
Chapter 24

EPR Paradox and Bell Inequalities

24.1 Bohm Version of the EPR Paradox

Einstein, Podolsky, and Rosen (EPR) were concerned with the following issue. Given two spatially
separated quantum systems A and B and an appropriate initial entangled state, a measurement of
a property on system A can be an indirect measurement of B in the sense that from the outcome of
the A measurement one can infer with probability 1 a property of B, because the two systems are
correlated. There are cases in which either of two properties of B represented by noncommuting
projectors can be measured indirectly in this manner, and EPR argued that this implied that
system B could possess two incompatible properties at the same time, contrary to the principles
of quantum theory.

In order to understand this argument, it is best to apply it to a specific model system, and
we shall do so using Bohm’s formulation of the EPR paradox in which the systems A and B are
two spin-half particles a and b in two different regions of space, with their spin degrees of freedom
initially in a spin singlet state (23.2). As an aid to later discussion, we write the argument in the
form of a set of numbered assertions leading to a paradox: a result which seems plausible, but
contradicts the basic principles of quantum theory. The assertions E1 to E4 are not intended to be
exact counterparts of statements in the original EPR paper, even when the latter are translated
into the language of spin-half particles. However, the general idea is very similar, and the basic
conundrum is the same.

E1. Suppose Saz is measured for particle a. The result allows one to predict Sbz for particle b,
since Sbz = −Saz.

E2. In the same way, the outcome of a measurement of Sax allows one to predict Sbx since
Sbx = −Sax.

E3. Particle b is isolated from particle a, and therefore it cannot be affected by measurements
carried out on particle a.

E4. Consequently, particle b must simultaneously possess values for both Sbz and Sbx, namely
the values revealed by the corresponding measurements on particle a, either of which could be
carried out in any given experimental run.

E5. But this contradicts the basic principles of quantum theory, since in the two-dimensional
spin space one cannot simultaneously assign values of both Sz and Sx to particle b.
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Let us explore the paradox by asking how each of these assertions is related to a precise quantum
mechanical description of the situation. We begin with E1, and employ the notation in Sec. 23.4,
with the particles initially in a spin singlet state |ψ0〉, and an apparatus designed to measure Saz

initially in the state |Z◦
a〉 at time t0. The interaction of particle a with the apparatus during

the time interval from t1 to t2 gives rise to the unitary time transformation (23.21). We then
need a consistent family which includes the possible outcomes Z+

a and Z−
a of the measurement,

corresponding to Saz = +1/2 and −1/2, together with the values of Sbz.

It is useful to begin with the family in (23.29), since it comes the closest among all the families
in Sec. 23.4 to representing how physicists would have thought about the problem in 1935, when
the EPR paper was published. In this family the initial state evolves unitarily until after the
measurement has occurred, when there is a split (or “collapse”) into the two possibilities Z+

a z
−

b

and Z−
a z

+

b
. Using this family one can deduce Sbz = −1/2 from the measurement outcome Z+

a , and
Sbz = +1/2 from Z−

a ; the results can be expressed formally as conditional probabilities, (23.25).
This means that E1 is in agreement with the principles of quantum theory.

Even stronger results can be obtained using the family (23.22) in which the stochastic split takes
place at an earlier time. In this family it is possible to view the measurement of Saz as revealing
a pre-existing property of particle a at a time before the measurement took place, a value which
was already the opposite of Sbz. In addition, the value of Sbz was unaffected by the measurement
of Saz, a fact expressed formally by the conditional probabilities in (23.26). Thus this family both
confirms E1 and lends support to E3. Additional support for E3 comes from the family (23.31),
which shows that a measurement of Saz does not have any effect upon Sbx, and of course one could
set up an analogous family using any other component of spin of particle b, and reach the same
conclusion.

Next we come to E2. It is nothing but E1 with Sz replaced by Sx for both particles, so the
preceding discussion of E1 will apply to E2, with obvious modifications. The family (23.28) with
its apparatus for measuring Sax must be used in place of (23.22), and from it one can deduce the
counterparts of (23.23) to (23.26) with z and Z replaced by x and X. And of course the Sax

measurement will not alter any component of the spin of particle b, which confirms E3.

