
ENP EXPRESSION DESIGNER
A VISUAL TOOL FOR CREATING ENP-EXPRESSIONS

Mika Kuuskankare
Sibelius Academy

DocMus
mkuuskan@siba.fi

Mikael Laurson
Sibelius Academy

CMT
laurson@siba.fi

ABSTRACT
In the present paper we introduce a new tool called ENP
Expression Designer (ED). It is aimed at visually creating
new notational attributes (ENP-expressions) in ENP. ENP,
in turn, is a music notation program written in Lisp and
CLOS with a special focus on compositional and music
analytical applications. Currently, ENP allows to create
new expressions by using Lisp and CLOS. The strictly
textual interface can, however, be demanding to those
users that have limited or no experience in programming.
ED provides an easy and straightforward way to define
new expressions through a graphical user interface.

Through inheritance the ED allows to reuse the built-in
properties of the existing ENP-expressions. We also pro-
vide a set of graphical primitives for drawing lines, text,
etc. Additionally, more experienced users can take full
advantage of the OpenGL graphical language.

1 Introduction
Especially in modern music notation there is the need
for special expression markings. There is an increasing
amount of instrument specific playing techniques and new
ones are invented all the time. These markings can also be
invented even piece per piece basis. This makes it difficult
for a music notation program to provide a comprehensive
collection of expression markings. Thus, it is more rea-
sonable to provide an interface for the user that (s)he can
use to build custom expressions.

Two of the most widely used commercial notation pro-
grams, Finale [1] and Sibelius [2], provide the possibility
to create user defined expressions. In Finale it is possi-
ble to create either text expressions or graphic expressions
(shapes in Finale terminology). In Sibelius, in turn, the
former group of expressions is called Symbols and the lat-
ter one Lines. These programs provide tools to create both
types of expressions. However, when using these tools it is
usually not allowed to view the expressions in their natural
context—music notation. In CMN [6] it is also possible
to define new expressions using Lisp.

ENP [3] is a music notation program that has been de-
veloped in order to meet the requirements of computer
aided composition, music analysis and virtual instrument
control. It’s purpose is to display scores using the com-
mon western notation. Furthermore, ENP provides a
rich set of both standard and user definable notational at-
tributes, called ENP-expressions. ENP is programmed in

Common Lisp (LispWorks) and uses the OpenGL API to
produce the notational graphics.

ED is a visual tool that can be used to create custom
expressions in ENP. ED provides a simple protocol that
helps to define the basic properties of the user definable
expressions. It also allows to define the visual appear-
ance using Lisp. There are several advantages in the ap-
proach presented in this paper. One advantage that ENP
provides is that the defined expressions can contain user
definable data. This means that the data can be read and
written both through the graphical user interface or algo-
rithmically. The data can then be used in, for example,
compositional or music analytical applications. Second,
the expressions can be dynamic since they are defined
using standard Common Lisp. Third, in ED the expres-
sions are displayed in a fully functional ENP score, thus
the user can observe how the expressions behave, for ex-
ample, when the music is transposed or when the layout
of the score is changed. This approach is different form
any of the existing ones. For example, in Finale, the user
definable expressions (shapes) are designed without the
presence of any musical context.

The rest of the paper is structured as follows: first, we
give a brief overview of ENP-expressions. Next, we intro-
duce the ENP Expression Designer and give a few prac-
tical examples of its use. We end the paper with some
conclusions and suggestions for future work.

2 Overview of ENP-Expressions

ENP-Expressions are divided into two main categories:
(1) standard expressions, including articulations and dy-
namics, and (2) non-standard expressions which include,
for example, groups and Score-BPF’s [3]. Every expres-
sion is attached either to a single notational object (single
expressions) or to a group of notational objects (group ex-
pressions).

ENP provides a collection of standard tempo-,
dynamics- and articulation-symbols. Furthermore, it in-
cludes a set of non-standard notational attributes. New
expressions can be created through inheritance.

Figure 1 shows a collection of some standard and non-
standard ENP-expressions. Next, we present some of the
basic components of ENP-Expressions.



Figure 1. Some standard and non-standard ENP-
expressions, including (1) score-BPF, (2) group.

2.1 The Basic Components of ENP-
Expressions

All ENP-expressions share some common properties.
These include, for example, print symbol, default print
position, user definable offset, and font scaler.

While this is not a complete list these properties al-
ready define a bulk of the visual appearance, placement,
and behavior of the expressions. The specific functions of
each of the properties are further discussed in subsections
3.2 and 3.3. Figure 2 shows these properties in a musical
context.

Figure 2. The components of an ENP-expression. On the
left the graphical representation of an accent. On the right,
some common attributes to all ENP-expressions.

