SLIDING IS SMOOTHER THAN JUMPING

Russell Bradford

Richard Dobson

John ffitch

Department of Computer
Science, University of
Bath, England

ABSTRACT

The existence of the sliding DFT has been known for some
time, but it does not seem to be in wide use, possibly be-
cause of its perceived computational cost. In this paper we
review the mathematical background, and implementation
issues, and then consider the advantages and disadvan-
tages of the Sliding Discrete Fourier Transform (SDFT)
as compared with a more traditional FFT algorithm. We
also propose a much more efficient Simple Sliding Inverse
DFT that makes sliding a serious alternative to jumping
between overlapping frames. Finally we assess the quality
of transformations based on the SDFT in a Csound imple-
mentation.

1. INTRODUCTION

In his visionary lecture on audio in the new millennium,
Moorer presented a number of ways in which he thought
that audio would progress [6]. The one which inspired
this work is the suggestion that with increase in machine
power available eventually processes he calls the “Run-
ning” transforms will come into use. In particular he re-
presents the discrete Fourier transform from his earlier pa-
per [5] where he shows that this is computationally effi-
cient. We reiterate the mathematics in the section below
in order to identify the advantages and problems, and sug-
gest an improvement.

We also make qualitative assessments of the audio re-
sults that can be obtained from a DFT with a maximal
window overlap, using our implementation in Csound and
comment on the vision of Moorer.

2. THE SLIDING DFT

The Discrete Fourier Transform is a translation of a func-
tion periodic over some period from the discrete time do-
main to the discrete frequency domain. In practice it is
usual to apply this analysis to a windowed section of a sig-
nal and assume that it is periodic. Adopting the notation
of Moorer, we have a function f(n), with discrete samples
fo, fi, ---. We assume a window size of N, which is to
say that we assume that the signal repeats over that period
The DFT, starting at time ¢ is

N-1

Ft(n) — Z fj+t€_27rijn/N,

J=0

where F}(n) is the value in the nth bucket in the frequency
domain. The standard algorithm to calculate the coeffi-
cients Fy(n) is the Fast Fourier Transform (FFT) which
uses a divide-and-conquer method and costs N log(N)
operations to calculate for a window of size N.

In the traditional implementation the window is moved
on by M samples, usually with M < N, and the DFT is
recalculated.

The idea behind the Sliding Discrete Fourier Transform
(SDFT) is to make use of the known values of Fy(n) to
calculate the value for the next window. In particular we
assume than we are moving by 1 sample only:

N-1
Fra(n) =) frrepe 2™
k=0

N
— Z fk+te—27rz(k—1) ~

k=1
N-1
B (Z frree” TN — fi + ft+N> o
k=0 .
= (Fy(n) — fi + fern) e N

That means that in order to forget the oldest sample
and accept a new sample, all that is needed for the n'" fre-
quency amplitude is an addition, a subtraction and a com-
plex rotation by 27n /N . As we know that the samples are
real this is a little simpler than might appear.

In complexity terms this creates the transform one sam-
ple later in O(NN).

There remains the problem of starting, but if we assume
that the signal was silent until the first sample, then the
transform is also zero and so we can slide the samples in
one at a time without creating an initial FFT.

Of course to move on by N samples is an N2 process,
but we have gained simple access to all the transforms,
and also there is nothing in this algorithm that requires a
power of 2 for the window size as required by the FFT.

3. INITIAL IMPLEMENTATION

In evaluation a process the proof is largely in the imple-
mentation in addition to the mathematics. We have made
a number of test implementations, but we ended with two
programs embodying this method; the first as a test for er-
rors and stability, and the second as a potentially useful
program.

The implementation of the algorithm above is simple.
The stand-alone program makes no attempts to economise
on space and is a simple translation. The only issue is the
complex rotation (multiplication by e2™#/N). This would
appear to require the calculation of NV sines and cosines,
which could be expensive, although for a given N they can
be pre-calculated. An alternative is to use the formulae
cos((n + 1)x) = cos(z) cos(nz) — sin(x) sin(nz) and
sin((n+1)z) = sin(nz) cos(z) + cos(nz) sin(x) so only
a single sine and single cosine of 27 /N are needed. We
have experimented with both schemes, and with a hybrid
which recalculates the sine and cosine after a number of
steps. The incremental formula does not suffer from much
accumulated error and is our preferred method.

