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ABSTRACT

In this paper we adapt a well-known image processing al-
gorithm to the task of predicting whether an audio signal
contains speech or music. We derive a frame-level dis-
criminator that is both fast and accurate. Using a simple
FFT and no built-in prior knowledge of signal structure we
obtain an accuracy of 87% on frames sampled at 20ms in-
tervals. When we smooth the output of the classifier with
the output of the previous 40 frames our forecast rate rises
to 93% on the Scheirer-Slaney [1] database. To demon-
strate the efficiency and effectiveness of the model, we
have implemented it as a graphical real-time plugin to the
popular Winamp audio player.

1. INTRODUCTION

The ability to automatically discriminate speech from mu-
sic in an audio signal is useful in domains where a partic-
ular type of information is of interest, such as in automatic
audio news transcription of a radio broadcast, where non-
speech would presumably be discarded. Previous models
have employed a mixture of simple features that capture
certain temporal and spectral features of the signal [1, 2].
including for example pitch, amplitude, zero crossing rate,
cepstral values and line spectral frequencies (LSF). More
recently, other approaches have used the posterior proba-
bility of a frame being in a particular phoneme class [3],
HMMs that integrate posterior probability features based
on entropy and “dynamism” [4], and a mixture of Gaus-
sians on small frames [5].

We propose to adapt a successful and robust approach
for object detection by Viola and Jones [6] to this task.
Our model works by exploiting regular geometric patterns
in speech and non-speech audio spectrograms. These reg-
ularities are detectable visually, as demonstrated by the
ability of certain trained observers to identify speech struc-
ture (e.g. vowel formant structure, consonant onsets) and
musical structure (e.g. note onsets and harmonic pitch
structure) through visual inspection of a spectrogram. We
demonstrate in this paper that by exploiting geometric reg-
ularities in a two-dimensional representation of sound, we
are able to obtain good accuracy results (87%) for 20ms
frame categorization with no built-in prior knowledge and
at very low computational cost. When smoothing is em-
ployed over 40 previous frames (800ms), our accuracy

Figure 1. The two Haar-like features used in our additive
model.

rises to 93%. This compares favorably with other mod-
els on the same dataset.

The use of a vision-inspired model for audio deserves
some discussion. We wish to emphasize that despite being
motivated by work in vision, this model is well suited for
audio signal processing. Though it treats individual 20ms
slices of music as having fixed geometry, it places no lim-
itations on the geometry of entire songs. For example, it
places no constraints on song length nor does it require
random access to the audio signal. In other words, this
approach is causal and is able to process audio streams
online and in real time.

2. THE ALGORITHM

In order to build a good binary discriminator, it is desirable
to find a set of salient features that separate the two classes
with the largest margin possible. To detect objects in an
image, Viola and Jones employed a set of simple Haar-
like (first proposed by Papageorgiou et al. [7]) rectangles
depicted in Figure 1. These features compute and subtract
the sum of pixels in the white area from the sum of pixels
in the black area. The areas can have different shapes and
sizes, and can be placed at different x and y coordinates of
the image. A discriminator using a single feature is called
a weak learner because, used alone, it cannot achieve very
good discrimination. However, when these features are
combined in an additive model, the resulting classifier can
perform very well. In their work on two-dimensional im-
ages, Viola and Jones showed that with enough features,
it is possible to detect complex objects like faces.

2.1. AdaBoost

To build the additive model, we use the ADABOOST algo-
rithm [8], which is one of the best general purpose learn-
ing methods developed in the last decade. It has inspired



several learning theoretical results and, due to its simplic-
ity, flexibility, and excellent performance on real-world
data, it has gained popularity among practitioners.

ADABOOST is an ensemble (or meta-learning) method
that constructs a classifier in an iterative fashion. In each
iteration, it calls a simple learning algorithm (the weak
learner) that returns a classifier. The final classification
will be decided by a weighted “vote” of the weak classi-
fiers, where each weight is proportional to the correctness
of the corresponding weak classifier. If there is no par-
ticular a-priori knowledge available on the domain of the
learning problem, small decision trees or, in the extreme
case, decision stumps (decision trees with two leaves) are
often used. A decision stump can be defined by three pa-
rameters, the index j of the attribute 1 that it cuts, the
threshold θ of the cut, and the sign of the decision. For-
mally,

hj,θ+(x) =

{
1 if xj ≥ θ,

−1 otherwise,
(1)

and hj,θ−(x) = −hj,θ+(x). Although decision stumps
may seem very simple, when boosted, they yield excel-
lent classifiers in practice. Also, finding the best decision
stump using exhaustive search can be done efficiently in
O(nd) time, where n is the number of training points, and
d is the dimension of the input space (the number of Haar-
like features in our case).