Assertion E4 would seem to be an immediate consequence of those preceding it were it not
for the requirement that quantum reasoning employ a single framework in order to reach a sound
conclusion, Sec. 16.1. Assertions E1 and E2 have been justified on the basis of two distinct consistent
families, (23.22) and (23.28). Are these families compatible, i.e., can they be combined in a single
framework? One’s first thought is that they cannot be combined, because the projectors for the
properties associated with Saz and Sbz at t1 (the intermediate time) in (23.22) obviously do not
commute with those in (23.28), which are associated with Sax and Sbx, and the same is true of the
projectors at t2. However, the situation is not so simple. The projectors representing the complete
histories in (23.22) are orthogonal to, and hence commute with, the history projectors in (23.28),
because the initial states |Z◦

a〉 and |X◦
a〉 for the apparatus will be orthogonal. This follows from the

fact that an apparatus designed to measure Sz will differ in a visible (macroscopic) way from one
designed to measure Sx; see the discussion following (17.10)

Consequently, (23.22) and (23.28) can be combined in a single consistent family with two dis-
tinct initial states: the spin singlet state of the particles combined with either of the measuring
apparatuses. However, the resulting framework does not support E4. The reason is that the two
initial states are mutually exclusive, so that only one or the other will occur in a particular ex-
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perimental run. Consequently, the conclusion that Sbz will have a particular value, at t1 or t2, as
determined by the measurement outcome, is only correct for a run in which the apparatus is set up
to measure Saz, and the corresponding conclusion for Sbx only holds for runs in which the apparatus
is set up to measure Sax. But E4 asserts that particle b simultaneously possesses values of Sz and
Sx, and this conclusion obviously cannot be reached using the framework under consideration.

To put the matter in a different way, E1 is correct in a situation in which Saz is measured,
and E2 in a situation in which Sax is measured. But there is no way to measure Saz and Sax

simultaneously for a single particle, and therefore no situation in which E1 and E2 can be applied
to the same particle. Einstein, Podolsky and Rosen were aware of this type of objection, as they
mention it towards the end of their paper, and they respond in a fashion which can be translated
into the language of spin-half particles in the following way. If one allows that an Saz measurement
can be used to predict Sbz and an Sax measurement to predict Sbx, but then asserts that Sbx

does not exist when Saz is measured, and Sbz does not exist when Sax is measured, this makes
the properties of particle b depend upon which measurement is carried out on particle a, and no
reasonable theory could allow this sort of thing.

There is nothing in the analysis presented in Sec. 23.4 to suggest that the properties of particle
b depend in any way upon the type of measurement carried out on particle a. However, the type
of property considered for particle b, Sbz as against Sbx, depends upon the choice of framework.
There are frameworks, such as (23.22) and (23.29), in which a measurement of Saz is combined
with values of Sbz, and other frameworks, such as (23.30) and (23.31), in which a measurement of
Saz is combined with values for Sbx. Quantum theory does not specify which framework is to be
used for a situation in which Saz is measured. However, only a framework which includes Sbz can
be used to correlate the outcome of an Saz measurement with some property of the spin of particle
b in a way which constitutes an indirect measurement of the latter.

Thus implicit in the analysis given in the EPR paper is the assumption that quantum theory
is limited to a single framework in the case of an Saz measurement, one corresponding to a wave
function collapse picture, (23.29), for this particular measurement. Once one recognizes that there
are many possible frameworks, the argument no longer works. One can hardly fault Einstein and
his colleagues for making such an assumption, as they were seeking to point out an inadequacy
of quantum mechanics as it had been developed up to that time, with measurement and wave
function collapse essential features of its physical interpretation. One can see in retrospect that
they had, indeed, located a severe shortcoming of the principal interpretation of quantum theory
then available, though they themselves did not know how to remedy it.

