
258  |  2013 ICMC idea  |  SHORT PAPERS 259  |  2013 ICMC idea  |  SHORT PAPERS

AUDIOVISUAL INTEGRATION WITH CALVR AND LIBCOLLIDER

Eric Hamdan, Joachim Gossmann

Qualcomm Institute

La Jolla, CA, U.S.A.

ehamdan@eng.ucsd.edu

jgossmann@ucsd.edu

ABSTRACT

We present libCollider [3], a client library for SuperCol-
lider’s scsynth sound synthesis engine that provides C++
application developers with direct access to scsynth’s so-
phisticated capabilities for real-time audio synthesis and
rendering through an API with abstracted bi-directional
network support. Its development is driven by the demand
for an audio component to the CalVR visualization frame-
work under development at the Immersive Visualization
Laboratory at the Qualcomm Institute, San Diego. We de-
scribe common problems with audio integration into C++
realtime graphics applications, and the specific demands
we are trying to meet with libCollider’s multi-level API.

1. WHAT’S IN THE WAY OF AUDIOVISUAL
INTEGRATION IN REAL-TIME RENDERING?

Sound is an important sensory modality of human expe-
rience, but even in 2013, it is often still addressed very
insufficiently by applications for data and information dis-
play.

A coherent integration of audio components into visu-
alization environments has much promise—some of which
can be discovered in Michel Chion’s book Audio-Vision
[8]. However, attempts to tap into these potentials of inter-
modal perception have to overcome a variety of obstacles.

First of all, in the interdisciplinary discourse that sur-
rounds the development of visualization systems, audio
components tend to occupy the role of a peripheral add-
on, as something that comes into perspective after the work
on the visualization has already been successfully com-
pleted.

On the technical level, the resources left to meet the
demands of qualitative sound projection are often scarce—
the need for good loudspeakers and their placement, of
low ambient noise around the display, considerations of
room acoustics and screen reflections, et cetera.

Additionally, the expressive potentials of multi-channel
sound systems as they have been explored in the area of
computer music and more recently multichannel movie
soundtracks often remain unconsidered in the planning
and conceptualization of the display as do the manifold
potentials to display data through non-speech sound [10].

But next to the lack of opportunity to experience high
quality sound projections first person and of awareness for
the potential roles of audio in audio-visual display, there
are also important structural differences between image
and sound that tend to be overlooked.

Even though auditory and visual media components
have the potential to generate unified audio-visual impres-
sions, the respective senses are characterized by a differ-
ent responsiveness to temporal development, which re-
sults in divergent requirements for form and structure of
their display and their digital rendering. Music and sound
diverge in their temporal morphology from the dynamic
behaviors of visual images and animation.

This results in divergent demands for temporal behav-
ior and accuracy of perception-oriented process schedul-
ing, and the temporal morphology of respective real-time
processing in general. A separation of the real-time com-
putation for both modalities into independent parallel pro-
cesses is unavoidable, and as a result, audio-visual soft-
ware projects tend to be assembled on separate develop-
ment platforms, which in turn is reflected in a segregation
of the respective development teams, severely complicat-
ing the creation of audio-visual potentials.

We can also see this problem reflected in the emer-
gence of applicable standards.

1.1. Standards and their adoption

In the visual domain, open programming interfaces such
as OpenGL and geometric scene graphs [4] have been
adopted across a wide variety of platforms. Similar at-
tempts in the audio domain, such as MPEG-4 and Ope-
nAL for example, have not developed a similar univer-
sal appeal and have not transcended specific application
niches. Even less is heard about unified audio-visual plat-
form standards.

In the late 1990s it seemed as if sound and image
were coming together in programming environments such
as Max/MSP/Jitter and PD/Gem, but these environments
have mostly been used by musicians to do visuals, while
visualization researchers and visual artists continued to
pursue sound-independent infrastructures like Processing,
openFrameworks et cetera, that rely on the definition of
a custom network protocol to connect to an independent

real-time audio programming environment.
While the potential to share data between independent

programming environments through a network protocol
such as OSC [16] opened up many possibilities, the re-
sulting structural complexity of indepement components
is also a source of much friction and frustration.

Next to establishing the network protocol as such, the
two communicating environments need to be kept manu-
ally in sync, and often specialist programmers—one for
the visual and one for the audio domain—are required to
operate in close communication.

This lack of a unified coding platform for visual and
auditory rendering stands in the way of the successful de-
sign of detailed inter-modal experiences.

2. SOME EXISTING STRATEGIES

In Table 1, we list a small array of real-time audio ren-
dering infrastructures that are used in application devel-
opment today.

2.1. Integrated vs. standalone API

Auditory and visual components of interactive applica-
tions need to operate in temporal coherence, but in sym-
metry to their distinct physiological and cognitive pro-
cessing, rendering and interactive adaptation are best ad-
dressed by distinct processing architectures. For example,
vision-oriented processing usually proceeds in frames that
are updated every 40 or so milliseconds, while audio pro-
cessing attempts to produce a continuous stream of much
finer temporal resolution, without the inherent need of
frame-oriented temporal subdivisions. While most graph-
ics processing is spatial—transforming 2D images or ren-
dering perspectives on 3D geometry—audio processing
usually operates on a set array of correlated time-series
and their continuous temporal evolution.

Adding real-time audio to a visual application there-
fore implies the addition of a distinct temporal processing
architecture, and the solutions can be roughly divided into
two categories:

1. running a connected stand-alone programming en-
vironment for real-time audio in parallel to the core
application,

2. including a suitable real-time audio library into the
application’s native code.

2.2. Standalone-API solutions

In a frequently encountered scenario in category 1), a li-
brary of audio functionalities is implemented in the audio-
programming language as a Sound-Server that provides
services such as audio playback and synthesis.
Often we find sound servers implemented in standalone
domain-specific programming environments that provide
libraries of primitives and abstractions for audio synthe-
sis and data processing that can be combined into audio

processing graphs. Examples are Pure Data, Max/MSP,
Audio Mulch, CSound, and SuperCollider.