For the formal description of ADABOOST, let the train-
ing set be Dn =

{
(x1, y1), . . . , (xn, yn)

}
, where xi is the

observation vector, and yi is its binary (+1 or −1, repre-
senting speech or music, respectively) label. The algo-
rithm maintains a weight distribution wt =

(
wt

1, . . . , w
t
n

)
over the data points. The weights are initialized uniformly
at the beginning, and are updated in each iteration. The
weight distribution remains normalized in each iteration,
that is,

∑n
i=1 wt

i = 1 for all t. In general, the weight of
a point will be proportional to how hard it is to correctly
classify. We suppose that we are given a set H of weak
classifiers and a weak learner algorithm that, in each iter-
ation t, returns the weak classifier ht ∈ H that minimizes
the weighted error

εt =
n∑

i=1

I{ht(xi) 6=yi}w
t
i , (2)

where the indicator function I{A} is 1 if its argument A
is true and 0 otherwise. The coefficient αt of ht is the
confidence we have in our weak learner. It is set to αt =
1
2 ln 1−εt

εt in each iteration. Since εt < 1/2 (otherwise
we would flip the labels and return −ht) as the algorithm
progresses the weight update formulas (for details of the
ADABOOST algorithm see [11]) increases the weights of
frequently misclassified points, so weak classifiers will
concentrate more and more on these “hard” data points.
After T iterations 2 , the algorithm returns the weighted

1 In our case, the jth attribute is the output of the jth filter in the filter
bank (see Section 2.2).

2 T is an appropriately chosen constant that can be set by, for exam-
ple, cross-validation.

average fT (·) =
∑T

t=1 αtht(·) of the weak classifiers.
The sign of fT (x) is then used as the final classification
of x.

2.2. The features

Our goal is to classify 20ms frames of audio as being ei-
ther speech or music. We represent each training sample
by its spectrogram Si = {S(t, φ)}i, where S(t, φ) is the
signal intensity at time t and frequency φ. We then con-
volve the image of the spectrogram with Haar-like filters
(depicted in Figure1), find the best filter that discriminates
the training data, and compute a stump (1) over the output
of the filter. Each filter contains two or three rectangular
black or white blocks with different sizes and locations.
For a black block with its upper left corner placed at (t, φ),
and with size wt × wφ, we compute the convolution

Bt,φ,wt,wφ
(S) =

t+wt∑
i=t

φ+wφ∑
j=φ

S(i, j).

For a white block, we compute the negative convolution
Wt,φ,wt,wφ

(S) = −Bt,φ,wt,wφ
(S). So, for example, a

three block white-black-white feature placed at (t, φ), and
with block size wt × wφ would output the value

Wt,φ,wt,wφ
(S)+Bt,φ+wφ,wt,wφ

(S)+Wt,φ+2wφ,wt,wφ
(S).

The major advantage of these features over more compli-
cated filters usually used in sound-processing that they can
be computed at an extremely low cost. The main trick
is to pre-compute the so called integral image defined as
Σ(t, φ) =

∑t
i=1

∑φ
j=1 S(i, j), for each spectrogram in

the training sample. Then any convolution B or W can be
computed in constant time by using the equation

Bt,φ,wt,wφ
(S) = Σ(t, φ) + Σ(t + wt, φ + wφ)

−Σ(t, φ + wφ)− Σ(t + wt, φ).

This allows us to evaluate a very large number of candi-
date features in every boosting iteration. Formally, each
Haar-like filter gj returns a real number gj(Si) for each
spectrogram Si, which is the jth attribute xj

i in the obser-
vation vector xi. Then for each filter, the best decision
stump is found. Finally, we select the weak learner ht

which minimizes the weighted training error (2) among
all the candidates.

Despite the simplicity of the filters, they can discrimi-
nate between speech and music by capturing local depen-
dencies in the spectrogram. For example, the three-block
feature depicted in Figure 2 is well-correlated with the
speech signal and quasi-independent of the music signal.
Figure 3 displays the real-valued output of the filter for
all training points, and the threshold of the optimal deci-
sion stump. This feature, selected in the first iteration of
ADABOOST, has a 30% error rate on the test set.

