltalk language. All of these tools can
be described as textual language music tools.

At the same time, drum-machines and early analogue
sequencers have continued to develop, and these inter-
faces have shaped sampling and loop playing tools, for
both modern drum-machines, and hardware sequencers
such as the MPC2000. This group includes all manner
of pattern sequencers. We refer to this group as sample
and loop triggers.

Many of the concepts and interaction patterns from tex-
tual language music tools soon found their way into the
graphical domain in the guise of what we refer to as music
visual programming tools. These tools such as MAX are
often classic examples of the more general class of visual
programming languages, but are designed to be particu-
larly suited to musical applications.

The fourth common class of sequencer are what we
will refer to as linear sequencers. These tools have be-
come the high-profile face of sequencing, typically utilis-
ing a strong multi-track recorder user-interface metaphor
[1]. These tools evolved from the recording studio which
has increasingly become a location for composition and
experimentation, in addition to the straight recording of
musical performance. Modern linear sequencers such as
Pro Tools and Logic allow the user to sequence both recorded,
sampled and synthesised sound.

Now that we have identified the four types of common
sequencers, we can now itemise each of the five axes of
our taxonomy.



2.2. Textual vs. Graphical

The first major distinction in this taxonomy is between
textual and graphical computer music systems. Textual
computer music systems are essentially programming lan-
guages, often providing built in types to support com-
puter music specific functionality. Graphical computer
music systems utilise a combination of geometric shapes,
colours and representations, along with some textual ele-
ments. Graphical systems are characterised by a far greater
emphasis on non-textual representations.

Due to the expressive power of language, textual music
programming tools tend to be highly flexible within their
domain. In this environment music programmers are able
to define their own structures, abstractions, and control
flow logic. These environments offer a great deal of power
to the user, but this comes at a significant cost in terms of
learnability and usability to those who are unfamiliar with
complex programming concepts.

A principle characteristic of graphical user-interfaces
is the interaction style of direct manipulation described
by Shneiderman [5]. Direct manipulation uses graphic ap-
proaches where users interact by simulated physical ma-
nipulation of interactive graphical objects. Shneiderman
listed the benefits of direct manipulation systems which
included faster learning and retention rates, rapid feed-
back, and the encouragement of exploration.

Graphical computer music tools provide a more direct
and typically more learnable interface. Because interac-
tion objects and interaction possibilities are made visible,
users will often be able to intuit usage through direct ma-
nipulation techniques. These interactive interfaces are of-
ten markedly simpler to learn, but typically offer little of
the flexibility and power of textual systems.

2.3. Predetermined vs. Custom Abstractions

Computer music sequencers can be categorised in the ex-
tent to which they provide predetermined or user-customisable
abstractions. Abstraction is the general process of using
classification, grouping, and hierarchy to hide and reuse
details. All but the most primitive of sequencer user inter-
faces provide some form of basic predetermined abstrac-
tion whether it is notes, or audio clips. These basic ab-
stractions allow users to avoid dealing with the high and
low voltages flowing over a MIDI cable, and instead spec-
ify notes, durations and velocity. However, it is possible
to support higher-level custom abstractions such reusable
phrases, and custom relationships between entities.

The primary advantage of predetermined representa-
tions in user-interfaces is that they contain minimal con-
ceptual overhead for the user to come to terms with. With
fewer abstractions there is a reduced opportunity for hid-
den dependencies between abstracted components in the
interface. More concrete sequencer interfaces can be eas-
ier to design and implement, because there is no require-
ment to carefully plan and build the conceptual model of
the abstraction.

On the other hand, a well designed and implemented

set of customisable higher-level abstractions can add con-
siderably to the power of a music application [7].

2.4. Delayed vs. Eager linearisation

An important characteristic of sequencing interfaces is the
point at which linearisation occurs. Music sequencing,
and more generally the act of composition itself, can be
seen as a task of creating an aesthetic linear ordering of
musical material. Some sequencers can have a delayed
approach to linearisation — where in the extreme case the
final linear ordering can be held off until the point of per-
formance. Alternatively, sequencer applications will often
provide an environment where all musical material must
be placed into an absolute position in the single canonical
linear ordering of the piece.

Sequencers that employ eager linearisation have the ad-
vantage of a single linear representation that reduces inter-
face complexity and cognitive overhead.

A system that delays linear ordering has the benefit that
it may offset the problems of premature commitment [3].
A well designed delayed linearisation sequencer may be
able to facilitate the rapid auditioning of various linearisa-
tions of musical material — a technique that is very famil-
iar to composers who use traditional musical instruments
as part of the composition process.

2.5. Data vs. Control-flow

Sequencers can utilise data- or control-flow paradigms.
Control-flow systems can be identified as those that al-
low the user to specify the final sequencing in terms of or-
der of events. This may include conditional tests or loops
— which in a musical context maps to traditional scoring
constructs such as first and second time repeat bars, and
repeat sections and codas.