The program was tested against a standard FFT im-
plementation, and performed correctly as expected. Of
course, when comparing with the FFT algorithm, N has
to be set to a power of 2, which is not required for the
SDFT, where IV can be any size.

4. THE SLIDING INVERSE DFT

An nice feature of the FFT algorithm is that there is an
inverse, taking the frequency components to the samples,
which is very similar to the forward process, and can reuse
some of the code. Unfortunately in Moorer’s articles this
does not seem to be the case for the SDFT. It is possible
to use an oscillator bank to reconstruct the time-domain
samples, but it is worth considering why the SIDFT is not
just as simple as the forward process.

The inverse has an apparently similar format:

N-1

1 ,
hrn) = ; F(k + b)e*™ikn/N

where we start at bucket b. Sliding by one sample gives

fop1(n) = (fb(n) - F]S)) + F(b; N)> e—2min/N_

But that only gives the contribution to the sample from
a single point in the collection of windows that contain the
required sample point. Moorer suggests averaging over all
relevant windows giving the formula

1 & e _ 1R e
t n—t
fn = N E fn—t = N ;:0 ft

t=n—N+1

where fT(f) is the contribution to f,, from the t*" window,
that is

1 N-1

N Z F, (k)eZﬂ'ikn/N-
k=0

1=

So
1 N-1 ()
— n—t
fn N ; ft
N-1 N-1
1 1 .
— Fn_t(k)eQﬂzkt/N
N t=0 N k=0
1 JVZ_I 1 = ikt /N
— Fn_t(k)eQ’”
N k=0 N t=0
1 N-1
= N Yn(k)
k=0
where we define
1 N-1)
yn(k) = N Z Fn_t(k‘)€2ﬂ—zkt/N.

t=0
We are now calculating the recovered sample by a sum
over the frequency bins of y,,. Closer investigation shows

that there is a recurrence relationship for the y,, (k) quan-
tities:

Yn+1(k)

1 N-1)
— N Z Fn_t+1(k)€2mkt/N
t=0

1 N—-2)
— N Z Fn_t(k)e2mk(t+l)/N
t=—1
1 Foyot (k) N-1
— n+1 2mik /N F_(k 2mikt/N
N (_Fn—N+1(k) +e ; n t()e >
1 .
= v (Busr()) = P () + 275/ Ny (1))
_ P (k) = Fu-n+1(k)
B N

That is, each of the y,, is obtained from the previous
ones by an addition, a subtraction and a complex rotation.
However this also indicates the problem starkly; we need
to keep 2N2 complex values of F, or N2 if we rely on the
result being real.

There are applications where this large amount of data
is justified, but for multiple stream analysis and resynthe-
sis this seems to us to remain outside current capabilities,
at least for the first decade of the millennium. Moorer
does not identify this aspect with any clarity. We return to
this problem of large data later.

The coding of the SIDFT is more complicated than for
the SDFT, but the standalone program did implement it.
This process with its memory requirements is very dif-
ficult to incorporate directly into the Csound f-variable
structure, and our initial Csound experiments used oscil-
lator bank reconstructions, later replaced by the process
described below(section 6).

+ yn(k)CQﬂ'ik/N

5. SDFT WITH WINDOWING

All the explanations above use a rectangular window, and
it is common currency that some kind of bell-shaped win-
dow is preferable in order to minimise spectral smearing.

Recalling that convolution in the time domain is multi-
plication in the frequency domain, we can transform our
spectral frame if we know or can calculate the frequency
response of the window. The sliding method can easily be
adapted to the calculation method, but as Moorer points
out, if the window shape has a representation in cosines
(or sines), it is easy to solve the general case.

