
Chapter 20

Delayed Choice Paradox

20.1 Statement of the Paradox

Consider the Mach-Zehnder interferometer shown in Fig. 20.1. The second beam splitter can either
be at its regular position Bin where the beams from the two mirrors intersect, as in (a), or moved
out of the way to a position Bout, as in (b). When the beam splitter is in place, interference
effects mean that a photon which enters the interferometer through channel a will always emerge
in channel f to be measured by a detector F . On the other hand, when the beam splitter is out
of the way, the probability is 1/2 that the photon will be detected by detector E, and 1/2 that it
will be detected by detector F .
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Figure 20.1: Mach-Zehnder interferometer with the second beamsplitter (a) in place, (b) moved
out of the way.

The paradox is constructed in the following way. Suppose that the beam splitter is out of the
way, Fig. 20.1(b), and the photon is detected in E. Then it seems plausible that the photon was
earlier in the d arm of the interferometer. For example, were the mirror Md to be removed, no
photons would arrive at E; if the length of the path in the d arm were doubled by using additional
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238 CHAPTER 20. DELAYED CHOICE PARADOX

mirrors, the photon would arrive at E with a time delay, etc. On the other hand, when the beam
splitter is in place, we understand the fact that the photon always arrives at F as due to an
interference effect arising from a coherent superposition state of photon wave packets in both arms
c and d. That this is the correct explanation can be supported by placing phase shifters in the
two arms, Sec. 13.2, and observing that the phase difference must be kept constant in order for
the photon to always be detected in F . Similarly, removing either of the mirrors will spoil the
interference effect.

Suppose, however, that the beam splitter is in place until just before the photon reaches it, and
is then suddenly moved out of the way. What will happen? Since the photon does not interact
with the beam splitter, we conclude that the situation is the same as if the beam splitter had been
absent all along. If the photon arrives at E, then it was earlier in the d arm of the interferometer.
But this seems strange, because if the beam splitter had been left in place, the photon would surely
have been detected by F , which requires, as noted above, that inside the interferometer it is in a
superposition state between the two arms. Hence it would seem that a later event, the position or
absence of the beam splitter as decided at the very last moment before its arrival must somehow
influence the earlier state of the photon, when it was in the interferometer far away from the beam
splitter, and determine whether it is in one of the individual arms or in a superposition state. How
can this be? Can the future influence the past?

The reader may be concerned that given the dimensions of a typical laboratory Mach-Zehnder
interferometer and a photon moving with the speed of light, it would be physically impossible to
shift the beam splitter out of the way while the photon is inside the interferometer. But we could
imagine a very large interferometer constructed some place out in space so as to allow time for the
mechanical motion. Also, modified forms of the delayed choice experiment can be constructed in
the laboratory using tricks involving photon polarization and fast electronic devices.

It is possible to state the paradox in counterfactual terms. Suppose the beam splitter is not
in place and the photon is detected by E, indicating that it was earlier in the d arm of the
interferometer. What would have occurred if the beam splitter had been in place? On the one
hand, it seems reasonable to argue that the photon would certainly have been detected by F ; after
all, it is always detected by F when the beam splitter is in place. On the other hand, experience
shows that if a photon arrives in the d channel and encounters the beam splitter, it has a probability
of 1/2 of emerging in either of the two exit channels. This second conclusion is hard to reconcile
with the first.

20.2 Unitary Dynamics

Let |0a〉 be the photon state at t0 when the photon is in channel a, Fig. 20.1, just before entering
the interferometer through the first (immovable) beam splitter, and let the unitary evolution up to
a time t1 be given by

|0a〉 7→ |1ā〉 :=
(

|1c〉 + |1d〉
)

/
√

2, (20.1)

where |1c〉 and |1d〉 are photon wave packets in the c and d arms of the interferometer. These in
turn evolve unitarily,

|1c〉 7→ |2c〉, |1d〉 7→ |2d〉, (20.2)
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to wave packets |2c〉 and |2d〉 in the c and d arms at a time t2 just before the photon reaches the
second (movable) beam splitter.

What happens next depends upon whether this beam splitter is in or out. If it is in, then

Bin : |2c〉 7→ |3c̄〉, |2d〉 7→ |3d̄〉, (20.3)

where
|3c̄〉 :=

(

|3e〉 + |3f〉
)

/
√

2, |3d̄〉 :=
(

−|3e〉 + |3f〉
)

/
√

2, (20.4)

and |3e〉 and |3f〉 are photon wave packets at time t3 in the e and the f output channels. If the
beam splitter is out, the behavior is rather simple:

Bout : |2c〉 7→ |3f〉, |2d〉 7→ |3e〉. (20.5)

Finally, the detection of the photon during the time interval from t3 to t4 is described by

|3e〉|E◦〉 7→ |E∗〉, |3f〉|F ◦〉 7→ |F ∗〉. (20.6)

Here |E◦〉 and |F ◦〉 are the ready states of the two detectors, and |E∗〉 and |F ∗〉 the states in which
a photon has been detected.