24.2 Counterfactuals and the EPR Paradox

An alternative way of thinking about assertion E4 in the previous section is to consider a case in
which Saz is measured (and thus Sbz is indirectly measured), and ask what would have been the
case, in this particular experimental run, if Sax had been measured instead, e.g., by rotating the
direction of the field gradient in the Stern-Gerlach apparatus just before the arrival of particle a.
This requires a counterfactual analysis, which can be carried out with the help of a quantum coin
toss in the manner indicated in Sec. 19.4. Let the total quantum system be described by an initial
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state

|Φ0〉 = |ψ0〉|Q〉, (24.1)

where |ψ0〉 is the spin singlet state (23.2), and |Q〉 the initial state of the quantum coin, servomech-
anism, and the measuring apparatus. (As it is not important for the following discussion, the center
of mass wave function |ωt〉, (23.1), has been omitted, just as in Ch. 23.) It will be convenient to
assume that the quantum coin toss corresponds to a unitary time development

|Q〉 7→
(

|X◦

a〉 + |Z◦

a〉
)

/
√

2, (24.2)

during the interval from t1 to t2, and that the measurement of Sax or Saz takes place during the
time interval from t2 to t3, rather than between t1 and t2 as in Ch. 23. Here |X◦

a〉 and |Z◦
a〉 are states

of the apparatus in which it is ready to measure Sax and Saz, respectively, and the servomechanism,
etc., is thought of as included in these states. Thus the overall unitary time development from the
initial time t0 to the final time t3 is given by

|Φ0〉 7→ |Φ0〉 7→ |ψ0〉
(

|X◦

a〉 + |Z◦

a〉
)

/
√

2 7→
(

|x−
b
〉|X+

a 〉 − |x+

b
〉|X−

a 〉 + |z−
b
〉|Z+

a 〉 − |z+

b
〉|Z−

a 〉
)

/2.
(24.3)

The final step from t2 to t3 is obtained by assuming that (23.27) applies when the apparatus is in
the state |X◦

a〉, and (23.21) when it is in the state |Z◦
a〉 at t2.

A consistent family F1 which provides one way of analyzing the counterfactual question posed
at the beginning of this section has for its support six histories for times t0 < t1 < t2 < t3. It is
convenient to arrange them in two groups of three:

Φ0 � z+
a z

−

b
�

{

Z◦
a � Z+

a z
−

b
,

X◦
a �

{

X+
a z

−

b
,

X−
a z

−

b
,

Φ0 � z−a z
+

b
�

{

Z◦
a � Z−

a z
+

b
,

X◦
a �

{

X+
a z

+

b
,

X−
a z

+

b
.

(24.4)

Suppose the coin toss resulted in Saz being measured, and the outcome was Z+
a , implying Sbz =

−1/2. To answer the question of what would have happened if Sax had been measured instead,
use the procedure of Sec. 19.4 and trace the outcome Z+

a z
−

b
in the first set of histories in (24.4)

backwards to the pivot z+
a z

−

b
and then forwards through the X◦

a node to the corresponding events
at t3. One concludes that had the quantum coin toss resulted in a measurement of Sax, the outcome
would have been X+

a or X−
a , each with probability 1/2, but in either case Sbz would have had the

value −1/2, corresponding to z−
b

, that is to say, the same value it had in the actual world in which
Saz, not Sax, was measured. This conclusion seems very reasonable on physical grounds, for one
would not expect a last minute choice to measure Sx rather than Sz for particle a to have any
influence on the distant particle b, since the measuring apparatus does not interact in any way with
particle b. To put the matter in another way, the conclusion of this counterfactual analysis agrees
with the discussion of E3 in Sec.24.1.

On the other hand, (24.4) by itself provides no immediate support for E4, for it supplies no
information at all about Sbx. Of course, this is only one consistent family, and one might hope
to do better using some other framework. One possibility might be the consistent family F2 with
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support

Φ0 � Φ0 �











Z◦
a �

{

Z+
a z

−

b
,

Z−
a z

+

b
,

X◦
a �

{

X+
a x

−

b
,

X−
a x

+

b
,

(24.5)

which corresponds pretty closely to the notion of wave function collapse. Once again assume that
the quantum coin toss leads to an Saz measurement, and that the outcome of this measurement
is Z+

a . Using Φ0 at t0 or t1 as the pivot, one concludes that had Sax been measured instead, Sbx

would have been −1/2 for the outcome X+
a , and +1/2 for the outcome X−

a .