3 ENP Expression Designer
ED is a visual tool for rapid expression designing and pro-
totyping. The work-flow typically consists of three steps:
(1) defining class and inheritance, (2) defining proper-
ties, and (3) defining the visual appearance (coding). All
these steps can be executed in a single ED window. The
ED Window, in turn, contains the following components:
class view, properties view, code view, and preview score
(an example ED window is shown in Figure 4).

Expressions are defined by first entering a unique class
name and its superclass. Next, some additional properties
are defined. These include among other the font typeface.
Finally, the graphical outlook of the expression is defined
by entering some Lisp code in the code view. The visual
appearance of the new expression is shown in the preview
score at the bottom of the ED Window.

There are also buttons for displaying the preview and
generating the expression definition in Lisp. The preview

-button refreshes the preview score to give the updated vi-
sual representation of the expression. The print source
-button, in turn, generates a text document containing the
Lisp code needed to store and restore the user defined ex-
pression. Change in any of the aforementioned properties
provides synchronized feedback in the preview score.

In the following Subsections we examine in detail the
components of the ED Window.

3.1 Class view
In the class view the user must specify a unique class name
and a superclass. By default all the user defined expres-
sions inherit from the built-in expression -class. This
is the fundamental class that provides the necessary data
structures and behavior of all ENP-expression.

3.2 Properties view
The properties view provides the following options:

(1) Menu-category. All user-defined expressions are
automatically added in the appropriate ENP menus
where they are, in turn, arranged in groups according
to the type and/or purpose. Here the user can either
choose one of the existing menu categories or create
a new one by providing a new category name.

(2) Print symbol defines the string or the character which
is used as the printed representation of the expression.

(3) Print position. There are several predefined print
positions which, in turn, are used to determine the
default print position. The current choices are:
:on-stem, :above-staff, :below-staff,
:above-chord, and :notehead. The individual
effects of these values can be seen in Figure 3.

Figure 3. Five accent expressions attached to the chord.
Each accent is given a different print position. The effect
can be seen in the example along with the respective print
position keyword.

(4) Font can currently be either :times or
:musical-symbols.

There are also some check boxes in the properties view.
These can be used to determine whether the expression
is standard notation, and whether the expression is saved
along with the score or not.

3.3 Code view
In the code view the user can write standard Lisp code
(see Figure 4). The code defines how the expression



is drawn in the score. The users can utilize any of
the OpenGL functions provided by LispWorks. There
are also some special graphical primitives provided by
ENP that can be used to draw, for example, lines, poly-
gons, circles, etc. The following list gives the complete
set of graphical primitives currently available: draw-2D-
arrow, draw-2D-box, draw-2D-bracket, draw-2D-circle,
draw-2D-line, draw-2D-lines, draw-2D-point, draw-2D-
polygon, draw-2D-quads, draw-2D-shape, draw-2D-text,
draw-2D-texture, and draw-2D-triangles. 1

There are also some special variables that can be re-
ferred to in the code. The following variables contain
some useful properties of the expressions:

(1) x and y give the absolute position of the expres-
sion. They are calculated according to the position of
the associated notation object and other constraints.
These values are an aggregate of the default position
(calculated according to the print position) and the
user definable offset discussed above (see Subsection
3.2).

(2) width gives the horizontal distance from the current
notation object to the next one.

(3) print-symbol contains the string or character de-
fined by the user in the properties view.

(4) font gives the font name as a keyword. Currently,
the value of this variable is either :times (for read-
able text) or :musical-symbols (for music nota-
tion).

(5) instrument variable contains an ENP instrument
object that, in turn, contains information about the
name, range, etc.

(6) expression is the current ENP expression object
that is being drawn. This object can also be queried
about extra information such as any user definable
data stored in the expression.

(7) self, in this case, refers to the notational object the
expression is associated with (i.e., a note or a chord).
Different properties of the notational object, including
pitch, start-time and duration, can also be used in the
expression code.

3.4 Preview score
The preview score displays the user defined expression as
it would appear in a regular ENP score. The preview score
is also fully editable so the user can observe how the ex-
pression behaves, for example, when the music is trans-
posed, etc. The score can also be panned and zoomed
freely so that the expressions can be examined and aligned
in great detail.

There is one additional feature to this view. As de-
scribed above, the default expression position is calculated
according to the selected print position and an additional
user definable offset. This offset can be adjusted in the
preview score by dragging the expression with the mouse.

1 The list of the graphical primitives is quite self explanatory and it is
not further discussed in this paper.

4 Some Expression Designer Exam-
ples

In this Section we give two examples on how the ED can
be used to create new expressions. In the first example,
wirebrush, we build a simple percussion mallet symbol
[5]. This example demonstrates the use of some of the
graphical primitives. In the second example, in turn, we
create an expression that uses the knowledge about the
spacing of the associated notational objects to fill a given
space in the score.

Due to space limitations the examples are given with-
out any detailed explanation. The key points, however, are
discussed along each example. Some knowledge about
Lisp is beneficial to thoroughly understanding the pro-
vided code examples.