The overall time development starting with an initial state

|Ψ0〉 = |0a〉|E◦〉|F ◦〉 (20.7)

at time t0 leads to a succession of states |Ψj〉 at time tj . These can be worked out by putting
together the different transformations indicated in (20.1) to (20.6), assuming the detectors do not
change except for the processes indicated in (20.6). For j ≥ 2 the result depends upon whether the
(second) beam splitter is in or out. At t4 with the beam splitter in one finds

Bin : |Ψ4〉 = |E◦〉|F ∗〉, (20.8)

whereas if the beam splitter is out, the result is a macroscopic quantum superposition (MQS) state

Bout : |Ψ4〉 = |S+〉 := (|E∗〉|F ◦〉 + |E◦〉|F ∗〉)/
√

2. (20.9)

A second MQS state
|S−〉 := (−|E∗〉|F ◦〉 + |E◦〉|F ∗〉)/

√
2, (20.10)

orthogonal to |S+〉, will be needed later.

20.3 Some Consistent Families

Let us first consider the case in which the beam splitter is out. Unitary evolution leading to
the MQS state |S+〉, (20.9), at t4 obviously does not provide a satisfactory way to describe the
outcome of the final measurement. Consequently, we begin by considering the consistent family
whose support consists of the two histories

Bout : Ψ0 � [1ā] � [2ā] � [3c̄] � {E∗, F ∗} (20.11)
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at the times t0 < t1 < t2 < t3 < t4. Here and later we use symbols without square brackets for
projectors corresponding to macroscopic properties; see the remarks in Sec. 19.2 following (19.4).
This family resembles ones used for wave function collapse, Sec. 18.2, in that there is unitary time
evolution preceding the measurement outcomes. For this reason, however, it does not allow us to
make the inference required in the statement of the paradox in Sec. 20.1, that if the photon is
detected by E (final state E∗), it was earlier in the d arm of the interferometer. Such an assertion
at t1 or t2 is incompatible with [1ā] or [2ā], as these projectors do not commute with the projectors
C, D for the photon to be in the c or the d arm. (For toy versions of C and D, see (12.9) in
Sec. 12.1.) In order to translate the paradox into quantum mechanical terms, we need to use a
different consistent family, such as the one with support

Bout : Ψ0 �
{

[1c] � [2c] � [3f ] � F ∗,

[1d] � [2d] � [3e] � E∗.
(20.12)

Each of these histories has weight 1/2, and using this family one can infer that

Bout : Pr([1d]1 | E∗

4) = Pr([2d]2 | E∗

4) = 1, (20.13)

where, as usual, subscripts indicate the times of events. That is, if the photon is detected by E
with the beam splitter out, then it was earlier in the d and not in the c arm of the interferometer.
Note, however, that using the consistent family (20.11) leads to the equally valid result

Bout : Pr([1ā]1 | E∗

4) = Pr([2ā]2 | E∗

4) = 1. (20.14)

The single framework rule prevents one from combining (20.13) and (20.14), because the families
(20.11) and (20.12) are mutually incompatible.

Next, consider the situation in which the beam splitter is in place. In this case the unitary
history

Bin : Ψ0 � [1ā] � [2ā] � [3f ] � F ∗ (20.15)

allows one to discuss the outcome of the final measurement. It describes the photon using coherent
superpositions of wave packets in the two arms at times t1 and t2, as suggested by the statement
of the paradox. Based upon it one can conclude that

Bin : Pr([1ā]1 | F ∗

4 ) = Pr([2ā]2 | F ∗

4 ) = 1, (20.16)

which is the analog of (20.14). (While (20.14) and (20.16) are correct as written, one should note
that the conditions E∗ and F ∗ at t4 are not necessary, and the probabilities are still equal to 1 if
one omits the final detector states from the condition. It is helpful to think of Ψ0 as always present
as a condition, even though it is not explicitly indicated in the notation.) On the other hand, it is
also possible to construct the counterpart of (20.12) in which the photon is in a definite arm at t1
and t2, using the family with support

