Chapter 26

Decoherence and the Classical Limit

26.1 Introduction

Classical mechanics deals with objects which have a precise location and move in a deterministic
way as a function of time. By contrast, quantum mechanics uses wave functions which always have
some finite spatial extent, and the time development of a quantum system is (usually) random or
stochastic. Nonetheless, most physicists regard classical mechanics as an approximation to quantum
mechanics, an approximation which works well when the object of interest contains a large number
of atoms. How can it be that classical mechanics emerges as a good approximation to quantum
mechanics in the case of large objects?

Part of the answer to the question lies in the process of decoherence in which a quantum object
or system interacting with a suitable environment (which is also quantum mechanical) loses certain
types of quantum coherence which would be present in a completely isolated system. Even in
classical physics the interaction of a system with its environment can have significant effects. It
can lead to irreversible processes in which mechanical energy is turned into heat, with a resulting
increase of the total entropy. Think of a ball rolling along a smooth, flat surface. Eventually
it comes to rest as its kinetic energy is changed into heat in the surrounding air due to viscous
effects, or dissipated as vibrational energy inside the ball or in the material which makes up the
surface. (From this perspective the vibrational modes of the ball form part of its “environment”.)
While decoherence is (by definition) quantum mechanical, and so lacks any exact analog in classical
physics, it is closely related to irreversible effects.

In this chapter we explore a very simple case, one might even think of it as a toy model, of a
quantum particle interacting with its environment as it passes through an interferometer, in order
to illustrate some of the principles which govern decoherence. In the final section there are some
remarks on how classical mechanics emerges as a limiting case of quantum mechanics, and the role
which decoherence plays in relating classical and quantum physics. The discussion of decoherence
and of the classical limit of quantum mechanics presented here is only intended as an introduction
to a complex subject. The bibliography indicates some sources of additional material.
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302 CHAPTER 26. DECOHERENCE AND THE CLASSICAL LIMIT

26.2 Particle in an Interferometer

Consider a particle passing through an interferometer, shown schematically in Fig. 26.1, in which
an input beam in channel a is separated by a beam splitter into two arms ¢ and d, and then passes
through a second beam splitter into two output channels e and f. While this has been drawn as
a Mach-Zehnder interferometer similar to the interferometers considered in earlier chapters, it is
best to think of it as a neutron interferometer or an interferometer for atoms. The principles of
interference for photons and material particles are the same, but photons tend to interact with
their environment in a different way.

d/

Figure 26.1: Particle passing through an interferometer.

Let us suppose that the interferometer is set up so that a particle entering through channel
a always emerges in the f channel due to interference between the waves in the two arms ¢ and
d. As discussed in Ch. 13, this interference disappears if there is a measurement device in one or
both of the arms which determines which arm the particle passes through. Even in the absence of
a measuring device, the particle may interact with something, say a gas molecule, while traveling
through one arm but not through the other arm. In this way the interference effect will be reduced
if not entirely removed. One refers to this process as decoherence since it removes, or at least
reduces the interference effects resulting from a coherent superposition of the two wave packets in
the two arms. Sometimes one speaks metaphorically of the environment “measuring” which arm
the particle passes through.

Assume that at the first beam splitter the particle state undergoes a unitary time development

ja) = (le) + 1d))/V2, (26.1)
while passage through the arms of the interferometer results in
) = |c),  |d) = |d). (26.2)

Here |a) is a wave packet in the input channel at time ¢, |c) and |d) are wave packets emerging
from the first beam splitter in the ¢ and d arms of the interferometer at time t1, and |¢/) and |d’)
are the corresponding wave packets at time t9 just before they reach the second beam splitter. The
effect of passing through the second beam splitter is represented by

) = (le) 1)) /V2, 1) = (=le) +1£))/V2, (26.3)



26.2. PARTICLE IN AN INTERFEROMETER 303

where |e) and |f) are wave packets in the output channels of the second beam splitter at time ¢3.
The notation is chosen to resemble that used for the toy models in Sec. 12.1 and Ch. 13.

