
474  |  2013 ICMC idea  |  DEMONSTRATIONS 475  |  2013 ICMC idea  |  DEMONSTRATIONS

Figure 4. Comparison of the average time it takes each
condition of all search functions

Figure 5. Comparison of the MOS (easiness) for each
condition of all search functions

4.4. Other evaluation aspects
Correlation between search time as a physical evaluation
and the MOS (easiness) of 18 conditions for the previous
system was as low as -0.3, while the new system has a
correlation of -0.79, which is a sufficiently high
negativecorrelation between the two evaluation values.
This is interpreted as follows: a large amount of time was
spent in superficial GUI operation that was not search-
related in the previous system, while in the new system,
most of the time was spent on search due to the
efficiency of the improved GUI, with little time needed
for GUI operation.

The average value of each MOS (easiness) of all 18
conditions for the previous system is 2.2. On the other
hand, the average MOS value over 18 conditions for the
new system was improved to 2.9.

The MOS of the new system was 3.0. Furthermore, the
System Usability Scale score is 79.8 points. From these
evaluation values a relatively high satisfaction score was
obtained.

4.5. Discussion
We consider the following three points from the

experimental results.
1. From task completion rate, and comparison of the

average evaluation and the average search time,
the basic validity of the proposed system was
confirmed.

2. There are two reasons for the improvements. One
is that OS dependent native GUI can be achieved
by using wxWidgets, and the other is that its
operation becomes simpler.

3. From MOS and SUS scores, easy to use evaluation
was obtained.

The present system is freely downloaded from the site:
http://www.srl.im.dendai.ac.jp/ETD/
The present version is Japanese based with a few
English explanations. Onomatopoeia is totally in
Japanese.

5. CONCLUSION

We carried out restructuring and integration of
subsystems of electronic timbre dictionary in C++. Due
to the development of a unified language, processing
speed of the proposed system has been improved.
Moreover, adoption of wxWidgets enabled multi-

platform by a single source code.
The usability evaluation experiment was done to find

the sound by using the search function of the three types,
which resulted in a 96.3% rate of task completion, and a
MOS (easiness) of 2.9, which is better than the previous
system. For overall evaluation, a MOS of 3.0 and 79.8
SUS score were acquired. These scores are considered
to be satisfactory.
In the future, we will further improve the usability GUI,

to build on Mac OS and Linux, and to proceed towards
the release of the full-scale system.

6. REFERENCES

[1] Yohei Kobayashi and Naotoshi Osaka,
“Construction of an electronic timbre dictionary for
environmental sounds by timbre symbol,”
Electronic Proceeding of ICMC 2008, Belfast,
Aug., 2008.

[2] Naotoshi Osaka, Yoshinori Saito, Shinya Ishitsuka
and Yasuhiro Yoshioka, “An electronic timbre
dictionary and 3D timbre display,” Proceeding of
ICMC 2009, pp. 9-12, Montreal, Aug., 2009.

[3] Music Technology Group, “The freesound
Project,” http://freesound.iua.upf.edu/

[4] Creative Commons Japan ,
http://creativecommons.org/licenses/

[5] OpenGL - The Industry Standard for High
Perform- ance Graphics, http://www.opengl.org/

[6] wxWidgets Cross-Platform GUI Library
http://www.wxwidgets.org/

[7] Audacity: Free Audio Editor and Recorder,
http://audacity.sourceforge.net/

[8] Apache Lucene - Apache Solr
http://lucene.apache.org/solr/

[9] Brooke, J.: SUS: A “quick and dirty” usability scale. In:
Jordan, P.et al. (eds.) Usability Evaluation in Industry pp.
189-194. Taylor & Francis, London, UK (1996).