Bin : Ψ0 �
{

[1c] � [2c] � [3c̄] � S+,

[1d] � [2d] � [3d̄] � S−,
(20.17)

where S+ and S− are projectors onto the MQS states defined in (20.9) and (20.10). Note that the
MQS states in (20.17) cannot be replaced with pairs of pointer states {E∗, F ∗} as in (20.11), since
the four histories would then form an inconsistent family. See the toy model example in Sec. 13.3.
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It is worth emphasizing the fact that there is nothing “wrong” with MQS states from the
viewpoint of fundamental quantum theory. If one supposes that the usual Hilbert space structure
of quantum mechanics is the appropriate sort of mathematics for describing the world, then MQS
states will be present in the theory, because the Hilbert space is a linear vector space, so that if it
contains the states |E∗〉|F ◦〉 and |E◦〉|F ∗〉, it must also contain their linear combinations. However,
if one is interested in discussing a situation in which a photon is detected by a detector, (20.17) is
not appropriate, as within this framework the notion that one detector or the other has detected
the photon makes no sense.

Let us summarize the results of our analysis as it bears upon the paradox stated in Sec. 20.1. No
consistent families were actually specified in the initial statement of the paradox, and we have used
four different families in an effort to analyze it: two with the beam splitter out, (20.11) and (20.12),
and two with the beam splitter in, (20.15) and (20.17). In a sense, the paradox is based upon using
only two of these families, (20.15) with Bin and the photon in a superposition state inside the
interferometer, and (20.12) with Bout and the photon in a definite arm of the interferometer. By
focusing on only these two families—they are, of course, only specified implicitly in the statement
of the paradox—one can get the misleading impression that the difference between the photon
states inside the interferometer in the two cases is somehow caused by the presence or absence of
the beam splitter at a later time when the photon leaves the interferometer. But by introducing
the other two families, we see that it is quite possible to have the photon either in a superposition
state or in a definite arm of the interferometer both when the beam splitter is in place and when
it is out of the way. Thus the difference in the type of photon state employed at t1 and t2 is not
determined or caused by the location of the beam splitter; rather, it is a consequence of a choice
of a particular type of quantum description for use in analyzing the problem.

One can, to be sure, object that (20.17) with the detectors in MQS states at t4 is hardly a
very satisfactory description of a situation in which one is interested in which detector detected
the photon. True enough: if one wants a description in which no MQS states appear, then (20.15)
is to be preferred to (20.17). But notice that what the physicist does in employing this altogether
reasonable criterion is somewhat analogous to what a writer writing a novel does when changing
the plot in order to have the ending work out in a particular way. The physicist is selecting histories
which at t4 will be useful for addressing the question of which detector detected the photon, and
not whether the detector system will end up in S+ or S−, and for this purpose (20.15), not
(20.17) is appropriate. Were the physicist interested in whether the final state was S+ or S−,
as could conceivably be the case—e.g., when trying to design some apparatus to measure such
superpositions—then (20.17), not (20.15), would be the appropriate choice. Quantum mechanics
as a fundamental theory allows either possibility, and does not determine the type of questions the
physicist is allowed to ask.

If one does not insist that MQS states be left out of the discussion, then a comparison of the
histories in (20.12) and (20.17), which are identical up to time t2 while the photon is still inside the
interferometer, and differ only at later times, shows the beam splitter having an ordinary causal
effect upon the photon: events at a later time depend upon whether the beam splitter is or is
not in place, and those at an earlier time do not. The relationship between these two families is
then similar to that between (20.11) and (20.15), where again the presence or absence of the beam
splitter when the photon leaves the interferometer can be said to be the cause of different behavior
at later times. Causality is actually a rather subtle concept, which philosophers have been arguing
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about for a long time, and it seems unlikely that quantum theory by itself will contribute much to
this discussion. However, the possibility of viewing the presence or absence of the beam splitter as
influencing later events should at the very least make one suspicious of the alternative claim that
its location influences earlier events.

20.4 Quantum Coin Toss and Counterfactual Paradox

Thus far we have worked out various consistent families for two quite distinct situations: the beam
splitter in place, or moved out of the way. One can, however, include both possibilities in a single
framework in which a quantum coin is tossed while the photon is still inside the interferometer,
with the outcome of the toss fed to a servomechanism which moves the beam splitter out of the
way or leaves it in place at the time when the photon leaves the interferometer. This makes it
possible to examine the counterfactual formulation of the delayed choice paradox found at the end
of Sec. 20.1.