Ideally a server implemented in one of these languages
runs in a parallel processing thread on the host machine
or on an independent remote machine controlled by a bi-
directional protocol of network packets, either direct UDP
or Open Sound Control [16]. This separation of audio
client and server also permits the use of specialized ma-
chine hardware and software that helps to manage the over-
all CPU load.

In order to be used with a separate application frame-
work like our target application framework CalVR [13],
communication protocols are defined that control the au-
dio processing graph in the remote sound process. Previ-
ous efforts in this direction include Gerhard Eckel’s Sound-
Server [9], and we have undertaken various efforts at our
own institute to provide visualization and VR applications
with Max/MSP and PD-based sound-server components
that communicate to the visual application using specifi-
cally created OSC-based network protocols [14, 15].

Figure 1. Connecting the application core to a standalone
audio-API with a custom communication protocol.

The use of standalone audio synthesis solutions re-
quires the maintenance of the coherence between the client
and the server component, forcing the developer of the
client application to deal with an environment they may
not be specialized in (or prefer to stay away from). In cer-
tain situations the management of domain-specific code
such as SCLang or abstractions in PD and Max/MSP might
be unacceptable. A suitable library and API in the native
language of the client code may be preferred, which leads
us to category 2) - integrated audio solutions.

2.3. Integrated solution

As an alternative to the creation of a detached Sound-
Server process, it is also possible to include audio libraries
into the core application directly, consolidating the sound
design with the application development while dispens-
ing with the requirement for system-level coordination of
independent client and server components.

Most of the integrated audio libraries available today—
OpenAL, FMOD Ex, irrKlang to name a few—provide
functionality for a specific application domain, for exam-
ple video game applications. Shortcomings are often a
lack of flexibility in i/o channel configuration, routing,

258  |  2013 ICMC idea  |  SHORT PAPERS 259  |  2013 ICMC idea  |  SHORT PAPERS

AUDIOVISUAL INTEGRATION WITH CALVR AND LIBCOLLIDER

Eric Hamdan, Joachim Gossmann

Qualcomm Institute

La Jolla, CA, U.S.A.

ehamdan@eng.ucsd.edu

jgossmann@ucsd.edu

ABSTRACT

We present libCollider [3], a client library for SuperCol-
lider’s scsynth sound synthesis engine that provides C++
application developers with direct access to scsynth’s so-
phisticated capabilities for real-time audio synthesis and
rendering through an API with abstracted bi-directional
network support. Its development is driven by the demand
for an audio component to the CalVR visualization frame-
work under development at the Immersive Visualization
Laboratory at the Qualcomm Institute, San Diego. We de-
scribe common problems with audio integration into C++
realtime graphics applications, and the specific demands
we are trying to meet with libCollider’s multi-level API.

1. WHAT’S IN THE WAY OF AUDIOVISUAL
INTEGRATION IN REAL-TIME RENDERING?

Sound is an important sensory modality of human expe-
rience, but even in 2013, it is often still addressed very
insufficiently by applications for data and information dis-
play.

A coherent integration of audio components into visu-
alization environments has much promise—some of which
can be discovered in Michel Chion’s book Audio-Vision
[8]. However, attempts to tap into these potentials of inter-
modal perception have to overcome a variety of obstacles.

First of all, in the interdisciplinary discourse that sur-
rounds the development of visualization systems, audio
components tend to occupy the role of a peripheral add-
on, as something that comes into perspective after the work
on the visualization has already been successfully com-
pleted.

On the technical level, the resources left to meet the
demands of qualitative sound projection are often scarce—
the need for good loudspeakers and their placement, of
low ambient noise around the display, considerations of
room acoustics and screen reflections, et cetera.

Additionally, the expressive potentials of multi-channel
sound systems as they have been explored in the area of
computer music and more recently multichannel movie
soundtracks often remain unconsidered in the planning
and conceptualization of the display as do the manifold
potentials to display data through non-speech sound [10].

But next to the lack of opportunity to experience high
quality sound projections first person and of awareness for
the potential roles of audio in audio-visual display, there
are also important structural differences between image
and sound that tend to be overlooked.

Even though auditory and visual media components
have the potential to generate unified audio-visual impres-
sions, the respective senses are characterized by a differ-
ent responsiveness to temporal development, which re-
sults in divergent requirements for form and structure of
their display and their digital rendering. Music and sound
diverge in their temporal morphology from the dynamic
behaviors of visual images and animation.

This results in divergent demands for temporal behav-
ior and accuracy of perception-oriented process schedul-
ing, and the temporal morphology of respective real-time
processing in general. A separation of the real-time com-
putation for both modalities into independent parallel pro-
cesses is unavoidable, and as a result, audio-visual soft-
ware projects tend to be assembled on separate develop-
ment platforms, which in turn is reflected in a segregation
of the respective development teams, severely complicat-
ing the creation of audio-visual potentials.

We can also see this problem reflected in the emer-
gence of applicable standards.

1.1. Standards and their adoption

In the visual domain, open programming interfaces such
as OpenGL and geometric scene graphs [4] have been
adopted across a wide variety of platforms. Similar at-
tempts in the audio domain, such as MPEG-4 and Ope-
nAL for example, have not developed a similar univer-
sal appeal and have not transcended specific application
niches. Even less is heard about unified audio-visual plat-
form standards.

In the late 1990s it seemed as if sound and image
were coming together in programming environments such
as Max/MSP/Jitter and PD/Gem, but these environments
have mostly been used by musicians to do visuals, while
visualization researchers and visual artists continued to
pursue sound-independent infrastructures like Processing,
openFrameworks et cetera, that rely on the definition of
a custom network protocol to connect to an independent

real-time audio programming environment.
While the potential to share data between independent

programming environments through a network protocol
such as OSC [16] opened up many possibilities, the re-
sulting structural complexity of indepement components
is also a source of much friction and frustration.

Next to establishing the network protocol as such, the
two communicating environments need to be kept manu-
ally in sync, and often specialist programmers—one for
the visual and one for the audio domain—are required to
operate in close communication.

This lack of a unified coding platform for visual and
auditory rendering stands in the way of the successful de-
sign of detailed inter-modal experiences.