D I P S 5 F O R M A X
- Digital Image Processing with Sound, version 5 -

Takayuki Rai Shu Matsuda Yota Morimoto
Lancaster University

Lancaster Institute for the
Contemporary Arts

t.rai@lancaster.ac.uk

Kunitachi College of Music
Sonology Department

shu@kcm-sd.ac.jp

Keitaro Takahashi
Musik Akademie Basel
Elektronik Studio Basel

neoterize@mac.com

University of Birmingham
yotamorimoto@gmail.com

Takyuto Fukuda
Universität für Musik und
darstellende Kunst Graz

Institut für Elektronische Musik
und Akustik - IEM

takujin3@yahoo.co.jp

ABSTRACT

The DIPS was first presented in the international
computer music world at the ICMC 2000 in Berlin as a
plug-in software for the legendary Max family
application ‘jMax’ in order to perform the real-time
image-processing in Max patches, thus to support the
creation of interactive multimedia art. In 2005, the DIPS
was ported to Max running on Macintosh computer, and
in 2007, Dlib (DIPS utility library) and Dfx (DIPS
visual effect) objects were introduced to the DIPS to
make image-processing programming much simpler and
easier. This version of DIPS ‘DIPS3’ was presented at
the ICMC 2007 in Copenhagen, and it kept evolving for
the last five years. Now, the DIPS consists of more than
three hundreds Max external objects and abstractions. At
this occasion of ICMC 2013, we would like to introduce
the new features of DIPS5 including DIPS OpenCV
objects and demonstrate how easily the real-time image-
processing can be programmed in Max environment.

1. INTRODUCTION

The DIPS was developed for Max/FTS first in 1997 by
Shu Matsuda at Sonology Department, Kunitachi
College of Music in Tokyo. It was ported to jMax
programming environment in 2000, and later to Max
running on Macintosh computer. The early versions of
DIPS consisted of only DIPS core objects and DGL
objects those are wrapper objects of various OpenGL
functions. Therefore, to realize 3D image-processing
using DIPS the knowledge of OpenGL programming
technique was still essential. To resolve this difficulty
for ordinary composers and artists, we introduced Dlib
(DIPS utility library) and Dfx (DIPS visual effect)
objects in the third version of DIPS in 2007. Since then
further Dlib and Dfx objects have been developed as
well as new functions such as OpenCV and Kinect

sensor technology have been implemented. Here, we
would like to introduce those enhanced features and
demonstrate its ease of programming, power, and
efficiency in Max programming environment.

! 2. Principal DIPS objects

2.1 DIPS core objects
The DIPS programming in Max begins with creating
‘DIPSWindow’ object (see Figure 1), where the result of
the image-processing calculations will be rendered. The
image-processing and the constructing and handling
procedure of 2 and 3 dimensional objects must be
programmed between ‘DIPSSetCurrentWindow’ and
‘DIPSSwapBuffer’ objects with specifying target
‘DIPSWindow’. Multiple DIPSWindows can be created
with any window sizes. ‘DlibWindow’ object is the
wrapper object of ‘DIPSWindow’ to simplify the
creation of ‘DIPSWindow’. All of DIPS objects are
bang-oriented; therefore, they don’t consume any CPU
power, unless they get bang at the leftmost inlet as every
Max control object does. (see Figure 2)

Figure 1. DIPSWindow object

476  |  2013 ICMC idea  |  DEMONSTRATIONS 477  |  2013 ICMC idea  |  DEMONSTRATIONS

Figure 2. basic DIPS programming structure

2.2 Media files handling and video input
‘DIPSPixTable’ object imports still image files as well as
movie files from the storage devices to the main memory
to use them in DIPS patches. On the other hand,
‘DIPSQTPlayer’ plays streaming movies directly from
the storage. ‘D3DOBJTable’ imports 3D model files
in .obj format to DIPS patches. (see Figure 3)
 ‘DIPSVideoIn’ object captures live video input from
cameras attached to the computer. It can handle multiple
video camera inputs at the same time. Those objects also
have wrapper objects: ‘DlibImageTable’ and
‘DlibMovieTable’ in the case of ‘DIPSPixTable’,
‘DlibQTPlayer’ in the case of ‘DIPSQTPlayer’ , and
‘DlibVideo’ and ‘DlibVideoIn’ for ‘DIPSVideoIn’.
Besides these media porting objects, managing texture
memory is another critical issue to handle media files in
3D programming. The DIPS offers ‘DlibTexGenerator’
object to create a texture memory, and ‘DlibTexBind‘,
‘DlibTexImage’, and ‘DlibTexMovie’ objects bind image
files to the texture. Sphere texture mapping is available
as well as ordinary texture mapping using ‘DlibTexRect’
and ‘DlibTexQuads’ objects.