The use of a quantum coin for moving a beam splitter was discussed in Sec. 19.2, and we shall use
a simplified notation similar to (19.7). Let |B0〉 be the state of the quantum coin, servomechanism,
and beam splitter prior to the time t1 when the photon is already inside the interferometer, and
suppose that during the time interval from t1 to t2 the quantum coin toss occurs, leading to a
unitary evolution

|B0〉 7→ (|Bin〉 + |Bout〉)/
√

2, (20.18)

with the states |Bin〉 and |Bout〉 corresponding to the beam splitter in place or removed from the
path of the photon. The unitary time development of the photon from t2 to t3, in agreement with
(20.3) and (20.5), is given by the expressions

|2c〉|Bin〉 7→ |3c̄〉|Bin〉, |2d〉|Bin〉 7→ |3d̄〉|Bin〉,
|2c〉|Bout〉 7→ |3f〉|Bout〉, |2d〉|Bout〉 7→ |3e〉|Bout〉.

(20.19)

The unitary time development of the initial state

|Ω0〉 = |0a〉|B0〉|E◦〉|F ◦〉 (20.20)

can be worked out using the formulas in Sec. 20.2 combined with (20.18) and (20.19). In order to
keep the notation simple, we assume that the apparatus states |B0〉, |Bin〉, |Bout〉 do not change
except during the time interval from t1 to t2, when the change is given by (20.18). The reader may
find it helpful to work out |Ωj〉 = T (tj , t0)|Ω0〉 at different times. At t4, when the photon has been
detected, it is given by

|Ω4〉 =
(

|Bin〉|E◦〉|F ∗〉 + |Bout〉|S+〉
)

/
√

2. (20.21)

Suppose the quantum coin toss results in the beam splitter being out of the way at the moment
when the photon leaves the interferometer, and that the photon is detected by E. What would
have occurred if the coin toss had, instead, left the beam splitter in place? As noted in Sec. 19.4,
to address such a counterfactual question we need to use a particular consistent family, and specify
a pivot. The answers to counterfactual questions are in general not unique, since one can employ
more than one family, and more than one pivot within a single family.
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Consider the family whose support consists of the three histories

Ω0 � [1ā] �
{

Bin � [3f ] � F ∗,

Bout � [3c̄] � {E∗, F ∗} (20.22)

at the times t0 < t1 < t2 < t3 < t4. Note that Bout and E∗ occur on the lower line, and we
can trace this history back to [1ā] at t1 as the pivot, and then forwards again along the upper
line corresponding to Bin, to conclude that if the beam splitter had been in place, the photon
would have been detected by F . This is not surprising and certainly not paradoxical. (Note that
having the E detector detect the photon when the beam splitter is absent is quite consistent with
the photon having been in a superposition state until just before the time of its detection; this
corresponds to (20.11) in Sec. 20.3.) To construct a paradox we need to be able to infer from E∗ at
t4 that the photon was earlier in the d arm of the interferometer. This suggests using the consistent
family whose support is

Ω0 �







[1ā] � Bin � [3f ] � F ∗,

[1c] � Bout � [3f ] � F ∗,

[1d] � Bout � [3e] � E∗,

(20.23)

rather than (20.22). (The consistency of (20.23) follows from noting that one of the two histories
which ends in F ∗ is associated with Bin and the other with Bout, and these two states are mutually
orthogonal, since they are macroscopically distinct.) The events at t1 are contextual in the sense
of Ch. 14, with [1ā] dependent upon Bin, while [1c] and [1d] depend on Bout.

The family (20.23) does allow one to infer that the photon was earlier in the d arm if it was
later detected by E, since E∗ occurs only in the third history, preceded by [1d] at t1. However,
since this event precedes Bout but not Bin, it cannot serve as a pivot for answering a question in
which the actual Bout is replaced by the counterfactual Bin. The only event in (20.23) which can
be used for this purpose is Ω0. Using Ω0 as a pivot, we conclude that had the beam splitter been
in, the photon would surely have arrived at detector F , which is a sensible result. However, the
null counterfactual question, “What would have happened if the beam splitter had been out of the
way (as in fact it was)?”, receives a rather indefinite, probabilistic answer. Either the photon would
have been in the d arm and detected by E, or it would have been in the c arm and detected by F .
Thus using Ω0 as the pivot means, in effect, answering the counterfactual question after erasing the
information that the photon was detected by E rather than by F , or that it was in the d arm rather
than the c arm. Hence if we use the family (20.23) with Ω0 as the pivot, the original counterfactual
paradox, with its assumption that detection by E implied that the photon was earlier in d, and
then asking what would have occurred if this photon had encountered the beam splitter, seems to
have disappeared, or at least it has become rather vague.