This result seems encouraging, for we have found a consistent family in which both Sbz and Sbx

values appear, correlated in the expected way with Saz and Sax measurements. However the Sbz

states z±
b

and the Sbx states x±
b

in (24.5) are contextual properties in the sense of Ch. 14: z+

b
and

z−
b

both depend on Z◦
a , and x+

b
and x−

b
both depend on X◦

a . This means—see the discussion in
Ch. 14—that when using (24.5), one cannot think of Sbz and Sbx as having values independent of
the quantum coin toss. Only if the toss results in Z◦

a is it meaningful to talk about Sbz, and only
if it results in X◦

a can one talk about Sbx. And since the two outcomes of the quantum coin toss
are mutually exclusive possibilities, one and only one of which will occur in any given experimental
run, we have again failed to establish E4, and for basically the same reason pointed out in Sec.24.1
when discussing the family with two initial states that combines (23.22) and (23.28). Indeed, in the
latter family Sbz and Sbx are contextual properties which depend upon the corresponding initial
states—something we did not bother to point out in Sec.24.1 because dependence (in the technical
sense used in Ch. 14) on earlier events never poses much of an intuitive problem. But does this
contextuality mean that there is some mysterious long-range influence in that a last minute choice
to measure Sax rather than Saz would somehow determine whether particle b has a definite value
of Sx rather that Sz? No, for dependence or contextuality in the technical sense used in Ch. 14
denotes a logical relationship brought about by choosing a framework in a particular way, and
does not indicate any sort of physical causality. Thus there is no contradiction with the arguments
presented in Sec.24.1 in support of E3.

The reader with the patience to follow the analysis in this and the previous section may with
some justification complain that the outcome was already certain at the outset: if E4 really does
contradict the basic principles of quantum theory, as asserted by E5, then it is evident that it
can never be obtained by an analysis based upon those principles. True enough, but there are
various reasons why working out the details is still worthwhile. First, there is no way to establish
with absolute certainty the consistency of the basic principles of a physical theory, as it is always
something more than a piece of abstract mathematics or logic; one has to apply these principles
to various examples and see what they predict. Second, it is of some interest to find out where
and why the seemingly plausible chain of arguments from E1 to E5 comes apart, for this tells us
something about the difference between quantum and classical physics. The preceding analysis
shows that it is basically violations of the single framework rule which cause the trouble, and in
this respect the EPR paradox has quite a bit in common with the paradoxes discussed in previous
chapters. But the non-classical behavior of contextual events can also play a role, depending on
how one analyzes the paradox.
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Third, the analysis supports the correctness of the basic locality assumption of EPR as expressed
in E3, an assertion which is confirmed by the analysis in Ch. 23. Given that the EPR paradox
has sometimes been cited to support the claim that there are mysterious nonlocal influences in the
quantum world, it is worth emphasizing that the analysis given here does not show any evidence
of such influences. On the other hand, certain modifications of quantum mechanics in which the
Hilbert space is supplemented by “hidden variables” of a particular sort will necessarily involve
peculiar nonlocal influences if they are to reproduce the spin correlations (23.9) of standard quantum
theory, and these are the subject of the remaining sections in this chapter.

24.3 EPR and Hidden Variables

A hidden variable theory is an alternative approach to quantum mechanics in which the Hilbert
space of the standard theory is either replaced by or supplemented with a set of “hidden” (the
name is not particularly apt) variables which behave like those one is accustomed to in classical
mechanics. One of the best-known examples was proposed in 1952 by Bohm, using an approach
similar to one employed earlier by de Broglie, in which at any instant of time all particles have
precise positions, and these positions constitute the new (hidden) variables.

The simplest hidden variable model of a spin-half particle is one in which the different compo-
nents of its spin angular momentum simultaneously possess well-defined values, something which
is not true if one uses a quantum Hilbert space, for reasons discussed in Sec. 4.6. A measurement
of some component of spin using a Stern-Gerlach apparatus will then reveal the value that the
corresponding (hidden) variable had just before the measurement took place. More complicated
models are possible, but the general idea is that measurement outcomes are determined by vari-
ables that behave classically in the sense that they simultaneously possess definite values. John
Bell pointed out in 1964 that hidden variable models of this kind cannot reproduce the correlation
function C(a, b), (23.9) or (23.37), for spin-half particles in an initial singlet state, if one makes the
reasonable assumption that no mysterious long-range influences link the particles and the measur-
ing apparatuses. This result led to a number of experimental measurements of the spin correlation
function. Most of the experiments have used the polarizations of correlated photons rather than
spin-half particles, but the principles are the same, and the results are in good agreement with the
predictions of quantum mechanics. Note that one can think of this correlation function as referring
to particle spins in the absence of any measurement when one uses the framework (23.5), or as the
correlation function between outcomes of measurements of the spins of both particles, (23.37). In
line with most discussions of Bell’s result, we shall think of C(a, b) as referring to measurement
outcomes.