Figure 3. D3DOBJTable

2.3 Implementation of Core Image Filter
! and importing Quartz Composer files
As we described in our paper regarding the DIPS3 in the
ICMC 2007, ‘DCIFilter’ object implements Apple’s Core
Image Filter. In DIPS5 about two dozens of newly
released Core Image Filter are added, and more than
ninety of them are now available in DIPS. Those are
introduced to the DIPS as Dfx objects along with other
visual effect objects. The parameters of Dfx objects can
be changed from the control panel of each object that can
be opened by double-clicking the Dfx object. (see Figure
4) This control panel function is also implemented to
most of Dlib objects. The number of Dfx objects exceeds
one hundred ten in February 2013. On the other hand,
another object introduced in the ICMC 2007,
‘DIPSQCRenderer’, enables to import user-programmed
Quartz Composer files to Max programming
environment. By sending message ‘getInputKeys’ to
‘DIPSQCRenderer’ object, labels of parameters of
Quartz Composer file in Max patch can be obtained.

Figure 4. DfxBumpDistortion

2.4 DIPS utility library ‘Dlib’ objects
Most of fundamental OpenGL objects have their wrapper
objects in order to make OpenGL programming handier
and to make it controllable from their control panels
rather than sending numbers to the inlets of each object
in Max patch. For instance, ‘DGLUTSolidTeapot’ and
‘GLUTWireTeapot’ objects are merged as a single object
called ‘DlibTeaport’, and it can be switched between
wire frame and polygon display mode as well as its size
can be changed from its control panel. Now, more than
seventy such kind of Dlib objects are implemented.

2.5 Integration of DIPS windows

Another superior point of the DIPS is the integration of
DIPS windows at the final stage of DIPS programming.
DIPS users may create and render more than one DIPS
windows and want to integrate them into a single or a
few DIPS windows to be projected to the screen.

Rendered DIPS windows can be ported instantly to
another DIPS window as a texture using DIPS objects
such as ‘DIPSSurfaceTexture’, ‘DlibTexSurface’, and
‘DlibTexCopy’.

Furthermore, ‘DIPSWindowMixer’ object offers the
flexible video mixture just like a hardware video mixer.
It can realize scaling, shifting center position as well as
fade-in and fade-out of each DIPS widow. (see Figure 5)

Figure 5. Integration of three DIPS windows

3. New features of DIPS version 5

We introduced a few motion detect functions in the
previous version of the DIPS. At the last release of
DIPS4 in 2009, we added DIPS OpenCV objects. In this
release of DIPS5, OpenCV function is enhanced. Now,
‘DlibTrack’ object, one of DIPS OpenCV objects, can
detect not only the position of face but also more details
such as mouth, nose and eyes.
DIPSKinect object captures DepthImage from Kinect
sensor and outputs the distances between the Kinect
sensor camera and objects in certain areas and specific
pixel points of Kinect DepthImage input. More of Kinect
sensor functions are planned to be added to the DIPS
along with new experimental objects derived from such
as ARToolKit.
In addition, the image in ‘jit.matrix’ is able to be ported
to DIPS window using ‘DIPSjitMat2DIPS’ object as
well.

4. Example of a DIPS video effect programming

After creating DIPS window, just place ‘DIPSVideo’
object between ‘DIPSCurrentWindow’ and
‘DIPSSwapBuffer’. (see Figure 6) Then, the incoming
video camera image is rendered in DIPSWindow by
turning on metro that keeps sending bang to DIPS
objects. The diverse Dfx objects can be inserted after

DIPSVideo object. (see Figure 7) They can be turned on
and off by sending bang to them or stopping it.
Parameters of each Dfx object can be changed from its
control panel. One of DIPS motion detect objects is
added to this example patch. (see Figure 8)