2. SOME EXISTING STRATEGIES

In Table 1, we list a small array of real-time audio ren-
dering infrastructures that are used in application devel-
opment today.

2.1. Integrated vs. standalone API

Auditory and visual components of interactive applica-
tions need to operate in temporal coherence, but in sym-
metry to their distinct physiological and cognitive pro-
cessing, rendering and interactive adaptation are best ad-
dressed by distinct processing architectures. For example,
vision-oriented processing usually proceeds in frames that
are updated every 40 or so milliseconds, while audio pro-
cessing attempts to produce a continuous stream of much
finer temporal resolution, without the inherent need of
frame-oriented temporal subdivisions. While most graph-
ics processing is spatial—transforming 2D images or ren-
dering perspectives on 3D geometry—audio processing
usually operates on a set array of correlated time-series
and their continuous temporal evolution.

Adding real-time audio to a visual application there-
fore implies the addition of a distinct temporal processing
architecture, and the solutions can be roughly divided into
two categories:

1. running a connected stand-alone programming en-
vironment for real-time audio in parallel to the core
application,

2. including a suitable real-time audio library into the
application’s native code.

2.2. Standalone-API solutions

In a frequently encountered scenario in category 1), a li-
brary of audio functionalities is implemented in the audio-
programming language as a Sound-Server that provides
services such as audio playback and synthesis.
Often we find sound servers implemented in standalone
domain-specific programming environments that provide
libraries of primitives and abstractions for audio synthe-
sis and data processing that can be combined into audio

processing graphs. Examples are Pure Data, Max/MSP,
Audio Mulch, CSound, and SuperCollider.

Ideally a server implemented in one of these languages
runs in a parallel processing thread on the host machine
or on an independent remote machine controlled by a bi-
directional protocol of network packets, either direct UDP
or Open Sound Control [16]. This separation of audio
client and server also permits the use of specialized ma-
chine hardware and software that helps to manage the over-
all CPU load.

In order to be used with a separate application frame-
work like our target application framework CalVR [13],
communication protocols are defined that control the au-
dio processing graph in the remote sound process. Previ-
ous efforts in this direction include Gerhard Eckel’s Sound-
Server [9], and we have undertaken various efforts at our
own institute to provide visualization and VR applications
with Max/MSP and PD-based sound-server components
that communicate to the visual application using specifi-
cally created OSC-based network protocols [14, 15].

Figure 1. Connecting the application core to a standalone
audio-API with a custom communication protocol.

The use of standalone audio synthesis solutions re-
quires the maintenance of the coherence between the client
and the server component, forcing the developer of the
client application to deal with an environment they may
not be specialized in (or prefer to stay away from). In cer-
tain situations the management of domain-specific code
such as SCLang or abstractions in PD and Max/MSP might
be unacceptable. A suitable library and API in the native
language of the client code may be preferred, which leads
us to category 2) - integrated audio solutions.

2.3. Integrated solution

As an alternative to the creation of a detached Sound-
Server process, it is also possible to include audio libraries
into the core application directly, consolidating the sound
design with the application development while dispens-
ing with the requirement for system-level coordination of
independent client and server components.

Most of the integrated audio libraries available today—
OpenAL, FMOD Ex, irrKlang to name a few—provide
functionality for a specific application domain, for exam-
ple video game applications. Shortcomings are often a
lack of flexibility in i/o channel configuration, routing,

260  |  2013 ICMC idea  |  SHORT PAPERS 261  |  2013 ICMC idea  |  SHORT PAPERS

Strategy Language Application Target

OpenAL C++, C gaming

FMOD C++ gaming

irrKlang C++, C# gaming

Max/MSP, PD, SuperCollider custom languages custom applications

libpd C, C++, Obj-C, Java custom applications

Table 1. Overview over existing real-time audio software module libraries.

multichannel rendering, but most of all strong limitations
on dynamic real-time audio synthesis.

Figure 2. Integrating system audio into the core applica-
tion directly through high-level audio API.

Integrated API solutions are of great advantage when
it comes to the deployment of applications as they provide
a seamless interface between the core application and the
audio functionality. On the other hand, the currently avail-
able libraries provide only restricted and pre-formalized
capabilities for real-time rendering that are not sufficient
for the level of interactivity our prototype applications de-
mand and tend to rely on proprietary components which
limits their development potential.

3. AUDIO API: DESIRABLE FEATURES

In the following paragraphs we summarize our require-
ments for an optimized integrated solution to flexible au-
dio rendering in C++ applications. These emerge both
from our own experience as well as interviews and meet-
ings with our collaborators in the visualization group.

3.1. Simple access to real-time audio playback and syn-
thesis

The API should provide the ability to control real-time
audio, playback and synthesis for a variety of C++ appli-
cations in the domain of visualization, music and interdis-
ciplinary media. Ideally, the API comes in the form of a

client library (written in C++) with the necessary classes
to instantiate, control, create, and stop audio processes as
needed in the application areas listed above.

3.2. Portable, light, efficient and easy to install

The demands for audio support arise on different plat-
forms, computing infrastructures and application models.
This places specific demands on cross-platform portabil-
ity, computational efficiency and independence from plat-
form specific libraries: Server and client should be able
to run on at least Mac OS, Linux, Windows, potentially
Android and iOS, and should provide support for virtual
reality displays, immersive environments, desktop apps,
mobile apps, large scale display walls, unexpected art in-
stallations as well as computer-based audiovisual instru-
ments, performances, et cetera.

3.3. Intuitive, multi-level API

We want our programming library to accommodate a range
of different approaches to audio programming. On the one
hand, standardized functionality such as the controls for
localized sound playback needs to be made accessible in
a convenient way that does not require a full knowledge
of the API details. On the other hand, we want to equip
our API with the potential to control and modify the audio
processing and synthesis in way comparable to the stan-
dalone APIs we have previously used. In order to enable
powerful interactive sound design, the server should sup-
port responsive and adaptive real-time synthesis with con-
trollable filters, modulators and other real-time process-
ing units such as those found in SuperCollider, Max/MSP,
Pure Data, etc.