The well-known Hamming window has the time repre-
sentation for a window of size N of

27k
wk:0.54—0.4ﬁcos(N_1) for k=0,...,N-1

or in phasor format
wy, = 0.54 — 0.23¢2™F/(N=1) _ (93¢~ 2mik/(N—1)

from which it follows that the frequency form of the win-
dowed signal is

F{")(n) = 0.54F(n) — 0.23[F,_1 (n) + Fy41(n)]
Similar formulae exist for the von Hann window:

F™) (n) = 0.5F,(n) — 0.25[F,_1(n) + Fy41(n)]
and Blackman window:

Fn) = 0.42F,(n)—0.25[F,_1(n) + Fry1(n)]+
004[Ft_2(’l’L) -+ Ft+2 (TL)]

In providing a user-level package we can allow these
simple windows, and could no doubt add others which
take this simple form. There is room for experiment here.

6. SIGNAL RECONSTRUCTION
We return to the difficult question of reconstructing a sig-

nal from the set of sliding frames. The definition of the
inverse is

1 N-1)
ft — e I;) Ft(k)€_27”kt/N

but if we are only attempting to reconstruct the first sample
of the window, that is when ¢ = 0 this simplifies to

1 N1
- —27ik(0/N)
fo = N Z F() (k)@ e
k=0
1 N1
= N Z Fy(k)
k=0
because €°7/N is unity. So the reconstructed sample is

just the average of the frequency components. The for-
mula becomes more complex for ¢ = 1 but that does not
matter as we can use the next frame for that case. This ob-
servation means that the need to maintain O(N?2) data is
removed, and the algorithm is O(N) additions only. This
simplified inverse (SSIDFT) makes a significant change to
the potential applications of the technique.

A simple variant is to reconstruct the sample at the mid-
point of the window, where it can easily be seen that the
formula is an average of alternating signs. When com-
bined with windowing this corresponds to the full ampli-
tude of the sample. The last sample in the window can be
constructed by the more complex formula

N-1
1 .
fN—l — N ;—0: FN_I(k)e—szk(N—l)/N

but as the roots of unity have already been calculated in
the SDFT, this is not too large a computational task, and
offers low latency.

It took time to convince ourselves of this simplification,
but experiments confirmed this simple result. The effect
of the single sample overlap obviates the need for the av-
eraging process that is needed in the standard FFT/IFFT
method. The implementation issues are now trivial; the
algorithm requires little space and is fast.

7. CSOUND IMPLEMENTATION

The current version of Csound[7, 2] includes a system
for streamed phase-vocoding ! , where at a predetermined
overlap factor, new standard FFT frames are calculated
as needed. The increased power of commonly available
computers made such a process feasible. The analysis
stage of these opcodes creates a new variable class of f-
sig, and these f-sigs are updated for each overlapping win-
dow. We have usurped this structure to extend it to main-
tain a set of frames, one for each ksmps in MusicN par-
lance, as well as housekeeping. An opcode translates an
audio signal to spectral representation using the algorithm
above, and in our case there is no need for the frame size
to have any special relationship with the k-rate. Window-
ing is applied in the spectral domain as indicated above;
we provide Hamming, von Hann, Blackman and rectan-
gular windows. All the streaming spectral opcodes have
an analogue in this version, and we have most of them
implemented.

The current Csound implementation is sufficient for
experimental purposes, but for deployment to the wider
community we are redesigning the code so there is a smooth
transition from FFT-based analysis to SDFT when the over-
lap warrants this. This means than in Csound5[3] we will
be ready for when processor speeds make this method
competitive.

8. APPLICATIONS

In order to investigate the quantity and quality that the
SDFT provides, we have as a preliminary experiment im-
plemented a pitch shifter from the maximally overlapping
frames. The implementation is a basic one based on the
code of Bernsee[1], not optimised beyond the first level,;
each bucket is moved to a destination bucket with phase
modification.

! Introduced to Csound in v4.13 by Richard Dobson, August 2001

Size Relative Size Relative

64 0.66 256 2.58

100 1.00 512 5.14
128 1.30

Table 1. Proportion of real-time for a pitch shift

Size Comments
512 Clean, slight smearing
256 Clean, very slight smear, acceptable pitch
128 Very tight attack, frequency artefacts
64 Very tight attack, more artefacts

Table 2. Quality of loop shifted

The main application test has been pitch shifting of a
drum loop and other critical sounds. This represents a spe-
cially onerous process as all buckets are modified in each
frame, which will update at the sample rate. Furthermore
the smearing artifacts of the phase vocoder pitch-shifter
are well known.