Next assume that while inside the interferometer the particle interacts with something in the
environment in a way which results in a unitary transformation of the form

e)le) = |)Ie'),  Id)le) = |d')|€"), (26.4)

on the Hilbert space A ® £ of the particle A and environment £, where |e) is the normalized state
of £ at time 1, and |¢’) and |¢”) are normalized states at to. For example, it might be the case that
if the particle passes through the ¢ arm some molecule is scattered from it resulting in the change
from |e) to |€'), whereas if the particle passes through the d arm there is no scattering, and the
change in the environment from |e) to |¢”) is the same as it would have been in the absence of the
particle. The complex number

a= (") =ad +id", (26.5)

with real and imaginary parts o’ and o, plays an important role in the following discussion. The
final particle wave packets |¢) and |d’) in (26.4) are the same as in the absence of any interaction with
the environment, (26.2). That is, we are assuming that the scattering process has an insignificant
influence upon the center of mass of the particle itself as it travels through either arm of the
interferometer. This approximation is made in order to simplify the following discussion; one
could, of course, explore a more complicated situation.

The complete unitary time evolution of the particle and its environment as the particle passes
through the interferometer is given by

[vo) = la)le) = (le) + 1d))le)/V2 =
|p2) = (\C’>I6’> +d)en) V2 (26.6)
[¥s) = {le)(I€) — 1) + 1) (Ie) + 1)} /2,

where we assume that the environment state |¢) does not change between ¢y and ¢;. (This is not
essential, and one could assume a different state, say |€), at to, which develops unitarily into |e) at
t1.) Therefore, in the family with support [¢o] © I © I ® {[e],[f]} the probabilities for the particle
emerging in each of the output channels are given by

Pr(e) = i((e’ - (e”\) . ( )
= 1((¢l€) +(e"|¢" >—< |6 ") = ("|€)) = %(1 —a), (26.7)
Pr(f) = 2((€|+ (") - (|€) + ) = 3(1+ &)

Because the states entering the inner product in (26.5) are normalized, || cannot be greater
than 1. If |¢”) = |¢), then o/ = a =1 and there is no decoherence: the interference pattern is the
same as in the absence of any interaction with the environment, and the particle always emerges in
f. The interference effect disappears when o’ = 0, and the particle emerges with equal probability
in e or f. This could happen even with |«| rather large, for example, & = i. But in such a case
there would still be a substantial coherence between the wave packets in the ¢ and d arms, and
the corresponding interference effect could be detected by shifting the second beam splitter by a
small amount so as to change the difference in path length between the ¢ and d arms by a quarter
wavelength. Hence it seems sensible to use |a| rather than o’ as a measure of coherence between
the two arms of the interferometer, and 1 — || as a measure of the amount of decoherence.
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26.3 Density Matrix

In a situation in which one is interested in what happens to the particle after it passes through the
second beam splitter without reference to the final state of the environment, it is convenient to use
a density matrix py for the particle at the intermediate time to in (26.6), just before the particle
passes through the second beam splitter. By taking a partial trace over the environment £ in the
manner indicated in Sec. 15.3, one obtains

p2 = Tre ([v2) (¥a]) = 5 (|| + |d){d'| + ald)(d'] + a™|d)(]). (26.8)

This has the form
(12 «/2

when written as a matrix in the basis {|¢’), |d’)}, with (¢/|p2|¢’) in the upper left corner. If we think
of py as a pre-probability, see Sec. 15.2, its diagonal elements represent the probability that the
particle will be in the ¢ or the d arm. Twice the magnitude of the off-diagonal elements serves as
a convenient measure of coherence between the two arms of the interferometer, and thus 1 — |o] is
a measure of the decoherence.

After the particle passes through the second beam splitter, the density matrix is given by (see
Sec. 15.4)

p3 = TA(tg, tg)pgTA(fg, tg), (2610)

where T 4(ts, t2) is the unitary transformation produced by the second beam splitter, (26.3), and we
assume that during this process there is no further interaction of the particle with the environment.
The result is

p3 =2 {1 —a)|e)e| + (L + ) F)(f|+ia” (le){f] — | f){e])} - (26.11)