Naturally this leads us to the requirement of a multi-
level API that provides full low-level access as well as en-
capsulated functionality that can be used without special-
ized knowledge. The API should be completely sufficient
to control audio rendering and make additional special-
ized programming environments unnecessary.

3.4. Flexible and interchangeable support for differ-
ent multichannel techniques

Industry standard C++ libraries for sound design rarely
offer flexible and extensible multichannel support used

in experimental speaker layouts. Since we are explor-
ing different spatial audio rendering techniques such as
Wavefield Synthesis, VBAP, Ambisonics, Beamforming,
et cetera, we need our Audio API to integrate the respec-
tive rendering easily. We need support for multichannel
spatial audio rendering algorithms, flexible multichannel
routing, and easily managed multichannel objects.

3.5. Open source audio backend

The server should be, or be built on, a well maintained
open source software for accomplishing the tasks listed
above to ensure that projects created now will see contin-
ued improvement over time as the server improves from
community development, since our current personnel will
not be able to maintain a proprietary custom solution on
its own.

4. WHY SUPERCOLLIDER?

SuperCollider is a computer music programming language
developed by James McCartney. In its third implementa-
tion, also known as SC3, McCartney split the system ar-
chitecture into two independent components—a language
process that permits a temporal structuring and organiza-
tion of the processing, and an independently running syn-
thesis engine. The two components are coupled via an
internal network message protocol implemented in Open
Sound Control [16]. This makes scsynth, the component

Figure 3. SuperCollider’s client+server architecture.

performing the sound rendering, interesting for our pur-
poses in two aspects. On the one hand, it represents a
highly flexible sound-rendering process that can be en-
tirely controlled through network messages allowing it to
become deployed on any system accessible via network.
On the other hand, the network messages that control the
sound synthesis do not have to be generated by SCLang,
but could also come from another language, as McCartney
himself suggests in the conclusion of his paper presenta-
tion from 2002 [11].

Our strategy is therefore a supposition of SCLang with
a C++ client library that can be directly included into the
development of a C++ application—in our case, the CalVR
visualization and virtual reality framework [13]. The re-
sulting API structure can be seen in overview in figure
(4) and will be described in the following paragraphs. A

similar use of scsynth has been proposed by Hans Holger
Rutz’s jCollider [12] albeit for the Java language, and our
approach also shares some similarity to the strategy used
by libpd to employ Pure Data as a sound engine [1]. A
comparison between libCollider and libpd will allow us
to shed additional light on our approach.

Figure 4. libCollider permits direct coupling between
C++ application and scsynth, without the need for an ad-
ditional language process like SCLang.

5. HOW IS LIBCOLLIDER DIFFERENT FROM
LIBPD?

libpd is a software library that allows one to run an in-
stance of Pure Data [5] as an audio processing callback
and to allow MIDI and control message communication
between application code and Pure Data code [7, 1]. Pro-
grammers can create a PD patch, load it into an instance
of Pure Data running in a parallel thread to the appli-
cation proper, and address it as a custom audio render-
ing engine by communicating to it through a set of lan-
guage bindings provided by libpd. While this approach
has some aspects in common with the way libCollider
uses scsynth, there are important differences. On the one
hand libCollider is currently only accessible from C++,
while libpd implements bindings for an array of additional
languages such as Java, Objective-C, Python, et cetera.
On the other hand, libCollider attempts to make the func-
tionality provided by SuperCollider’s scsynth completely
accessible from an external API, with no need for an ad-
ditional graphical or text-based patching language such
as the graphical patching of Pure Data or SCLang. In-
stead of delegating the low-level audio programming to
an external language, libCollider organizes its functional-
ity into different layers, from low-level functionality that
wraps the commands available to control scsynth, to mid-
level classes that allow a use of C++ in a similar way as
SCLang, to a high-level API layer that provides the pro-
grammer with a simplified interface to often-used and ba-
sic audio functionality comparable to what a library like
OpenAL provides. The multi-level layout of the API is
further explained in section .

The architecture libCollider proposes has the advan-
tage that the audio rendering process can reside on a dif-
ferent machine connected by network messages, thereby
providing the advantages of a standalone Sound-Server

260  |  2013 ICMC idea  |  SHORT PAPERS 261  |  2013 ICMC idea  |  SHORT PAPERS

Strategy Language Application Target

OpenAL C++, C gaming

FMOD C++ gaming

irrKlang C++, C# gaming

Max/MSP, PD, SuperCollider custom languages custom applications

libpd C, C++, Obj-C, Java custom applications

Table 1. Overview over existing real-time audio software module libraries.

multichannel rendering, but most of all strong limitations
on dynamic real-time audio synthesis.

Figure 2. Integrating system audio into the core applica-
tion directly through high-level audio API.

Integrated API solutions are of great advantage when
it comes to the deployment of applications as they provide
a seamless interface between the core application and the
audio functionality. On the other hand, the currently avail-
able libraries provide only restricted and pre-formalized
capabilities for real-time rendering that are not sufficient
for the level of interactivity our prototype applications de-
mand and tend to rely on proprietary components which
limits their development potential.

3. AUDIO API: DESIRABLE FEATURES

In the following paragraphs we summarize our require-
ments for an optimized integrated solution to flexible au-
dio rendering in C++ applications. These emerge both
from our own experience as well as interviews and meet-
ings with our collaborators in the visualization group.

3.1. Simple access to real-time audio playback and syn-
thesis

The API should provide the ability to control real-time
audio, playback and synthesis for a variety of C++ appli-
cations in the domain of visualization, music and interdis-
ciplinary media. Ideally, the API comes in the form of a

client library (written in C++) with the necessary classes
to instantiate, control, create, and stop audio processes as
needed in the application areas listed above.

3.2. Portable, light, efficient and easy to install

The demands for audio support arise on different plat-
forms, computing infrastructures and application models.
This places specific demands on cross-platform portabil-
ity, computational efficiency and independence from plat-
form specific libraries: Server and client should be able
to run on at least Mac OS, Linux, Windows, potentially
Android and iOS, and should provide support for virtual
reality displays, immersive environments, desktop apps,
mobile apps, large scale display walls, unexpected art in-
stallations as well as computer-based audiovisual instru-
ments, performances, et cetera.