Figure 6. Video image capture

Figure 7. multiple video effect

Figure 8. DlibMotion is added to video effect routine

476  |  2013 ICMC idea  |  DEMONSTRATIONS 477  |  2013 ICMC idea  |  DEMONSTRATIONS

Figure 2. basic DIPS programming structure

2.2 Media files handling and video input
‘DIPSPixTable’ object imports still image files as well as
movie files from the storage devices to the main memory
to use them in DIPS patches. On the other hand,
‘DIPSQTPlayer’ plays streaming movies directly from
the storage. ‘D3DOBJTable’ imports 3D model files
in .obj format to DIPS patches. (see Figure 3)
 ‘DIPSVideoIn’ object captures live video input from
cameras attached to the computer. It can handle multiple
video camera inputs at the same time. Those objects also
have wrapper objects: ‘DlibImageTable’ and
‘DlibMovieTable’ in the case of ‘DIPSPixTable’,
‘DlibQTPlayer’ in the case of ‘DIPSQTPlayer’ , and
‘DlibVideo’ and ‘DlibVideoIn’ for ‘DIPSVideoIn’.
Besides these media porting objects, managing texture
memory is another critical issue to handle media files in
3D programming. The DIPS offers ‘DlibTexGenerator’
object to create a texture memory, and ‘DlibTexBind‘,
‘DlibTexImage’, and ‘DlibTexMovie’ objects bind image
files to the texture. Sphere texture mapping is available
as well as ordinary texture mapping using ‘DlibTexRect’
and ‘DlibTexQuads’ objects.

Figure 3. D3DOBJTable

2.3 Implementation of Core Image Filter
! and importing Quartz Composer files
As we described in our paper regarding the DIPS3 in the
ICMC 2007, ‘DCIFilter’ object implements Apple’s Core
Image Filter. In DIPS5 about two dozens of newly
released Core Image Filter are added, and more than
ninety of them are now available in DIPS. Those are
introduced to the DIPS as Dfx objects along with other
visual effect objects. The parameters of Dfx objects can
be changed from the control panel of each object that can
be opened by double-clicking the Dfx object. (see Figure
4) This control panel function is also implemented to
most of Dlib objects. The number of Dfx objects exceeds
one hundred ten in February 2013. On the other hand,
another object introduced in the ICMC 2007,
‘DIPSQCRenderer’, enables to import user-programmed
Quartz Composer files to Max programming
environment. By sending message ‘getInputKeys’ to
‘DIPSQCRenderer’ object, labels of parameters of
Quartz Composer file in Max patch can be obtained.

Figure 4. DfxBumpDistortion

2.4 DIPS utility library ‘Dlib’ objects
Most of fundamental OpenGL objects have their wrapper
objects in order to make OpenGL programming handier
and to make it controllable from their control panels
rather than sending numbers to the inlets of each object
in Max patch. For instance, ‘DGLUTSolidTeapot’ and
‘GLUTWireTeapot’ objects are merged as a single object
called ‘DlibTeaport’, and it can be switched between
wire frame and polygon display mode as well as its size
can be changed from its control panel. Now, more than
seventy such kind of Dlib objects are implemented.

2.5 Integration of DIPS windows

Another superior point of the DIPS is the integration of
DIPS windows at the final stage of DIPS programming.
DIPS users may create and render more than one DIPS
windows and want to integrate them into a single or a
few DIPS windows to be projected to the screen.

Rendered DIPS windows can be ported instantly to
another DIPS window as a texture using DIPS objects
such as ‘DIPSSurfaceTexture’, ‘DlibTexSurface’, and
‘DlibTexCopy’.

Furthermore, ‘DIPSWindowMixer’ object offers the
flexible video mixture just like a hardware video mixer.
It can realize scaling, shifting center position as well as
fade-in and fade-out of each DIPS widow. (see Figure 5)

Figure 5. Integration of three DIPS windows

3. New features of DIPS version 5

We introduced a few motion detect functions in the
previous version of the DIPS. At the last release of
DIPS4 in 2009, we added DIPS OpenCV objects. In this
release of DIPS5, OpenCV function is enhanced. Now,
‘DlibTrack’ object, one of DIPS OpenCV objects, can
detect not only the position of face but also more details
such as mouth, nose and eyes.
DIPSKinect object captures DepthImage from Kinect
sensor and outputs the distances between the Kinect
sensor camera and objects in certain areas and specific
pixel points of Kinect DepthImage input. More of Kinect
sensor functions are planned to be added to the DIPS
along with new experimental objects derived from such
as ARToolKit.
In addition, the image in ‘jit.matrix’ is able to be ported
to DIPS window using ‘DIPSjitMat2DIPS’ object as
well.

