Consistent Quantum Theory Exercises for Ch. 4 (Version of 1 May 2003)

4.1 a) For a classical harmonic oscillator with energy

$$E(x,p) = p^2/2m + \frac{1}{2}Kx^2$$
.

sketch regions in the x, p plane corresponding to the properties

P: $p_0 \le p \le p_1$ for some $p_0 < 0 < p_1$.

Q: $E \leq E_0$ for some $E_0 > 0$.

- b) Indicate the regions (on your previous sketch or on a new sketch) $P \wedge Q$ and $\tilde{P} \vee Q$, where \tilde{P} is the negation of P.
- c) Under what conditions (what choice of parameters p_0, p_1, E_0) will the property $\tilde{P} \wedge Q$ be always false, i.e., impossible?
- **4.2** a) For projectors X, (4.20) and X', (4.46), describe the projector $X \vee X'$, allowing various possibilities for the order of the four numbers x_1, x_2, x'_1, x'_2 , assuming always that $x_1 < x_2$ and $x'_1 < x'_2$.
- b) For the particular order $x_1 < x'_1 < x_2 < x'_2$ in (4.47), check the two relationships in (4.51) by separately working out both sides with P = X and Q = X', and showing that the projectors are equal.
 - **4.3** Consider a toy model in one dimension, with $|m\rangle$ the ket for a particle at site m.
 - a) Write down as dyads of the form $|m\rangle\langle m'|$, or sums of the dyads, the following projectors:
 - P: Particle at site m = 1.
 - Q: Particle between 0 and 2. (Q projects onto a three-dimensional subspace).
 - R: Projector onto the ray (one-dimensional subspace) containing $|\phi\rangle = |1\rangle + 2i|3\rangle$.
- b) Which of these projectors commute with each other and which do not commute? You may either work out the commutator, or give reasons why it is or is not zero.
- c) In all cases in which two projectors commute, find the projectors corresponding to the conjunction $(A \wedge B)$ and to the disjunction $(A \vee B)$ of the two properties.

4.4 Let $|\phi_n\rangle$ be the state of a harmonic oscillator with energy $E=(n+\frac{1}{2})\hbar\omega$, and let

$$P = [\phi_0] + [\phi_1], \quad Q = [\phi_0] + [\phi_1] + [\phi_2]$$

be the projectors for the properties $E < 2\hbar\omega$ and $E < 3\hbar\omega$, respectively.

- a) Find the projectors PQ, $\tilde{P}Q$, and $P\tilde{Q}$, and in each case explain *briefly* (one or two sentences) why the property corresponding to the product is what you would expect for the conjunction of the two properties. (E.g., "If the energy is less than $2\hbar\omega$ and also less than $3\hbar\omega$, then it is obvious that....")
- b) Find a nonzero projector R other than $|0\rangle\langle 0|$, $|1\rangle\langle 1|$, or P such that PR = R. [Hint: Does every state in the subspace onto which P projects have a well-defined energy?]
 - c) Find a projector S such that QS = S, but $PS \neq SP$.
- **4.5** Show that for a spin half particle $[z^+]$ and $[x^+]$ do not commute, and then give an argument why the same will be true for the projectors $[v^+]$ and $[w^+]$ for the spin to be along any two directions v and w (unit vectors on the sphere), apart from certain exceptional cases, which you should specify.