Before exhibiting one version of Bell’s argument in Sec. 24.4 below, it is useful to look at a
specific setup discussed by Mermin. Imagine two apparatuses, one to measure the spin of particle
a and the other the spin of particle b, each of which can measure the component of spin angular
momentum in one of three directions in space, u, v, and x, lying in the x, y plane, with an angle
of 120◦ between every pair of directions, Fig. 24.1. The component of spin which will be measured
is determined by a switch setting on the apparatus, and these settings will also be denoted by u,
v, and x. Let α(w) = ±1 denote the two possible outcomes of the measurement when the switch
setting of the a apparatus is w: +1 if the spin is found to be in the +w direction, Saw = +1/2,
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and −1 if it is in the opposite direction, Saw = −1/2. Let β(w) = ±1 be the possible outcomes of
the b apparatus measurement when its switch setting is w. In any given experiment these results
will be random, but if they are averaged over a large number of runs, the averages of α(w) and of
β(w) will be zero for any choice of w, whereas the correlation function (23.37) will be given by:

C(wa, wb) = 〈α(wa)β(wb)〉 =

{

−1 if wa = wb,

+1/2 if wa 6= wb,
(24.6)

since if the switch settings wa and wb for the a and b apparatuses are unequal, the angle between
the two directions is 120◦, and the inner product of the two corresponding unit vectors is −1/2.

y

x

u

v

Figure 24.1: Directions u, v, x in the x, y plane.

Let us try and construct a hidden variable model which can reproduce the correlation function
(24.6). Suppose that particle a when it leaves the source which prepares the two particles in a
singlet state contains an “instruction set” which will determine the outcomes of the measurements
in each of the three directions u, v, and x. For example, if the particle carries the instruction
set (+1,+1,−1), a measurement of Sau will yield the result +1/2, a measurement of Sav will
also yield +1/2, and one of Sax will yield −1/2. Of course, only one of these measurements will
actually be carried out, the one determined by the switch setting on the apparatus when particle a
arrives. Whichever measurement it may be, the result is determined ahead of time by the particle’s
instruction set. One can think of the instruction set as a list of the components of spin angular
momentum in each of the three directions, in units of h̄/2. This is what is called a “deterministic
hidden variable” model because the instruction set, which constitutes the hidden variables in this
model, determines the later measurement outcome without any extra element of randomness. It is
possible to construct stochastic hidden variable models, but they turn out to be no more successful
than deterministic models in reproducing the correlations predicted by standard quantum theory.

There are eight possible instruction sets for particle a and eight for particle b, thus a total of
sixty-four possibilities for the two particles together. However, the perfect anticorrelation when
wa = wb in (24.6) can only be achieved if the instruction set for b is the complementary set to that
of a, obtained by changing the sign of each instruction. If the a set is (+1,+1,−1), the b set must
be (−1,−1,+1). For were the b set something else, say (+1,−1,+1), then there would be identical
switch settings, in this case wa = wb = u, leading to α(u) = β(u), which is not possible. Similarly,
perfect anticorrelations for equal switch settings means that the instruction sets, once prepared at
the source which produces the singlet state, cannot change in a random manner as a particle moves
from the source to the measuring apparatus.

We will assume that the source produces singlet pairs with one of the eight instruction sets for
a, and the complementary set for b, chosen randomly with a certain probability. Let Pa(+ + −)
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denote the probability that the instruction set for a is (+1,+1,−1). The correlation functions can
be expressed in terms of these probabilities; for example,

C(u, v) = C(v, u) = −Pa(+ + +) − Pa(+ + −)

+ Pa(+ − +) + Pa(− + +) + Pa(+ −−)

+ Pa(− + −) − Pa(−− +) − Pa(−−−).