3. EXPERIMENTAL RESULTS

In the experiments, we used 240 digital audio files of 15
second radio extracts published by Scheirer and Slaney
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Figure 2. This three-block feature can distinguish speech
from music. It is well correlated with the speech signal
(its output is 347), and independent of the music signal
(its output is -577).

[1] 3 . We extracted 11200 20ms frames from this data,
and processed them with FFT, RASTA [9], and log-scale
FFT. We chose the first because it is the simplest repre-
sentation of the frequency spectrum, and the other two be-
cause of their popularity in speech processing. The FFT
represents the biggest frequency space with 256 points,
followed by the other two (respectively 26 and 86). The
size of this space has a huge impact on the training time
since in every iteration, every possible position and block
size must be considered. During detection, however, the
size of the space does not play any role, due to the integral
image representation.

Figure 4 shows the training and test errors using the
FFT. The choice for the optimal number of features does
not have the same importance as in other machine learning
algorithms (e.g., neural networks) because of the intrinsic
resistance of ADABOOST to over-fitting: even if the train-
ing error tends to zero, the test set error does not increase.
It is therefore less important to find a specific stopping
point, except for efficiency reasons. We can observe that
at a frame level, on a simple FFT we already obtain an
error rate of about 13% after 150 iterations, which is far
better than the 37% of the best frame-level feature in [1].
Because this representation did not use any information
from the past frames, we decided to adapt the classifica-
tion of a frame to the ones at previous frames with a sim-
ple smoothing function. Let f(xτ ) be the output of the
strong learner, where xτ is a frame at time τ . Then, the

3 The data was collected at random from the radio by Eric Scheirer
during his internship at Interval Research Corporation in the summer of
1996 under the supervision of Malcolm Slaney.
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Figure 3. The output of the feature showed in Figure 2
for all training points, and the optimal decision stump’s
threshold. The data has been randomly distributed on the
vertical axis for clarity.
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Figure 4. The results on a 20ms FFT frame, without and
with smoothing. The benefits of smoothing are clearly
seen both in test error and train error.

new output used for classification is

g(xτ ) =

∑τ
i=max(τ−nframes+1,0) aτ−if(xi)∑τ

j=max(τ−nframes+1,0) aτ−j
, (3)

where a is a decay parameter between 0 and 1 and where
nframes is an integer that corresponds to the number of
past frames to consider. In order to find the best values
of a and nframes, we randomly concatenated the audio
(wave) files of the validation set and measured the classi-
fication error rates for several values for the decay param-
eter. We chose this procedure in order to approximately
simulate audio streaming from a radio station and get the
best values at a = 0.98 and nframes = 40. With these
settings the error reaches a value less than 7% with less
than a second of information. The error converges after
150 iterations, but even with a much smaller number of
features, such as 75, the error level is below 10%.



FFT RASTA Log-FFT
Without smoothing 12.7% 10.8% 12.6%
With smoothing 6.7% 7.2% 7.4%

Table 1. The error rate using single frame filters.

Surprisingly, RASTA and logarithmic scale FFT rep-
resentation did not perform as well, even if the results
are still below 10%. The training time was, however, a
fraction of the training time when the full spectrogram as
used, because of their smaller size. Table 1 summarizes
the errors on the test set with these representations. Also,
RASTA and Log-FFT converged much faster than simple
FFT, which can be explained in both cases by the higher
quality of the information and the limited dimensionality.

To demonstrate the efficacy of the algorithm, we have
implemented a winamp plugin 4 that shows in realtime the
discrimination process.

4. CONCLUSIONS

We have showed how a simple generic object recognition
algorithm can be used also to perform frame-level classi-
fication of audio by exploiting geometric regularities in a
fixed-sized two-dimensional representation of frame con-
tents. Because of the strong relationship among frames
in time, we can increase the performance of the classifier
with a simple smoothing on the output of the frame-level
classifier. It is also possible to do training directly on a set
of subsequent frames to capture local dependencies in the
time domain. However, such an approach would also in-
crease the training time by increasing the size of the search
space.

The model is far from being optimized, and further re-
search is necessary to deal well with extremely large train-
ing sets. Also it may be helpful to explore the use of differ-
ent basic features (such as Gaussians or band-passes), and
different representations such as wavelets or sine-wave
replicas [10].

Finally, while the current model is limited to two-class
categorization, we are exploring a multi-class version of
ADABOOST [11]. This would allow us to extend our work
to more challenging classification problems such as speaker
identification singer identification, music instrument iden-
tification and music genre classification.
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4 Available for free download at www.iro.umontreal.ca/
˜casagran/winamp/.
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