The diagonal parts of ps, the coefficients of |e)(e| and |f)(f]|, are the probabilities that the particle
will emerge in the e or the f channel, and are, of course, identical with the expressions in (26.7).
Using a density matrix is particularly convenient for discussing a situation in which the particle
interacts with the environment more than once as it passes through the ¢ or the d arm of the
interferometer. The simplest situation to analyze is one in which each of these interactions is
independent of the others, and they do not alter the wave packet of the particle. In particular, let
the environment consist of a number of separate pieces (e.g., separate molecules) with a Hilbert
space
E=6RE56REQ---&, (26.12)

and an initial state
l€) = le1) @ |e2) @ |€3) @ -+ [en) (26.13)

at time ¢1. The j’th interaction results in |¢;) changing to |e;> if the particle is in the ¢ arm, or to
‘e}’ ) if the particle is in the d arm. Thus the net effect of all of these interactions as the particle
passes through the interferometer is

[c)le) = |o)]ex)le2) - [en) = [} €') = |c)]en)]en) - - len),

d)le) = Id)ler)]ez) -+ - len) = |d)]e") = |d)]eT)]er) - -+ |€n).

(26.14)
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The reduced density matrix po for the particle just before it passes through the second beam splitter
is again of the form (26.8) or (26.9), with

a=("|¢) = araz- - an, (26.15)
where
aj = (€]]€)), (26.16)

and p3, when the particle has passed through the second beam splitter, is again given by (26.11).

In a typical situation one would expect the a; to be less than one, though not necessarily
small. Note that if there are a large number of collisions, a in (26.15) can be very small, even if the
individual o;; are not themselves small quantities. Thus repeated interactions with the environment
will in general lead to greater decoherence than that produced by a single interaction, and if these
interactions are of roughly the same kind, one expects the coherence |a| to decrease exponentially
with the number of interactions.

Even if the different interactions with the environment are not independent of one another,
the net effect may well be much the same, although it might take more interactions to produce
a given reduction of |a|. In any case, what happens at the second beam splitter, in particular
the probability that the particle will emerge in each of the output channels, depends only on the
density matrix p for the particle when it arrives at this beam splitter, and not on the details of
all the scattering processes which have occurred earlier. For this reason, a density matrix is very
convenient for analyzing the nature and extent of decoherence in this situation.

26.4 Random Environment

Suppose that the environment which interacts with the particle is itself random, and that at time
t1, when the particle emerges from the first beam splitter, it is described by a density matrix R
which can be written in the form

Ri= 3 pile el (26.17)

where {|¢/)} is an orthonormal basis of £, and > p; = 1. Although it is natural, and for many
purposes not misleading to think of the environment as being in the state |¢/) with probability p;,
we shall think of R; as simply a pre-probability (Sec. 15.2). Assume that while the particle is inside
the interferometer, during the time interval from ¢; to ¢, the interaction with the environment gives
rise to unitary transformations

) e?) = 1), [d)el) = |d) ), (26.18)

where we are again assuming, as in (26.4) and (26.14), that the environment has a negligible
influence on the particle wave packets |¢’) and |d’). Because the time evolution is unitary, {|¢/)}
and {|n/)} are orthonormal bases of £.

Let the state of the particle and the environment at ¢; be given by a density matrix

U, = [a] ® Ry, (26.19)
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where |a) = (|¢) + |d))/+/2 is the state of the particle when it emerges from the first beam splitter.
At t9, just before the particle leaves the interferometer, the density matrix resulting from unitary
time evolution of the total system will be

QZPJ{\C 1@ N+ ) d | @ ) (|

(26.20)
+ |C><d’| ® [¢7) (| + ') (| @ [17) (¢}
Taking a partial trace gives the expression
pa = Trs(Wa) = A{|Ve/| + |d)(d] + ald)d] + a”ld) (]}, (26.21)
for the reduced density matrix of the particle at time to, where
a=> " pilc). (26:22)
J

The expression (26.21) is formally identical to (26.8), but the complex parameter a is now
a weighted average of a collection of complex numbers, the inner products {(n’|¢7)}, each with
magnitude less than or equal to 1. Consider the case in which

(|¢7) = €', (26.23)

that is, the interaction with the environment results in nothing but a phase difference between
the wave packets of the particle in the ¢ and d arms. Even though |(n?|¢7)| = 1 for every j, the
sum (26.22) will in general result in || < 1, and if the sum includes a large number of random
phases, |a| can be quite small. Hence a random environment can produce decoherence even in
circumstances in which a non-random environment (as discussed in Secs. 26.2 and 26.3) does not.