4. Example of a DIPS video effect programming

After creating DIPS window, just place ‘DIPSVideo’
object between ‘DIPSCurrentWindow’ and
‘DIPSSwapBuffer’. (see Figure 6) Then, the incoming
video camera image is rendered in DIPSWindow by
turning on metro that keeps sending bang to DIPS
objects. The diverse Dfx objects can be inserted after

DIPSVideo object. (see Figure 7) They can be turned on
and off by sending bang to them or stopping it.
Parameters of each Dfx object can be changed from its
control panel. One of DIPS motion detect objects is
added to this example patch. (see Figure 8)

Figure 6. Video image capture

Figure 7. multiple video effect

Figure 8. DlibMotion is added to video effect routine

478  |  2013 ICMC idea  |  DEMONSTRATIONS

5. CONCLUSION

The DIPS is a powerful and user-friendly programming
tool for the creation of interactive multimedia art,
supporting interaction between sound events and visual
events in Max programming environment using Apple’s
Core Image technology as well as OpenGL and
OpenCV technologies. DIPS consists of a library of
more than three hundreds Max external objects and
abstractions, a comprehensive set of sample patches,
and a detailed tutorial. The DIPS5 is free plug-in
software for Max/MSP running on Macintosh computer.
It is downloadable from http://dips.dacreation.com.

6. REFERENCES

[1] !Matsuda, S.,Rai, T., DIPS : the real-time
! digital image processing objects for Max
! environment, in Proceedings of the
! International Computer Music Conference
! 2000.

[2] !Matsuda, S., Miyama, C., Ando, D., Rai, T.,
! DIPS for Linux and Mac OS X, in Proceedings
! of the International Computer Music
! Conference 2002.

[3] !Miyama, C., Rai, T., Matsuda, S., Ando, D.,
! Introduction of DIPS Programming Technique,
! in Proceedings of the International Computer
! Music Conference 2003.

[4] !Rai, T., Miyama, C., Matsuda, S., Morimoto, Y.,
! Hamano, T., Introduction of DIPS3 (version 2)
! for Max MSP, in Proceedings of the
! International Computer Music Conference
! 2007.

[5] !OpenGL Architecture Review Board, Shreiner,
! D., Woo, M., Neider, J., Davis, T., (2009),
! OpenGL(R) Programming Guide: The Official
! Guide to Learning OpenGL, Version 3.0 and
! 3.1, Addison-Wesley.

[6] !OpenGL Architecture Review Board, Editor :
! Shreiner, D.,(2004). OpenGL(R) Reference
! Manual: The Official Reference Document to
! OpenGL, Version 1.4(4th ed.). Addison-Wesley.

[7] !Apple Inc., Apple Developer Connection : Core
! Image Programming Guide.,(2004, 2013),
! http://developer.apple.com/documentation/
! GraphicsImaging/Conceptual/CoreImaging/
! index.html

[8] ! J.Rost, R., M.Kessenich, J., Lichtenbelt, B.,
! Malan, H., Weiblen, M. Bailey, M.,(2006),

! OpenGL(R) Shading Language(2nd ed.),
! Addison-Wesley.

[9] !opencv dev team, OpenCV 2.4.2
! documentation : Reference Manual, (2012)
! http://docs.opencv.org/2.4.2/modules/
! refman.html

[10] openkinect.org, OpenKinect, (2013),
! http://openkinect.org/wiki/Main_Page

[11]!Kato, H., Billinghurst, M., Poupyrev, I.,
! Imamoto, K., Tachibana, K. (2000), Virtual
! Object Manipulation on a Table-Top AR
! Environment, In proceedings of the
! International Symposium on Augmented
! Reality, pp.111-119, (ISAR 2000), !Munich,
! Germany.

[12]!!The Human Interface Technology Laboratory
! (HIT_Lab) at the University of Washington,
! HIT_Lab_NZ at the University of Canterbury,
! New Zealand, and ARToolworks, Seattle,
! (2013), http://www.hitl.washington.edu/
! artoolkit/

