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ABSTRACT 

In this paper we propose a partial tracking method for 
music signals based on Kalman filtering. We first 
introduce a novel technique for detection of peaks in 
spectral representations of music signals. We also 
introduce different evolution models for our Kalman 
filter based on the shape of frequency and power 
partials in different classes of melodic instruments. 
Parameters of these models are estimated using a large 
database of music signals.  We analyze the performance 
of our tracker through a comparison with another 
method and also by observing its effectiveness in the 
presence of crossing partials and vibrato. The problem 
of missing peaks and the contribution of a backward 
tracker are also discussed.    

1. INTRODUCTION 

Tracking of partials plays an important role in the areas 
of music signal analysis where the focus is on 
estimating pseudo-stationary properties of these signals 
such as frequency and amplitude  [1]- [2]. These 
properties can be extracted from spectral representations 
of these signals. However, this can be done only for 
discrete frames of the temporal data as small as it can be 
assumed to be stationary. Peaks or local maxima within 
these frames are indications of partials and for 
reconstructing the temporal evolution of these partials, 
data association techniques are used. 

There exist various methodologies for tracking of 
partials, all of which are based on a model of time-
varying sinusoidal component plus noise  [1]. Partial 
tracking was first used for analysis and synthesis of 
music signal by  [1], where it was based on a heuristic 
approach. In a more recent approach  [3], linear 
prediction was used to enhance the tracking of frequency 
components in music signals. In these approaches peaks 
from successive frames are connected to each other 
based on their proximity in frequency, and the behaviour 
of peaks' amplitude is not taken into account, while 
performing the tracking. Another approach  [2] takes the 
advantage of Kalman filter by constructing a state-space 
model for behaviour of peaks' power (i.e. amplitude in 
dB scale) and frequency. In this approach peaks are not 
matched based on how close they look like in frequency, 
rather they are matched based on the future behaviour of 
the frequency and power of a peak. 

This paper will proceed with our peak detection 
method in section  2. In section  3 we discuss the problem 

of modelling and introduce our set of evolution models 
needed for Kalman filter. The formulation of our 
Kalman tracker and its properties is in section  4, and 
results of tracking as well as a comparison with the 
method of  [2] will follow in section  5. 

2. PEAK DETECTION 

Detection of peaks in the spectral representation is an 
important task. Shortcoming of peak detection strategy 
in collecting as many valuable peaks as possible and 
rejecting spurious peaks, can result in discontinuity in 
partials or formation of false partial tracks. This 
motivated us to look for an efficient peak tracking 
strategy for music signals which is detailed in  [4]. 

Our proposed algorithm consists of two steps which 
are shown in figure 1. In the first step we use a 
mathematical framework to collect all the peaks that fit 
into the very definition of a peak as a local maximum. 
These are referred to as raw peaks. In the next step we 
use statistical properties of a relative number of data 
points surrounding each raw peak to examine the 
concreteness of detected peak and rule out any 
incompetent maxima.  

 

 
Figure 1. Peak detection algorithm: two steps with their 

resulting peaks 

3. MODELING 

3.1. Sum-of-Sinusoidal Model 

A well-known approach to modelling of music signals 
for the purpose of statistical analysis/synthesis assumes 
a model of additive sinusoidal plus residuals that can be 
formulated as  [1] 
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Here, ( )s t reflects the pure musical part of the signal 
and ( )e t can be modelled as a stationary autoregressive 
process. In the musical portion, ( )nA t  and ( )n tω  are 
representatives of time-varying amplitude and frequency 
of partials, and N is the number of partials. Quantity 



  
 

( )n tφ can represent timbral variations and performance 
effects. It should be noted that timbral variations are also 
scattered among the amplitude changes, the 
instantaneous frequency changes and also in the power 
and spectral envelope changes of ( )e t . However, these 
are all treated as noise processes in our modelling.  

3.2. Partial Evolution Model 

The next step in our music signal modeling is estimation 
of ( )nA t  and ( )n tω  using available observations from 
the peak detection step. What we have is discrete sets of 
peaks from successive time frames. ( )nA t  and ( )n tω  
can be estimated by making connections between those 
peaks from adjacent frames that look like being the 
continuation of the same partial.    