The basis {|¢/)} in which R; is diagonal is useful for calculations, but does not actually enter
into the final result for ps. To see this, rewrite (26.18) in the form

le) @ |€) — |y @ Ucle), |d) @ le) — |d') @ Ugle), (26.24)

where |€) is any state of the environment, and U, and U, are unitary transformations on €. Then
(26.22) can be written in the form
a = Trg(RUIUL), (26.25)

which makes no reference to the basis {|e/)}.

26.5 Consistency of Histories

Consider a family of histories at times tg < t; < to < t3 with support

Y = ol © [d © [¢] @ [e],
Y =yl @ [d] @ [d]® [e],
vl = [y @ [d © [¢] @ 1], (26.26)
Y4 =] o [d @ [d] e [f],
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where [1)] is the initial state |a)|e) in (26.6), and the unitary dynamics is that of Sec. 26.2. The
chain operators for histories which end in [e] are automatically orthogonal to those of histories
which end in [f]. However, when the final states are the same, the inner products are

(K(YY),K(YY)) = a/d = —(K(Y™),K(Y™)), (26.27)

where « is the parameter defined in (26.5), which appears in the density matrix (26.8) or (26.9).
Equation (26.27) is also valid in the case of multiple interactions with the environment, where « is
given by (26.15). And it holds for the random environment discussed in Sec. 26.4, with « defined
in (26.22), provided one redefines the histories in (26.26) by eliminating the intial state [t)g], so
that each history begins with [c] or [d] at ¢;, and uses the density matrix ¥y, (26.19), as an initial
state at time t; in the consistency condition (15.48). In this case the operator inner product used
in (26.27) is (,)w,, as it involves the density matrix ¥y, see (15.48).

If there is no interaction with the environment, then aw = 1 and (26.27) implies that the family
(26.26) is not consistent. However, if « is very small, even though it is not exactly zero, one can
say that the family (26.26) is approzimately consistent, or consistent for all practical purposes, for
the reasons indicated at the end of Sec. 10.2: one expects that by altering the projectors by small
amounts one can produce a nearby family which is exactly consistent, and which has essentially
the same physical significance as the original family.

This shows that the presence of decoherence may make it possible to discuss the time dependence
of a quantum system using a family of histories which in the absence of decoherence would violate
the consistency condtions and thus not make sense. This is an important consideration when one
wants to understand how the classical behavior of macroscopic objects is consistent with quantum
mechanics, which is the topic of the next section.

26.6 Decoherence and Classical Physics

The simple example discussed in the preceding sections of this chapter illustrates two important
consequences of decoherence: it can destroy interference effects, and it can render certain families
of histories of a subsystem consistent, or at least approximately consistent, when in the absence of
decoherence such a family is inconsistent. There is an additional important effect which is not part
of decoherence as such, for it can arise in either a classical or a quantum system interacting with
its environment: the environment perturbs the motion of the system one is interested in, typically
in a random way. (A classical example is Brownian motion, Sec. 8.1.)

The laws of classical mechanics are simple, have an elegant mathematical form, and are quite
unlike the laws of quantum mechanics. Nonetheless, physicists believe that classical laws are only
an approximation to the more fundamental quantum laws, and that quantum mechanics determines
the motion of macroscopic objects made up of many atoms in the same way as it determines the
motion of the atoms themselves, and that of the elementary particles of which the atoms are
composed. However, showing that classical physics is a limiting case of quantum physics is a non-
trivial task which, despite considerable progress, is not yet complete, and a detailed discussion
lies outside the scope of this book. The following remarks are intended to give a very rough and
qualitative picture of how the correspondence between classical and quantum physics comes about.
More detailed treatments will be found in the references listed in the bibliography.
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A macroscopic object such as a baseball, or even a grain of dust, is made up of an enormous
number of atoms. The description of its motion provided by classical physics ignores most of the
mechanical degrees of freedom, and focuses on a rather small number of collective coordinates.
These are, for example, the center of mass and the Euler angles for a rigid body, to which may
be added the vibrational modes for a flexible object. For a fluid, the collective coordinates are
the hydrodynamic variables of mass and momentum density, thought of as obtained by “coarse
graining” an atomic description by averaging over small volumes which still contain a very large
number of atoms. It is important to note that the classical description employs a very special set
of quantities, rather than using all the mechanical degrees of freedom.