3.3. Intuitive, multi-level API

We want our programming library to accommodate a range
of different approaches to audio programming. On the one
hand, standardized functionality such as the controls for
localized sound playback needs to be made accessible in
a convenient way that does not require a full knowledge
of the API details. On the other hand, we want to equip
our API with the potential to control and modify the audio
processing and synthesis in way comparable to the stan-
dalone APIs we have previously used. In order to enable
powerful interactive sound design, the server should sup-
port responsive and adaptive real-time synthesis with con-
trollable filters, modulators and other real-time process-
ing units such as those found in SuperCollider, Max/MSP,
Pure Data, etc.

Naturally this leads us to the requirement of a multi-
level API that provides full low-level access as well as en-
capsulated functionality that can be used without special-
ized knowledge. The API should be completely sufficient
to control audio rendering and make additional special-
ized programming environments unnecessary.

3.4. Flexible and interchangeable support for differ-
ent multichannel techniques

Industry standard C++ libraries for sound design rarely
offer flexible and extensible multichannel support used

in experimental speaker layouts. Since we are explor-
ing different spatial audio rendering techniques such as
Wavefield Synthesis, VBAP, Ambisonics, Beamforming,
et cetera, we need our Audio API to integrate the respec-
tive rendering easily. We need support for multichannel
spatial audio rendering algorithms, flexible multichannel
routing, and easily managed multichannel objects.

3.5. Open source audio backend

The server should be, or be built on, a well maintained
open source software for accomplishing the tasks listed
above to ensure that projects created now will see contin-
ued improvement over time as the server improves from
community development, since our current personnel will
not be able to maintain a proprietary custom solution on
its own.

4. WHY SUPERCOLLIDER?

SuperCollider is a computer music programming language
developed by James McCartney. In its third implementa-
tion, also known as SC3, McCartney split the system ar-
chitecture into two independent components—a language
process that permits a temporal structuring and organiza-
tion of the processing, and an independently running syn-
thesis engine. The two components are coupled via an
internal network message protocol implemented in Open
Sound Control [16]. This makes scsynth, the component

Figure 3. SuperCollider’s client+server architecture.

performing the sound rendering, interesting for our pur-
poses in two aspects. On the one hand, it represents a
highly flexible sound-rendering process that can be en-
tirely controlled through network messages allowing it to
become deployed on any system accessible via network.
On the other hand, the network messages that control the
sound synthesis do not have to be generated by SCLang,
but could also come from another language, as McCartney
himself suggests in the conclusion of his paper presenta-
tion from 2002 [11].

Our strategy is therefore a supposition of SCLang with
a C++ client library that can be directly included into the
development of a C++ application—in our case, the CalVR
visualization and virtual reality framework [13]. The re-
sulting API structure can be seen in overview in figure
(4) and will be described in the following paragraphs. A

similar use of scsynth has been proposed by Hans Holger
Rutz’s jCollider [12] albeit for the Java language, and our
approach also shares some similarity to the strategy used
by libpd to employ Pure Data as a sound engine [1]. A
comparison between libCollider and libpd will allow us
to shed additional light on our approach.

Figure 4. libCollider permits direct coupling between
C++ application and scsynth, without the need for an ad-
ditional language process like SCLang.

5. HOW IS LIBCOLLIDER DIFFERENT FROM
LIBPD?

libpd is a software library that allows one to run an in-
stance of Pure Data [5] as an audio processing callback
and to allow MIDI and control message communication
between application code and Pure Data code [7, 1]. Pro-
grammers can create a PD patch, load it into an instance
of Pure Data running in a parallel thread to the appli-
cation proper, and address it as a custom audio render-
ing engine by communicating to it through a set of lan-
guage bindings provided by libpd. While this approach
has some aspects in common with the way libCollider
uses scsynth, there are important differences. On the one
hand libCollider is currently only accessible from C++,
while libpd implements bindings for an array of additional
languages such as Java, Objective-C, Python, et cetera.
On the other hand, libCollider attempts to make the func-
tionality provided by SuperCollider’s scsynth completely
accessible from an external API, with no need for an ad-
ditional graphical or text-based patching language such
as the graphical patching of Pure Data or SCLang. In-
stead of delegating the low-level audio programming to
an external language, libCollider organizes its functional-
ity into different layers, from low-level functionality that
wraps the commands available to control scsynth, to mid-
level classes that allow a use of C++ in a similar way as
SCLang, to a high-level API layer that provides the pro-
grammer with a simplified interface to often-used and ba-
sic audio functionality comparable to what a library like
OpenAL provides. The multi-level layout of the API is
further explained in section .

The architecture libCollider proposes has the advan-
tage that the audio rendering process can reside on a dif-
ferent machine connected by network messages, thereby
providing the advantages of a standalone Sound-Server

262  |  2013 ICMC idea  |  SHORT PAPERS 263  |  2013 ICMC idea  |  SHORT PAPERS

Figure 5. libpd’s integrated solution for app audio: A
C-based wrapper around Pure Data with multi-language
bindings.

solution, while at the same time providing a close cou-
pling between the sound rendering process and the appli-
cation programming interface.

libpd achieves a separation of the application thread
from the sound rendering thread, but does in itself neither
permit an on-the-fly reorganization of audio rendering,
nor—without the addition of a custom network layer—
to displace the sound-rendering process onto another ma-
chine.

In the future, libCollider might be able to provide vari-
able language bindings comparable to those of libpd, how-
ever, similar client libraries in other languages already ex-
ist, for example jCollider [12].