To be sure, one might argue that there is something paradoxical in that the superposition state
[1ā] in (20.23) is present in the Bin history, whereas non-superposition states [1c] and [1d] precede
Bout. Could this be a sign of the future influencing the past? That is not very plausible, for, as
noted in Ch. 14, the sort of contextuality we have here, with the earlier photon state depending on
the later Bin and Bout, reflects the way in which the quantum description has been constructed. If
there is an influence of the future on the past, it is rather like the influence of the end of a novel
on its beginning, as noted in the previous section. Or, to put it in somewhat different terms, this
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influence manifests itself in the theoretical physicist’s notebook rather than in the experimental
physicist’s laboratory.

What might come closer to representing the basic idea behind the delayed choice paradox is a
family in which [1d] at t1 can serve as a pivot for a counterfactual argument, rather than having
to rely on Ω0 at t0. Here is such a family:

Ω0 �











[1c] �
{

Bin � [3c̄] � S+,

Bout � [3f ] � F ∗,

[1d] �
{

Bin � [3d̄] � S−,

Bout � [3e] � E∗.

(20.24)

If we use [1d] at t1 as the pivot for a case in which the beam splitter is out and the photon is detected
in E, it gives a precise answer to the null counterfactual question of what would have happened
had the beam splitter been out (as it actually was): the photon would have been detected by E
and not by F . But now when we ask what would have happened had the beam splitter been left
in place, the answer is that the system of detectors would later have been in the MQS state S−.
In the same way, if the photon is detected in F when the beam splitter is out, a counterfactual
argument using [1c] at t1 as the pivot leads to the conclusion that had the beam splitter been in,
the detectors would later have been in the MQS state S+, which is orthogonal to, and hence quite
distinct from S−. Thus detection in F rather than E when the beam splitter is out leads to a
different counterfactual conclusion, in contrast with what we found earlier when using Ω0 as the
pivot. That the answers to our counterfactual questions involve MQS states is hardly surprising,
given the discussion in Sec. 20.3. And, as in the case of (20.17), the MQS states in (20.24) cannot
be replaced with ordinary pointer states (as defined at the end of Sec. 9.5) E∗ and F ∗ of the
detectors, for doing so would result in an inconsistent family. Also note the analogy with the
situation considered in Sec. 19.4, where looking for a framework which could give a more precise
answer to a counterfactual question involving a spin measurement led to a family (19.12) containing
MQS states.

Let us summarize the results obtained by using a quantum coin and studying various consistent
families related to the counterfactual statement of the delayed choice paradox. We have looked
at three different frameworks, (20.22), (20.23), and (20.24), and found that they give somewhat
different answers to the question of what would have happened if the beam splitter had been
left in place, when what actually happened was that the photon was detected in E with the beam
splitter out. (Such a multiplicity of answers is typical of quantum and—to a lesser degree—classical
stochastic counterfactual questions; see Sec. 19.4.) In the end, none of the frameworks supports the
original paradox, but each framework evades it for a somewhat different reason. Thus (20.22) does
not have photon states localized in the arms of the interferometer, (20.23) has such states, but they
cannot be used as a pivot for the counterfactual argument, and remedying this last problem by
using (20.24) results in the counterfactual question being answered in terms of MQS states, which
were certainly not in view in the original statement of the paradox.
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20.5 Conclusion

The analysis of the delayed choice paradox given above provides some useful lessons on how to
analyze quantum paradoxes of this general sort. Perhaps the first and most important lesson is
that a paradox must be turned into an explicit quantum mechanical model, complete with a set of
unitary time transformations. The model should be kept as simple as possible: there is no point in
using long expressions and extensive calculations when the essential elements of the paradox and the
ideas for untangling it can be represented in a simple way. Indeed, the simpler the representation,
the easier it will be to spot the problematic reasoning underlying the paradox. In the interests of
simplicity we used single states, rather than macroscopic projectors or density matrices, for the
measuring apparatus, and for discussing the outcomes of a quantum coin toss. A more sophisticated
approach is available, see Sec. 17.4, but it leads to the same conclusions.

A second lesson is that in order to discuss a paradox, it is necessary to introduce an appropriate
framework, which will be a consistent family if the paradox involves time development. There will,
typically, be more than one possible framework, and it is a good idea to look at several, since
different frameworks allow one to investigate different aspects of a situation.

A third lesson has to do with MQS states. These are usually not taken into account when stating
a paradox, and this is not surprising: most physicists do not have any intuitive idea as to what
they mean. Nevertheless, families containing MQS states may be very useful for understanding
where the reasoning underlying a paradox has gone astray. For example, a process of implicitly
(and thus unconsciously) choosing families which contain no MQS states, and then inferring from
this that the future influences the past, or that there are mysterious nonlocal influences, lies behind
a number of paradoxes. This becomes evident when one works out various alternative families of
histories and sees what is needed in order to satisfy the consistency conditions.