(24.7)

Consider the following sum of correlation functions calculated in this way:

C(u, v) + C(u, x) + C(x, v) =

−3Pa(+ + +) − 3Pa(−−−) + Pa(+ + −) + Pa(+ − +)

+ Pa(− + +) + Pa(+ −−) + Pa(− + −) + Pa(−− +).

(24.8)

Since the probabilities of the different instruction sets add to 1, this quantity has a value lying
between −3 and +1. However, if we use the quantum mechanical values (24.6) for the correlation
functions, the left side of (24.8) is 3/2, substantially greater than 1. Thus our hidden variable
model cannot reproduce the correlation functions predicted by quantum theory. As we shall see in
the next section, this failure is not an accident; it is something which one must expect in hidden
variable models of this sort.

24.4 Bell Inequalities

The inequality (24.10) below was derived in 1969 by Clauser, Horne, Shimony, and Holt. As it is
closely related to Bell’s original result in 1964, this CHSH inequality is nowadays also referred to as
a “Bell inequality”, and by studying it one can learn the essential ideas behind such inequalities. We
assume that when the a apparatus measures a spin component in the direction wa, the outcome is
given by a function α(wa, λ) = ±1 which depends both on wa and a hidden variable, or collection of
hidden variables, denoted by λ. Similarly, the outcome of the b measurement for a spin component
in the direction wb is given by a function β(wb, λ) = ±1. In the example in Sec. 24.3, wa and wb

can take on any of the three values u, v, or x, and λ should be thought of as the pair of instruction
sets for both particles a and b. Hence λ could take on 64 different values, though we argued in
Sec. 24.3 that the probabilities of all but 8 of these must be zero. For the purpose of deriving the
inequality, one need not think of wa as a direction in space; it can simply be some sort of switch
setting on the a apparatus, which, together with the value of the hidden variable λ associated with
the particle, determines the outcome of the measurement through the function α(wa, λ). The same
remark applies to the b apparatus and the function β(wb, λ). Also, the derivation makes no use of
the fact that the two spin-half particles are initially in a spin singlet state.

The source which produces the correlated particles produces different possible values of λ with
a probability ρ(λ), so the correlation function is given by

C(wa, wb) =
∑

λ

ρ(λ)α(wa, λ)β(wb, λ). (24.9)

(If λ is a continuous variable,
∑

λ
ρ(λ) should be replaced by

∫

ρ(λ) dλ.) Let a, a′ be any two
possible values for wa, and b and b′ any two possible values for wb. Then as long as α(wa, λ) and
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β(wb, λ) are functions which take only the two values +1 or −1, the correlations defined by (24.9)
satisfy the inequality

|C(a, b) + C(a, b′) + C(a′, b) − C(a′, b′)| ≤ 2. (24.10)

To see that this is so, consider the quantity

α(a, λ)β(b, λ) + α(a, λ)β(b′, λ) + α(a′, λ)β(b, λ) − α(a′, λ)β(b′, λ)

=
[

α(a, λ) + α(a′, λ)
]

β(b, λ) +
[

α(a, λ) − α(a′, λ)
]

β(b′, λ).
(24.11)

It can take on only two values, +2 and −2, because each of the four quantities α(a, λ), α(a′, λ),
β(b, λ) and β(b′, λ) is either +1 or −1. Thus either α(a, λ) = α(a′, λ), so that the right side of
(24.11) is 2α(a, λ)β(b, λ), or else α(a, λ) = −α(a′, λ), in which case it is 2α(a, λ)β(b′, λ). If one
multiplies (24.11) by ρ(λ) and sums over λ, the result of this weighted average is

C(a, b) + C(a, b′) + C(a′, b) − C(a′, b′). (24.12)

A weighted average of a quantity which takes on only two values must lie between them, so (24.12)
lies somewhere between −2 and +2, which is what (24.10) asserts.

Consider the example in Sec. 24.3, and set a = u, b = v, a′ = b′ = x. If one inserts the
quantum values (24.6) for these correlation functions in (24.12), the result is 3 × 1/2 + 1 = 2.5,
which obviously violates the inequality (24.10). On the other hand, the hidden variable model in
Sec. 24.3 assigns to the sum C(u, v) + C(u, x) + C(x, v), see (24.8), a value between −3 and +1,
and since C(x, x) = −1, the inequality (24.10) will be satisfied.