It is plausible that properties represented by classical collective coordinates, such as “the mass
density in region X has the value Y, correspond to projectors onto subspaces of a suitable Hilbert
space. These subspaces will have a very large dimension, because the classical description is rela-
tively coarse, and there will not be a unique projector corresponding to a classical property, but
instead a collection of projectors (or subspaces), all of which correspond within some approximation
to the same classical property.

In the same way, a classical property which changes as a function of time will be associated
with different projectors as time progresses, and thus with a quantum history. The continuous
time variable of a classical description can be related to the discrete times of a quantum history in
much the same way as a continuous classical mass distribution is related to the discrete atoms of a
quantum description. Just as a given classical property will not correspond to a unique quantum
projector, there will be many quantum histories, and families of histories, which correspond to a
given classical description of the motion, and represent it to a fairly good approximation. The term
“quasi-classical” is used for such a quantum family and the histories which it contains.

In order for a quasi-classical family to qualify as a genuine quantum description, it must satisfy
the consistency conditions. Can one be sure that this is the case? Gell-Mann, Hartle, Brun, and
Omnes (see references in the bibliography) have studied this problem, and concluded that there
are some fairly general conditions under which one can expect consistency conditions to be at least
approximately satisfied for quasi-classical families of the sort one encounters in hydrodynamics or
in the motion of rigid objects. That such quasi-classical families will turn out to be consistent is
made plausible by the following consideration. Any system of macroscopic size is constantly in
contact with an environment. Even a dust particle deep in interstellar space is bombarded by the
cosmic background radiation, and will occasionally collide with atoms or molecules. In addition to
an external environment of this sort, macroscopic systems have an internal environment constituted
by the degrees of freedom left over when the collective coordinates have been specified. Both the
external and the internal environment can contribute to processes of decoherence, and these can
make it very hard to observe quantum interference effects. While the absence of interference, which
is signaled by the fact that the density matrix of the subsystem is (almost) diagonal in a suitable
representation, is not the same thing as the consistency of a suitable family of histories, nonetheless
the two are related, as suggested by the example considered earlier in this chapter, where the
same parameter « characterizes both the degree of coherence of the particle when it leaves the
interferometer, and also the extent to which certain consistency conditions are not fulfilled. The
effectiveness of this kind of decoherence is what makes it very difficult to design experiments in
which macroscopic objects, even those no bigger than large molecules, exhibit quantum interference.

If a quasi-classical family can be shown to be consistent, will the histories in it obey, at least
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approximately, classical equations of motion? Again, this is a non-trivial question, and we refer the
reader to the references in the bibliography for various studies. For example, Omnes has published
a fairly general argument that classical and quantum mechanics give similar results if the quantum
projectors correspond (approximately) to a cell in the classical phase space which is not too small
and has a fairly regular shape, provided that during the time interval of interest the classical
equations of motion do not result in too great a distortion of this cell. This last condition can
break down rather quickly in the presence of chaos, a situation in which the motion predicted by
the classical equations depends in a very sensitive way upon initial conditions.

Classical equations of motion are deterministic, whereas a quantum description employing his-
tories is stochastic. How can these be reconciled? The answer is that the classical equations
are idealizations which in appropriate circumstances work rather well. However, one must expect
the motion of any real macroscopic system to show some effects of a random environment. The
deterministic equations one usually writes down for classical collective coordinates ignore these
environmental effects. The equations can be modified to allow for the effects of the environment
by including stochastic noise, but then they are no longer deterministic, and this narrows the
gap between classical and quantum descriptions. It is also worth keeping in mind that under
appropriate conditions the quantum probability associated with a suitable quasi-classical history
of macroscopic events can be very close to one. These considerations would seem to remove any
conflict between classical and quantum physics with respect to determinism, especially when one
realizes that the classical description must in any case be an approximation to some more accurate
quantum description.

In conclusion, even though many details have not been worked out and much remains to be
done, there is no reason at present to doubt that the equations of classical mechanics represent
an appropriate limit of a more fundamental quantum description based upon a suitable set of
consistent histories. Only certain aspects of the motion of macroscopic physical bodies, namely
those described by appropriate collective coordinates, are governed by classical laws. These laws
provide an approximate description which, while quite adequate for many purposes, will need to
be supplemented in some circumstances by adding a certain amount of environmental or quantum
noise.