The alternative paradigm is data-flow. Data-flow sys-
tems are categorised by interfaces that require the user
to determine the final sequence in terms of data flowing
through a computational system. These systems allow the
user to define computational elements which transform in-
coming data and conditionally send it to other computa-
tional elements. Such systems could be used to implement
rule based systems for “improvising” with a musical score
or other complex generative systems.

While many sequencer systems may utilise the data-
flow paradigm for effect processing, their sequencing com-
ponents are often predominantly control-flow based, and
in those cases would be classified as such.

There is good evidence to suggest that data and control-
flow systems are suited to dealing with different forms of
information [2]. Research into visual data-flow environ-
ments has shown that they are particularly good at con-
veying the details of complex behaviour. In a visual pro-
gramming context this was described as a suitability for
communicating “abstract knowledge about what the pro-
gram does” [2] . In contrast, control-flow systems were
shown to place an emphasis on conveying “quite low-level
sequential accounts” of programs.



2.6. Special vs. General purpose

The notion of a general vs. special purpose sequencing in-
terface is largely a relative definition. Music applications
can be seen to be general purpose for use with any music
sequencing task, or special purpose in supporting particu-
lar types of music sequencing.

A special purpose music sequencing interface can be
identified by evidence of a strong bias towards particu-
lar forms of musical sequencing. We define interfaces as
special purpose where they are dominated by underlying
assumptions and structure that favours one form of musi-
cal structuring over all others. Special purpose interfaces
have the advantage that they can be optimised for a spe-
cific type of sequencing operation. This can win on sim-
plicity and efficiency of operation if the interface is well
designed.

In marked contrast to this, general purpose interfaces
have the substantial advantage of being applicable to a
wider scope of music sequencing tasks, removing the re-
quirement for a separate specialised tool for every possible
task.

2.7. Summary

This taxonomy classifies sequencing tools by distinguish-
ing between the following characteristics:

Characteristic

Medium Textual Graphical
Abstraction Level Predetermined Custom

Linearisation Stage Eager Delayed
Event Ordering Control Data

Applicability Special General

Every sequencing tool has an interface signature that is
defined by how it is characterised in each of the five cat-
egories. With two possible values for each of the charac-
teristics there are thirty-two possible signatures defined by
this taxonomy, each of which would define a class of se-
quencer interfaces with its own set of strengths and weak-
nesses. However, only a small subset of these potential
categories actually contain real sequencers in use today.

3. APPLYING THE TAXONOMY

This section presents the four major types of music se-
quencer applications that we introduced in section 2.1 and
analyses and classifies their design characteristics in terms
of the previously presented taxonomy.

3.1. Linear Sequencers

Graphical: Linear sequencers provide a graphical inter-
face depicting a number of tracks. The graphical displays
typically utilise direct manipulation techniques.
Predetermined Abstractions: For the large part these in-
terfaces employ predetermined representations. In record-
ing oriented interfaces users are presented with chunks of
recorded audio which originate from recording “takes”.

These can be split and merged, but typically cannot be
manipulated in custom abstractions.

MIDI oriented conventional sequencer interfaces pre-
dominantly present musical events visually as individual
objects placed on a two-dimensional spatial substrate. For
the most part, the music is simply represented at just this
event level, with little support for aggregation, collection
or other abstractions. These sequencers use the multi-
track metaphor which places an inflexible predetermined
abstraction on the composer’s musical material.
Eager: Linear sequencing systems are highly biased to-
wards eager linearisation. They are based on the under-
lying model of events placed on tracks. This means that
every musical idea that exists in the piece the composer is
working on must be placed in an absolute time location.
The very act of creating a musical motif requires that it is
given a location in the overall linear ordering of the piece.
Control: A control-flow paradigm is used in linear se-
quencers. The simplest sense of control-flow is at work
here — as events are placed in absolute time locations,
and playback typically proceeds from time zero through
to the end of the piece. The use of markers and punch
in / punch out recording functionality allows conditional
beginning and end triggering.
General: Linear sequencers can be seen to be general pur-
pose in that they do not limit the user to particular styles
or arrangements of musical form due to the relatively low-
level concrete interface.

3.2. Sample and Loop triggers

Graphical: These tools are highly graphical in nature.
The contain graphical representations of the loop and sam-
ple objects — often including pictorial representations of
wave forms. These can typically be moved or triggered
through direct manipulation.
Predetermined Abstractions: Sample and loop triggers
have a fixed, reasonably low level of abstraction. The user
can deal with loops or samples, but typically cannot de-
fine their own complex ordering or nested structuring of
abstractions.
Delayed: By allowing the user to trigger loops and one-
shot samples in a real-time context, sample and loop trig-
gering tools present a delayed linearisation interface. This
means that users can rapidly experiment with different ar-
rangements though interacting with the interface during
playback.
Control: These tools utilise a control-flow paradigm. Mu-
sical material is placed in blocks that are triggered by
temporal conditions, or though user interaction. Some of
these tools also include data-flow effects processing sys-
tems, but the general sequencing model is highly control-
flow driven.
Special: Sample and Loop triggers are special purpose
music sequencing interfaces. They provide a specialised
interface which facilitates the control of repeating loop
based patterns.