If quantum theory is a correct description of the world, then since it predicts correlation func-
tions which violate (24.10), one or more of the assumptions made in the derivation of this inequality
must be wrong. The first and most basic of these assumptions is the existence of hidden variables

with a mathematical structure which differs from the Hilbert space used in standard quantum
mechanics. This assumption is plausible from the perspective of classical physics if measurements
reveal pre-existing properties of the measured system. In quantum physics it is also the case that a
measurement reveals a pre-existing property provided this property is part of the framework which
is being used to construct the quantum description. If Saz is measured for particle a, the outcome of
a suitable (ideal) measurement will be correlated with the value of this component of spin angular
momentum before the measurement in a framework which includes |z+

a 〉 and |z−a 〉. However, there
is no framework which includes the eigenstates of both Saz and Saw for a direction w not equal to
z or −z.

Thus the point at which the derivation of (24.10) begins to deviate from quantum principles
is in the assumption that a function α(wa, λ) exists for different directions wa. As long as only a
single choice for wa is under consideration there is no problem, for then the “hidden” variable λ
can simply be the value of Saw at some earlier time. But when two (excluding the trivial case of wa

and −wa) or even more possibilities are allowed, the assumption that α(wa, λ) exists is in conflict
with basic quantum principles. Precisely the same comments apply to the function β(wb, λ).

Of course, if postulating hidden variables is itself in error, there is no need to search for problems
with the other assumptions having to do with the nature of these hidden variables. Nonetheless,
let us see what can be said about them. A second assumption entering the derivation of (24.10)
is that the hidden variable theory is local. Locality appears in the assumption that the outcome
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α(wa, λ) of the a measurement depends on the setting wa of this piece of apparatus, but not the
setting wb for the b apparatus, and that β(wb, λ) does not depend upon wa. These assumptions are
plausible, especially if one supposes that the particles a and b and the corresponding apparatuses
are far apart at the time when the measurements take place. For then the settings wa and wb

could be chosen at the very last moment before the measurements take place, and it is hard to see
how either value could have any influence on the outcome of the measurement made by the other
apparatus. Indeed, for a sufficiently large separation, an influence of this sort would have to travel
faster than the speed of light, in violation of relativity theory.

The claim is sometimes made that quantum theory must be nonlocal simply because its pre-
dictions violate (24.10). But this is not correct. First, what follows logically from the violation of
this inequality is that hidden variable theories, if they are to agree with quantum theory, must be
nonlocal or embody some other peculiarity. But hidden variable theories by definition employ a
different mathematical structure from (or in addition to) the quantum Hilbert space, so this tells
us nothing about standard quantum mechanics. Second, the detailed quantum analysis of a spin
singlet system in Ch. 23 shows no evidence of nonlocality; indeed, it demonstrates precisely the
opposite: the spin of particle b is not influenced in any way by the measurements carried out on
particle a. (To be sure, in Ch. 23 we did not discuss how a measurement on particle a might
influence the outcome of a measurement on particle b, but the argument can be easily extended to
include that case, and the conclusion is exactly the same.) Hidden variable theories, on the other
hand, can indeed be nonlocal. The Bohm theory mentioned in Sec. 24.3 is known to be nonlocal
in a rather thorough-going way, and this is one reason why it has been difficult to construct a
relativistic version of it.

A third assumption which was made in deriving the inequality (24.10) is that the probability
distribution ρ(λ) for the hidden variable(s) λ does not depend upon either wa or wb. This seems
plausible if there is a significant interval between the time when the two particles are prepared in
some singlet state by a source which sets the value of λ, and the time when the spin measurements
occur. For wa and wb could be chosen just before the measurements take place, and this choice
should not affect the value of λ determined earlier, unless the future can influence the past.

In summary, the basic lesson to be learned from the Bell inequalities is that it is difficult to
construct a plausible hidden variable theory which will mimic the sorts of correlations predicted
by quantum theory and confirmed by experiment. Such a theory must either exhibit peculiar
nonlocalities which violate relativity theory, or else incorporate influences which travel backwards
in time, in contrast to everyday experience. This seems a rather high price to pay just to have a
theory which is more “classical” than ordinary quantum mechanics.