6. LIBCOLLIDER MULTI-LEVEL API

6.1. Low-level API - The Server Proxy

Since scsynth has a clearly documented set of the com-
mands it understands and replies it returns [6], the ini-
tial motivation behind the API was to create one or more
classes that handle sending those commands and properly
dispatching any replies from the server. The initial re-
sult is the low level API contained in the class SCServer.
SCServer has a full featured set of public members that
currently include almost all commands found in the sc-
synth command reference [6]. SCServer also serves as
a client-side proxy of a remote server instance. Thus, in
a project you would typically have as many SCServer
instances as you have server instances. SCServer con-
veniently abstracts all of the network and OSC code that
is used to send and dispatch messages to and from the
server via UDP or TCP. A code example of the low-level
API looks like so:

6.2. Mid-level API - Quasi-SCLang

The motivation behind the middle portion of the API is
to provide a set of proxy classes that mirror the structures
involved in audio synthesis one works with when using
scsynth. These include the familiar objects Buffer, Bus,
Node and its subclasses, Synth and Group. These proxy
classes provide a means to instantiate and retain a handle
on server-side instances of these objects. Most of these
classes are passed a pointer to a valid SCServer instance.
The SCServer instance conveniently provides the neces-
sary commands to instantiate and control the objects that
wrap a pointer to it. An obvious benefit of this model is
that each proxy class instance can leverage the same sin-
gle SCServer instance for their instantiation and control,
and perhaps most importantly, it can enable synchroniza-
tion between the client application and server. For exam-
ple, by instantiating a Buffer and calling one of its meth-
ods to load an arbitrary soundfile, the Buffer can use the
SCServer for the low-level work of sending commands
to the server, and in turn, populate the Buffer’s members
such as channel count and sampling rate based off the re-
ply from the server. This synchronization is important to
the client in cases when channel count or sampling rate
of the file determine what module is loaded or what event
happens next in the client application, or perhaps when
another class uses that information during initialization as
we will see in the high-level portion of the API. An exam-
ple of the mid-level API looks like so:

6.3. High-level API - Sound made easy

The most recent addition to the library, the Sound class,
represents the start of the high-level portion of the API.
This class is intended to be as intuitive and easy to use
as possible, targeted towards developers with casual ex-
posure to audio practices. The Sound class and future
high-level classes are intended to make it easy to build and
control one or many instances of simple to complex au-

dio generators. These high-level classes can build directly
on the classes from the low and mid-level portions of the
API. For example, the Sound class represents a standard
soundfile player, with looping, tape-head transposition, n-
channel playback, seeking, gain control, fade in/out en-
velopes, and of course typical stop/start playback. In the
simplest case, it uses internal Synth and Buffer members
to load the necessary soundfile and control it via a synth
definition on the server. The Sound class can be used for
simple soundfile playback like so:

7. CALVR PROJECTS USING LIBCOLLIDER

We are working on a series of example applications, some
of which demonstrate a simple generalized use of spatial-
ized sound projection. Our specific interests in the use of
libCollider can best be understood from the perspective of
two projects.

7.1. Seismic Viewer: Increasing spatio-temporal reso-
lution through audio-visual syncretism

While the visual sense is arguably superior when it comes
to a precise spatial analysis of our surroundings, the audi-
tory sense appears to be of a significantly higher temporal
resolution. An integration of both is especially valuable as
each sense can contribute its own potentials and strengths
in the fused emergence of audio-vision [8]. While CalVR
proceeds in its rendering frame-by-frame, producing about
20-40 fps—or one frame every 25-50 ms, the temporal
resolution of the auditory sense is evidently much higher.

Figure 6. Interactive audio-visual display of seismologi-
cal event catalogs [2]

Our VR application Seismic Viewer employs this phe-
nomenon by a temporal synchronisation of localized flashes

of brightness with a stream of localized percussive sounds
that represent a realization of global earthquake events
presented in temporal scaling. Auditory events are sched-
uled at every CalVR frame, but a much higher resolu-
tion is achieved by using scsynth’s potential for a micro-
delayed execution of the transmitted commands.

7.2. Virtual acoustic simulator

Another application of libCollider in the context of CalVR
is the creation of a real-time architecture design tool that
includes the rendering of an auditory impression of the
resulting spatial structure. While the computational effi-
ciency of scsynth is already beneficial, the inherently dy-
namic and scalable nature of scsynth’s rendering engine
allows us to produce increased navigability and the sup-
port for more and more complex simulated geometries. A
more detailed look at the virtual acoustic simulator will be
the topic of a future publication.

8. CONCLUSION

While our own applications for libCollider are dominantly
in the field of immersive visualization and audio-visual
display, we hope that the application architecture of lib-
Collider, both the separation of auditory and visual ren-
dering into different threads controlled from a single C++
application as well as the use of SuperCollider’s powerful
scsynth audio rendering system will prove to be a suc-
cessful model to integrate audio into a wide variety of
cross-platform applications—and that the multi-level API
will be attractive to programmers of different interests and
specialization levels. We are looking forward for further
development and lively contact with other potential users
and co-developers around the globe [3].

9. ACKNOWLEDGEMENTS

We would like to thank our collaborators from the Immer-
sive Visualization Laboratory and the CISA3 workgroup
at the Qualcomm Institute, namely Cathleen Hughes, David
Srour, and Christopher McFarland, and we thank the King
Abdulaziz City for Science and Technology, Saudi Ara-
bia, for their partial funding of these developments. This
work was developed in the Sonic Arts R&D group under
the direction of Peter Otto. We are grateful for his contin-
ual engagement, inspiration and support.

10. REFERENCES

[1] https://github.com/libpd. [Online]. Available: https:
//github.com/libpd

[2] “ANSS composite earthquake catalog,”
http://quake.geo.berkeley.edu/cnss/. [Online]. Avail-
able: http://quake.geo.berkeley.edu/cnss/

[3] “libcollider GitHub,” https://github.com/libcollider.
[Online]. Available: https://github.com/libcollider

262  |  2013 ICMC idea  |  SHORT PAPERS 263  |  2013 ICMC idea  |  SHORT PAPERS

Figure 5. libpd’s integrated solution for app audio: A
C-based wrapper around Pure Data with multi-language
bindings.

solution, while at the same time providing a close cou-
pling between the sound rendering process and the appli-
cation programming interface.

libpd achieves a separation of the application thread
from the sound rendering thread, but does in itself neither
permit an on-the-fly reorganization of audio rendering,
nor—without the addition of a custom network layer—
to displace the sound-rendering process onto another ma-
chine.

In the future, libCollider might be able to provide vari-
able language bindings comparable to those of libpd, how-
ever, similar client libraries in other languages already ex-
ist, for example jCollider [12].