Kalman filtering, in fact, takes the noisy observations 
and based on a model for evolution of certain states 
finds the optimal estimate of the process behaviour. Here 
the noise corrupted observations are the identified peaks 
and system model is a state-space model for evolution of 
frequency and power. This model can be represented as 
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Here, ( )kf  and ( )kp  are frequency and power for a 

detected peak respectively. ( )kv and ( )kw are process 
noise and observation noise, and ( ), 1, ...,in k i m= are 
states for as many shaping filters for which the 
uncorrelated noise processes ( ), 1, ...,i k i mu =  are white. 
The matrix A is the transition matrix, the matrix B 
describes coupling of the process noise ( )kv  into the 
system states, and C is the observation matrix. In this 
model, ( )kv  and ( )kw  are zero-mean and jointly 
uncorrelated Gaussian processes with covariance 
matrices Q and R, respectively. 

3.3. Instrument-Specific Models 

We need prior information about power and frequency 
partials to specify our model by a piecewise-linear fit to 

( ) 20 log ( )nt A tp =  and ( ) ( ) / 2tf tω π= . 
Melodic instruments can be classified into two groups 

based on the way their source for sound production 
behaves. If during production of sound, source continues 
to inject energy, the overall shape of the steady-state part 
of the amplitude track will be non-decaying. We 
consider these instruments in the class of Continued 
Energy Injection (CEI). Examples of this group of 
instruments are woodwind, brass, and violins from the 

family of string instruments. An example of the 
fundamental of chamber note played on a clarinet is 
shown in the upper part of figure 2. 

 

 
Figure 2. Shape of power and frequency partials for 

the fundamental of a chamber note played on the 
clarinet and the piano. 

The second group includes those instruments for 
which the injection of energy is discontinued and 
amplitude partial represents an exponentially decaying 
shape. In this case, the power partial will have a linear 
decay since it is in logarithmic scale. These instruments 
are considered in the class of Discontinued Energy 
Injection (DEI). Members of this group are hammered 
and plucked instruments such as piano and guitar. One 
example of the shape of fundamental frequency for the 
chamber note played on the piano is shown in the lower 
part of figure 2. 

In a polyphonic setting, there are three possible 
scenarios when we do not consider non-melodic 
instruments such as percussions. A piece of music can 
consist of instruments solely form the CEI, or only from 
DEI, or a combination of both. 

For the first scenario, where both frequency and 
power are nearly constant we have 
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For the second and third scenario we have the same 

model, but their parameters are different since we 
estimate these parameters by considering different 
databases of sound for each scenario. This model can be 
shown as 



  
 

[ ]
[ ]

1 2

2

1

1 1 1 1 1

2 2 2 2 2

1 2

( ) ( ) ( ) ( ) ( )

1 0 0 0 0

0 1 0 0 0

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

T

p

p

p p

T

f k p k v k n k n k

f k f k n k

n k a n k b u k

p k p k v k

v k v k n k

n k a n k b u k

x k

k u k u k

y k x k w k

v

+ = +

+ = +

+ = +

+ = +

+ = +

=

=

= +
⎡ ⎤
⎢ ⎥⎣ ⎦

   (6) 

As noted above, we estimate the parameters of each 
model, e. g. a1, b1, a2, b2, by performing a statistical 
analysis on a large number of musical sounds with 
known identities in a forward-problem setting. The 
details of this procedure are presented in  [5].  

4. PARTIAL TRACKING 

Here, we process discrete segments of music signal, and 
after extracting useful information related to the 
behavior of partials, we intend to put this information 
together and represent the shape of these partials in time. 
The extracted information or noisy observations are 
frequency and power of peaks from different time 
frames and we use Kalman filter to estimate noise free 
outputs and from there, find the set of frequency and 
power data in the adjacent frame that are most related to 
them.  

4.1. Kalman Tracker 

Our Kalman tracker is initiated with peak data from the 
first time frame. Depending on the nature of our music 
signal and the class of instrument, and based on the 
frequency of the initial peak, a class of models is 
selected as the evolution model. Kalman tracker then 
estimates the noise-free values for power and frequency 
in the following frame. If the following frame contains a 
peak that is close enough to the estimated values, that 
peak is added to the track and is used to update the 
tracker. This process is continued through successive 
frames until there is no peak close enough to the last 
estimated peak. Here, the track is terminated or 
considered as dead, and a new track is initiated in the 
following frame. The process starts with all peaks in the 
first frame and also with all peaks from other frames 
that have not been used in any track. 