The time performance is certainly slower that the phase
vocoder, as might be expected from an N? algorithm as
against a N log V. On an Athlon64 3400+ Linux system
real-time performance for analysis, windowing, shift by
1.2 and resynthesis of a mono 44.1khZ audio stream is
possible with a frame size of 100. Further timings for this
processor are given in table 1, showing linear behaviour
with the frame size.

More interesting are the quality issues. In table 2 we
present the qualitative measures of the same process; a
pitch-shift of a 5 second drum loop by a small amount.
The cost of applying the various windows seems to be
very small, and is lost in the general uncertainty. It is inter-
esting however that the choice of window does have quite
a noticeable impact on quality, even with the large frame
sizes. The rectangular window smears massively, as one
might expect, while Hamming and Von Hann are subtly
but perceptibly different, and Blackman at 1024 seems to
reduce smearing even further; though it is less useful at
smaller sizes; there is scope for more investigation here.
These differences are also detectable, if very subtle, on the
plain no-effect anal/resynth? .

The sizes at and below 256 exhibit virtually no smear-
ing, but varying degrees of obvious pitch distortion, with

64 hardly sounding as if any shift has actually been achieved.

512 seems a very good compromise for quality , and defi-
nitely an improvement on normal FFT-based phase vocod-
ing with 8-fold overlap.

9. CONCLUSIONS

We have presented the sliding discrete Fourier transform
as not just interesting mathematics but a real practical tool
for audio analysis and processing. The computation times

2 Audio examples can be found at http://dream.cs.bath.
ac.uk/SDFT

for both the transform and its inverse are comparable to
the FFT algorithm in practice, and the simplified inverse
obviates the need for excessive data remembering. Our
simple applications have shown that these operations can
be embedded in general processing tools, as well as pro-
viding simple standalone programs for further experimen-
tation.

Moorer suggests that this and similar processes are the
future of DSP. Our experiments add empirical evidence to
that belief, but processor speeds are still short of practical
real time use. Qualitatively we are seeing advantages to
the maximal overlap, but we need to develop some more
ideas to achieve our original aim of a clean shift of a drum
sound. This requires attention to the accumulation phase
error in the simple pitch-shift algorithm[4] 3 .

While it is still early days for this study we are see-
ing clear indications that the SDFT offers the possibility
of clean pitch shifting using smaller windows than are
required for the regular phase vocoder with low latency.
We also speculate that the simplicity of the complex ro-
tation in equation in section 2 is highly suited to a paral-
lel hardware implementation in which a new window is
generated in one clock cycle. Such a device may achieve
Moorer’s vision of a CPU which can process continuously
700 channels of audio in real time.

10. REFERENCES

[1] Stephan M. Bernsee. Pitch Shifting Using the Fourier
Transform. http://www.dspdimension.com,
1999.

[2] Richard Boulanger, editor. The Csound Book: Tuto-
rials in Software Synthesis and Sound Design. MIT
Press, 2000.

[3] John ffitch. The Design of Csound5. In Linux Audio
Conference, April 2005.

[4] Jean Laroche and Mark Dolson. New phase vocoder
techniques for pitch-shifting, harmonizing and other
exotic effects. In IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, Mohonk,
New Paltz, NY., 1999.

[5] James A. Moorer. Algorithm Design for Real-Time
Audio Signal Processing. In Proc. IEEE Int. Conf.
on Acoustics, Speech and Signal Processing. IEEE,
March 1984.

[6] James A. Moorer. Audio in the New Millennium. J.
Audio Eng. Soc., 48(5):490-498, May 2000.

[7]1 Barry Vercoe. Csound — A Manual for the Audio Pro-
cessing System and Supporting Programs with Tuto-
rials. Media Lab, M.I.T., 1993.

3 Their algorithm is patented and it remains to see if such enhance-
ments can be made to the LGPL Csound implementation

	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Richard Dobson
	Russell Bradford
	John Ffitch