6. LIBCOLLIDER MULTI-LEVEL API

6.1. Low-level API - The Server Proxy

Since scsynth has a clearly documented set of the com-
mands it understands and replies it returns [6], the ini-
tial motivation behind the API was to create one or more
classes that handle sending those commands and properly
dispatching any replies from the server. The initial re-
sult is the low level API contained in the class SCServer.
SCServer has a full featured set of public members that
currently include almost all commands found in the sc-
synth command reference [6]. SCServer also serves as
a client-side proxy of a remote server instance. Thus, in
a project you would typically have as many SCServer
instances as you have server instances. SCServer con-
veniently abstracts all of the network and OSC code that
is used to send and dispatch messages to and from the
server via UDP or TCP. A code example of the low-level
API looks like so:

6.2. Mid-level API - Quasi-SCLang

The motivation behind the middle portion of the API is
to provide a set of proxy classes that mirror the structures
involved in audio synthesis one works with when using
scsynth. These include the familiar objects Buffer, Bus,
Node and its subclasses, Synth and Group. These proxy
classes provide a means to instantiate and retain a handle
on server-side instances of these objects. Most of these
classes are passed a pointer to a valid SCServer instance.
The SCServer instance conveniently provides the neces-
sary commands to instantiate and control the objects that
wrap a pointer to it. An obvious benefit of this model is
that each proxy class instance can leverage the same sin-
gle SCServer instance for their instantiation and control,
and perhaps most importantly, it can enable synchroniza-
tion between the client application and server. For exam-
ple, by instantiating a Buffer and calling one of its meth-
ods to load an arbitrary soundfile, the Buffer can use the
SCServer for the low-level work of sending commands
to the server, and in turn, populate the Buffer’s members
such as channel count and sampling rate based off the re-
ply from the server. This synchronization is important to
the client in cases when channel count or sampling rate
of the file determine what module is loaded or what event
happens next in the client application, or perhaps when
another class uses that information during initialization as
we will see in the high-level portion of the API. An exam-
ple of the mid-level API looks like so:

6.3. High-level API - Sound made easy

The most recent addition to the library, the Sound class,
represents the start of the high-level portion of the API.
This class is intended to be as intuitive and easy to use
as possible, targeted towards developers with casual ex-
posure to audio practices. The Sound class and future
high-level classes are intended to make it easy to build and
control one or many instances of simple to complex au-

dio generators. These high-level classes can build directly
on the classes from the low and mid-level portions of the
API. For example, the Sound class represents a standard
soundfile player, with looping, tape-head transposition, n-
channel playback, seeking, gain control, fade in/out en-
velopes, and of course typical stop/start playback. In the
simplest case, it uses internal Synth and Buffer members
to load the necessary soundfile and control it via a synth
definition on the server. The Sound class can be used for
simple soundfile playback like so:

7. CALVR PROJECTS USING LIBCOLLIDER

We are working on a series of example applications, some
of which demonstrate a simple generalized use of spatial-
ized sound projection. Our specific interests in the use of
libCollider can best be understood from the perspective of
two projects.

7.1. Seismic Viewer: Increasing spatio-temporal reso-
lution through audio-visual syncretism

While the visual sense is arguably superior when it comes
to a precise spatial analysis of our surroundings, the audi-
tory sense appears to be of a significantly higher temporal
resolution. An integration of both is especially valuable as
each sense can contribute its own potentials and strengths
in the fused emergence of audio-vision [8]. While CalVR
proceeds in its rendering frame-by-frame, producing about
20-40 fps—or one frame every 25-50 ms, the temporal
resolution of the auditory sense is evidently much higher.

Figure 6. Interactive audio-visual display of seismologi-
cal event catalogs [2]

Our VR application Seismic Viewer employs this phe-
nomenon by a temporal synchronisation of localized flashes

of brightness with a stream of localized percussive sounds
that represent a realization of global earthquake events
presented in temporal scaling. Auditory events are sched-
uled at every CalVR frame, but a much higher resolu-
tion is achieved by using scsynth’s potential for a micro-
delayed execution of the transmitted commands.

7.2. Virtual acoustic simulator

Another application of libCollider in the context of CalVR
is the creation of a real-time architecture design tool that
includes the rendering of an auditory impression of the
resulting spatial structure. While the computational effi-
ciency of scsynth is already beneficial, the inherently dy-
namic and scalable nature of scsynth’s rendering engine
allows us to produce increased navigability and the sup-
port for more and more complex simulated geometries. A
more detailed look at the virtual acoustic simulator will be
the topic of a future publication.

8. CONCLUSION

While our own applications for libCollider are dominantly
in the field of immersive visualization and audio-visual
display, we hope that the application architecture of lib-
Collider, both the separation of auditory and visual ren-
dering into different threads controlled from a single C++
application as well as the use of SuperCollider’s powerful
scsynth audio rendering system will prove to be a suc-
cessful model to integrate audio into a wide variety of
cross-platform applications—and that the multi-level API
will be attractive to programmers of different interests and
specialization levels. We are looking forward for further
development and lively contact with other potential users
and co-developers around the globe [3].

9. ACKNOWLEDGEMENTS

We would like to thank our collaborators from the Immer-
sive Visualization Laboratory and the CISA3 workgroup
at the Qualcomm Institute, namely Cathleen Hughes, David
Srour, and Christopher McFarland, and we thank the King
Abdulaziz City for Science and Technology, Saudi Ara-
bia, for their partial funding of these developments. This
work was developed in the Sonic Arts R&D group under
the direction of Peter Otto. We are grateful for his contin-
ual engagement, inspiration and support.