3.3. Music Visual programming

Graphical: Being visual programming languages, these
systems are graphical by definition. As users build their
composition system, they can see the “objects”, their pa-
rameters’ values, and the links between them.
Custom Abstractions: Music visual programming envi-
ronments provide a reasonable level of abstraction. In en-
vironments such as MAX and Reaktor users can define
music event processing programs which can be embedded
inside other programs. These user defined sub-programs
are objects that can be used to abstract various music cre-
ation processing tasks and be reused in various programs.
An integral part of these environments is also specifying
the relationships between abstractions. By utilising the
flexible nature of these systems it is possible for users to
define their own relationships by controlling the interpre-
tation of data flowing between objects.
Delayed: Because these systems only ever result in a lin-
ear musical representation on their execution, they are ex-
amples of highly delayed linearisation. The only point of
linearisation is the linear stream of MIDI or audio data
that are produced by these systems at runtime.
Data: Music visual programming systems utilise the data-
flow paradigm. Musical event and audio data flows be-
tween the various computational components. This data
is processed and results in various event and audio output.
General: These systems are highly flexible due to the
general visual programming constructs they make avail-
able. Users can create various processing systems that can
embody essentially any structuring of events and audio.

3.4. Textual language music tools

Textual: By definition, these forms of music program-
ming languages are textual.
Custom Abstractions: Most music languages allow the
user to define their own abstractions which they can use
as required.
Delayed: Due to the use of abstractions it is possible
for users to define the event structures before commit-
ting them to a final linear ordering. The use of abstraction
also makes it convenient to rearrange the linear ordering
as necessary.
Control: The event creation component of textual music
languages are predominantly control-flow in nature. Score
languages, as well as textual computer music tools embed-
ded in procedural programming languages, are framed as
instructions or the definition of events, and the control-
flow logic that defines whether they are triggered.
General: Due to their flexibility, textual music languages
are very general purpose. This is particularly true for tex-
tual music tools embedded in a fully fledged programming
language such as Siren.

3.5. Summary

Both of the possible values for each of the five character-
istics appear in one or more class of existing sequencing

interface. This means that any interface we can conceive
of can benefit from the wealth of knowledge that we have
about these characteristics.

4. CONCLUSION

This paper has presented a taxonomy for music sequencers
and applied it to the four most common types of sequencer
interfaces. We have demonstrated how this can be used to
analyse existing types of sequencer and gain insight into
their strengths and weaknesses. More importantly, the tax-
onomy provides us with a principled understanding of the
causes of these strengths and weaknesses which can be
taken into account in designing future tools.

Additionally, this taxonomy can be used to discover
new types of sequencer which combine different combi-
nations of characteristics identified in the taxonomy. For
example, we are currently designing a tool which will fit
into a novel class identified through this taxonomy, char-
acterised as a graphical, custom, delayed, control-flow,
general purpose sequencing interface. There are twenty-
eight novel types of sequencer that our taxonomy suggests
outside of those identified here, many of which may be
fertile grounds for investigation.

5. REFERENCES

[1] DUIGNAN, M., NOBLE, J., BARR, P., AND BID-
DLE, R. Metaphors for electronic music production
in Reason and Live. In 6th Asia-Pacific Conference
on Computer-Human Interaction (2004).

[2] GOOD, J. VPLs and novice program comprehension:
How do different languages compare? In Proceedings
of the IEEE Symposium on Visual Languages (1999),
IEEE Computer Society, p. 262.

[3] GREEN, T. R. G. Instructions and descriptions: some
cognitive aspects of programming and similar activi-
ties. In Proceedings of the working conference on Ad-
vanced visual interfaces. ACM Press, 2000, pp. 21–
28.

[4] HOLMES, T. B. Electronic and Experimental Music.
Charles Scribner’s Sons, New York, 1985.

[5] SHNEIDERMAN, B. Direct manipulation for compre-
hensible, predictable and controllable user interfaces.
In IUI ’97: Proceedings of the 2nd international con-
ference on Intelligent user interfaces (1997), ACM
Press, pp. 33–39.

[6] THEBERGE, P. Any Sound You Can Imagine: Make-
ing Music/Consuming Technology. Wesleyan Univer-
sity Press, 1997.

[7] TRUAX, B. The Language of Electroacoustic Music.
Palgrave, 1986, ch. Computer Music Language De-
sign and the Composing Process.


	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	James Noble
	Robert Biddle
	Matthew Duignan