4.2. Acceptance Gate 

After estimating noise-free values for frequency and 
power of a peak in the ith track at the time frame k, we 
compare them to all existing peaks in the kth frame. We 
then update our tracker with the peaks that are close 
enough to these estimations, or in another term, fall into 

the acceptance gate of the tracker. We define a distance 
function as a function of both frequency and power of 
the estimated value for a track. A peak falls into the 
acceptance gate of an estimated peak if the value of its 
distance function is less that the gate value. If more than 
one peak fall into the acceptance gate, the one with less 
distance is selected. 

4.3. Crossing Partials 

Although power and frequency partials evolve 
independently, considering a function of both power 
and frequency for the distance function is especially 
rewarding when we are dealing with crossing partials. 
In partial tracking techniques, where power and 
frequency partials are tracked separately (e.g. in [1] and 
 [3]), the problem of crossing partials needs considerable 
attention and requires additional adjustments to the 
original tracker. However, in our algorithm the 
contribution of constant and distinct frequency partials 
in the distance function helps the tracker to distinguish 
between the corresponding power partials in the 
crossing area, and it does not need additional 
adjustments. 

4.4. Missing Peaks 

Due to imperfections in estimating the spectrum and 
also because partials with low power can get buried in 
noise, we might face the problem of missing peaks. This 
can result in discontinuities in parts of a partial. To 
overcome this problem, it is proposed in  [1] to add 
"zombie" states to the end of a track where we cannot 
find any peak within the acceptance gate. In our 
algorithm we update a track with estimated states in 
such situation, and continue this process for a maximum 
of three frames. If during these attempts no peak falls 
into the acceptance gate, we consider that track as dead 
and extract the fake updates from the track. If we find a 
peak during this process, the track is updated with this 
peak and we keep the fake updates.  

4.5. Backward Tracking 

To add to the accuracy of our algorithm we can perform 
a backward tracking at the end of each track. When a 
track is terminated, we can initiate a backward tracker 
with the last updated states and error covariance matrix. 
This process is identical to the forward tracking but in 
the reverse direction. This can be helpful because the 
forward tracker is loosely initiated with the noisy 
observations for power and frequency and zero values 
for other states, while our backward tracker is initiated 
more accurately. On the other hand, the backward 
tracker is capable of recovering discontinuity in the 
forward tracking results, since it has the support of a 
more accurate initiation and a longer history of 
observation updates. 



  
 

5. RESULTS 

We examined the accuracy of our algorithm by 
performing the proposed partial tracking on a wide range 
of instrumental sounds from different classes of melodic 
instruments. The tracking results were compared with 
that of the method proposed in  [2]. This comparison was 
done by first defining some accuracy factors. These 
factors are 

100, 100ftdt
dt ft

et et

nn
R R

n n
= × = ×                               (7) 

where Rdt is the detection rate, Rft is the false rate, ndt is 
the number of detected tracks, nft is the number of false 
tracks, and net is the number of expected tracks. We 
computed these factors for 32 musical notes from all 
classes of melodic instruments. The same sets of peaks 
from our peak detection process were fed into the tracker 
of  [2]. Table 1 contains accuracy factors for these two 
trackers. 
 

 
dtR  ftR  

Our Method 98.2 18.2 
Method of  [2] 84.7 27.4 

Table 1. Accuracy rates  

To test the performance of our tracking system in the 
presence of crossing partials, we used fictitious sound 
signals containing two music notes; one with constant 
and the other with linearly decaying power partials. 
Tracking result for these crossing power partials is 
shown in figure 3. 
 

 
Figure 3. Crossing power partials 

We also tested our tracker in the presence of vibrato. 
Tracking result for five frequency partials of a signal 
with vibrato is presented in figure 4. In addition, 
performance of the backward tracker is shown in figure 
5. The forward track is discontinued from frame 27 to 
31, but our backward tracker, which is initiated with 
estimated states at the end of forward track (frame 55), is 
able to recover missing point of the partial. 

6. CONCLUSION 

In this paper we proposed improved techniques for 
detection of peaks in spectral representations of music 
signals. We proposed instruments-specific models for 
evolution of partials, which was used in our Kalman 

tracker. We also investigated the performance of our 
tracker in critical situations. 

 

 
Figure 4. Tracking results for frequency partials 

containing vibrato (solid) along with estimated values 
(dots). 

 
Figure 5. Forward and backward tracking: 

discontinued partial in the forward tracking (solid line) 
and its estimate (squares), along with the backward 

track (circles) and its estimates (dots). 
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