10. REFERENCES

[1] https://github.com/libpd. [Online]. Available: https:
//github.com/libpd

[2] “ANSS composite earthquake catalog,”
http://quake.geo.berkeley.edu/cnss/. [Online]. Avail-
able: http://quake.geo.berkeley.edu/cnss/

[3] “libcollider GitHub,” https://github.com/libcollider.
[Online]. Available: https://github.com/libcollider

264  |  2013 ICMC idea  |  SHORT PAPERS 265  |  2013 ICMC idea  |  SHORT PAPERS

[4] “The openscenegraph project website,”
http://www.openscenegraph.org/. [Online]. Avail-
able: http://www.openscenegraph.org/

[5] “Pure data,” http://crca.ucsd.edu/˜msp/software.html.
[Online]. Available: http://crca.ucsd.edu/⇠msp/
software.html

[6] “Server command reference,”
http://doc.sccode.org/Reference/Server-
Command-Reference.html. [Online]. Avail-
able: http://doc.sccode.org/Reference/
Server-Command-Reference.html

[7] P. Brinkmann, Making Musical Apps: Real-time au-
dio synthesis on Android and iOS. O’Reilly Media,
Feb. 2012.

[8] M. Chion, C. Gorbman, and W. Murch, Audio-
Vision. Columbia University Press, Apr. 1994.

[9] G. Eckel et al., “A spatial auditory display for the
cyberstage,” in Proc. 5th International Conference
on Auditory Display, electronic Workshops in Com-
puting (eWiC) series, British Computer Society and
Springer, Glasgow, 1998.

[10] T. Hermann, A. Hunt, and J. G. Neuhoff, Eds.,
The Sonification Handbook. Berlin, Germany:
Logos Publishing House, 2011. [Online]. Available:
http://sonification.de/handbook

[11] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[12] H. H. Rutz, “Rethinking the supercollider client...”
in Proceedings of the SuperCollider Symposium,
Berlin. Citeseer, 2010.

[13] J. P. Schulze, A. Prudhomme, P. Weber, and T. A.
DeFanti, “Calvr: an advanced open source virtual re-
ality software framework,” in IS&T/SPIE Electronic
Imaging. International Society for Optics and Pho-
tonics, 2013, pp. 864 902–864 902.

[14] Z. Seldess and T. Yamada, “Tahakum: A multi-
purpose audio control framework,” in Proceedings
of the International Conference on New Interfaces
for Musical Expression, pp. 161–166.

[15] R. West, J. Gossmann, T. Margolis, J. P. Schulze,
J. Lewis, B. Hackbarth, and I. Mostafavi, “Sensate
abstraction: hybrid strategies for multi-dimensional
data in expressive virtual reality contexts,” in Pro-
ceedings of 21st Annual IS&T/SPIE Symposium on
Electronic Imaging and conference on The Engi-
neering Reality of Virtual Reality,(18-22 January
2009 San Jose, California USA), 2009.

[16] M. Wright, “Open sound control-a new protocol for
communicationg with sound synthesizers,” in Pro-
ceedings of the 1997 International Computer Music
Conference, 1997, pp. 101–104.

MIC

Sound mixing

Filming and recording

Source 2

Volume

Fisheye-lens camera
(Wide-angle)

Source 4 Source 5 Source 6

Source 3Source 1

Fisheye
image

Cut and
correct
distortion

Normal-lens
image

elevation azimuth

distance between
hand and distance sensor

Detect
head direction

User

Projected
image

Sound output

Image output

Multi-channel
recording

Recorder

Image processing

Elevation Azimuth

Distance between hand and
distance sensor

CONCERT SCOPE HEADPHONES

Masatoshi Hamanaka Seunghee Lee
University of Tsukuba

hamanaka@iit.tsukuba.ac.jp
University of Tsukuba

lee@kansei.tsukuba.ac.jp

ABSTRACT

We designed concert scope headphones that are
equipped with a projector, an inclination sensor on the
top of the headphones, and a distance sensor on the
outside right headphone. We previously developed
sound scope headphones that enable users to change the
sound mixing depending on their head direction.
However, the system could not handle images. In
contrast, our headphones let the user listening to and
watching a music scene scope on a particular part that he
or she wants to hear and see. For example, when
listening to jazz, one might want to more clearly hear
and see the guitar or sax being played. The user can hear
the guitar or sax sound from a frontal position by
moving their head to the left or right. The user can
adjust the distance sensor on the headphones and focus
on a particular part they want to hear and see by simply
putting their hand behind their ear.

1. INTRODUCTION

Our goal is to create an audio-visual interface that
enables for the separation of the listening and watching
of each performance if the user wants to clearly hear and
see a particular performer. A musical expert at a concert,
such as a conductor, can distinguish between the sounds
coming from each performer, even if there are many
performers playing the same instrument part. However,
it is hard for musical novices to distinguish each
performer's sound. Therefore, we have developed concert
scope headphones that let a user listening and watching a
music performance to scope on a particular part of the
performance that he or she wants to hear and see.
 We had to define two requirements for the interface.
First, the user can control it by simply performing the
natural actions related to listening. These actions include
those made by people in a concert hall audience (e.g.,
they turn their heads in the direction of the viewing
and/or listening target). Thus, with this interface, a user
can better enjoy videos of concerts by selecting
particular areas and/or performers on the stage by
turning his or her head in their direction and cupping a
hand to their ear. Second, the constructed device
incorporating this interface needs to be small enough for
home use. Since projectors have been getting smaller

and smaller, we were able to develop a headphone
device equipped with a compact projector, an inclination
sensor, and a distance sensor (Figure 1). This device
detects the user’s head direction, detects the distance
between the user’s cupped hand and ear, and outputs the
corresponding image and sound. Moreover, it is small
enough to be used in the home as well as many other
environments.

Figure 2 shows the system flow of our concert
viewing headphones. First, the user’s head direction is
detected using inertial sensors. Next, the portion of the
wide-angle image that captures the whole stage
corresponding to the head direction is extracted, and this
portion is projected on the screen. At the same time, the
recorded sounds are mixed to emphasize the sounds of
the performers within the extracted portion (i.e., the
projected image). If the user cups a hand to his or her
ear to hear better, the projected image is enlarged to a
degree corresponding to the distance between the user’s
hand and the distance sensor attached to one of the
headphones, enabling the user to better focus on a
particular performer.

The concert scope headphones have three particular
features.

Figure 1. Concert scope headphones.

Screen

Projector

Distance
sensor

Inertial sensor

Figure 2. System flow of audiovisual interface.