4.1 A Percussion Mallet Symbol: Wire-
brush

As our first exercise we create a simple percussion mallet
symbol denoting a wirebrush (see Figure 4).

We begin the expression definition by providing a
unique class name, ’wirebrush’ (1). In this case there
is no need for any additional inheritance other than the
basic expression behavior. Thus the default value (’ex-
pression’) displayed in the superclass menu is sufficient
for our purposes (2). The menu category is chosen to be
’User’ (3). Print symbol and font typeface, in this exam-
ple, do not have any use since the expression in question
is purely graphical (4). In music notation these kinds of
instructions are usually written above the staff [4] and the
print position is selected accordingly (5). In code view
there are three lines containing some drawing instructions
(6). Finally, the graphical representation of the expression
can be seen in the preview score (7). The second note in
this example is added to demonstrate how the user-defined
expression behaves when the associated notational object
is transposed. Note, how the expression avoids colliding
with music notation.

Figure 4. The wirebrush mallet symbol created with ED.



4.2 A Playing Technique: Scrape
The second ED example focuses on a graphic expression
that can be used to denote scraping an instrument [5]. As
we draw the scraping symbol in the score it is required
have knowledge about the length or extent of the asso-
ciated notational object (Figure 5). This information is
provided with the special variable called width.

Figure 5. A playing technique expression created with
ED.

Next, we briefly describe the steps needed to define the
scraping expression. The class name and superclass are as
shown in (1) and the menu category is again chosen to be
’User’ (2). In this case, it is required to define the print
symbol and font typeface since the expression contains
some written instructions along with the graphical infor-
mation (3). The expression print position is ’above-staff’
as indicated in (4). The lisp code part is once again offered
without any detailed explanation (5). Suffice to say that
the x and y -shapes are first defined and then drawn with
a graphics primitive called draw-2d-shape. Addition-
ally, the user defined print symbol is also drawn. Finally,
the preview score (6), demonstrates how this particular ex-
pression reacts to the duration of the associated notation
object due to the width -parameter (see code view).

5 Conclusions and Future Work
The current version of ED is already quite functional and
can be used to quickly prototype and create new expres-
sions.

Some of the benefits in this approach are that it does not
require extensive programming experience and the limited
set of graphics primitives is quite easy to learn. It allows to
create new expressions without the need to reproduce the
low-level lisp code for each one. The number of lines of
code the user is required to write is reduced to a fraction
compared to the entirely text based approach. Further-
more, the synchronized visual feedback offered by ED is
a valuable property as it allows the user to design and view
the expressions in their native context.

There are, however, several additional features and en-
hancements planned to make ED more useful as a general

purpose tool: First, it is currently not possible to create
group expressions. Group expressions require more op-
tions and possibly a dynamic property view. There are
also a handful of additional methods that are user defin-
able which in turn require more code view type of inputs.
A dedicated group expression tab would be one solution to
lay out the ED Window to facilitate this feature. Second,
it should also be possible to use graphical tools for draw-
ing the expression definition. This feature would require a
graphics canvas and a set of graphical tools, such as lines,
polygons and circles. It would also bring the ED closer to
the more traditional tools offered by, for example, Finale.
However, allowing to combine both algorithmic and ’hand
drawn’ representations would make this approach more
flexible. Third, there is currently no means to add slots
to the user defined expression classes through ED. This
is of primary importance when designing more complex
objects that, for example, have different kinds of graphi-
cal representations depending on attributes selected by the
user. Finally, although ED currently creates the menus for
inserting the expression in the music notation there should
be the possibility in ED to define the appropriate context
sensitive menus for the expression itself. This would re-
quire a dedicated menu editor to be embedded in ED.

The ED project was launched only recently and as can
be seen in the missing features list above there is still quite
a lot of work to be done. The current version is more of a
proof of concept at this time. It requires some redesigning
and additional coding to integrate all the listed features in
ED. However, the fully mature application should prove
to be beneficial not only for casual users but also for the
more experienced ones.

6 Acknowledgments
The work of Mikael Laurson has been supported by the
Academy of Finland (SA 105557).

7 References
[1] Finale User Manual.

[2] Sibelius3 User Guide.

[3] Kuuskankare, M. and M. Laurson. ”ENP2.0
A Music Notation Program Implemented in
Common Lisp and OpenGL”, Proceedings of
the International Computer Music Confer-
ence, Gothenburg, Sweden, 2002.

[4] Read, G. Music Notation. Victor Gollancz
Ltd., 1982.

[5] Risatti, H. New Music Vocabulary. A Guide
to Notational Signs for Contemporary Music.
Univ. of Illinois Press, Urbana, 1973.

[6] Schottstaedt, B. Common Music Notation. Be-
yond MIDI, The Handbook of Musical Codes.
MIT Press, Cambridge, Massachusetts, 1997.


	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mikael Laurson
	Mika Kuuskankare



