
Chapter 15

Density Matrices

15.1 Introduction

Density matrices are employed in quantum mechanics to give a partial description of a quantum
system, one from which certain details have been omitted. For example, in the case of a composite
quantum system consisting of two or more subsystems, one may find it useful to construct a
quantum description of just one of these subsystems, either at a single time or as a function of
time, while ignoring the other subsystem(s). Or it may be the case that the exact initial state of a
quantum system is not known, and one wants to use a probability distribution or pre-probability
as an initial state.

Probability distributions are used in classical statistical mechanics in order to construct partial
descriptions, and density matrices play a somewhat similar role in quantum statistical mechanics,
a subject which lies outside the scope of this book. In this chapter we shall mention a few of the
ways in which density matrices are used in quantum theory, and discuss their physical significance.

Positive operators and density matrices were defined in Sec. 3.9. To recapitulate, a positive
operator is a Hermitian operator whose eigenvalues are non-negative, and a density matrix ρ is a
positive operator whose trace (the sum of its eigenvalues) is 1. If R is a positive operator but not
the zero operator, its trace is greater than zero, and one can define a corresponding density matrix
by means of the formula

ρ = R/Tr(R). (15.1)

The eigenvalues of a density matrix ρ must lie between 0 and 1. If one of the eigenvalues is 1, the
rest must be 0, and ρ = ρ2 is a projector onto a one-dimensional subspace of the Hilbert space. Such
a density matrix is called a pure state. Otherwise there must be at least two non-zero eigenvalues,
and the density matrix is called a mixed state.

Density matrices very often function as pre-probabilities which can be used to generate prob-
ability distributions in different bases, and averages of different observables. This is discussed in
Sec. 15.2. Density matrices arise rather naturally when one is trying to describe a subsystem A
of a larger system A ⊗ B, and Secs. 15.3 to 15.5 are devoted to this topic. The use of a density
matrix to describe an isolated system is considered in Sec. 15.6. Section 15.7 on conditional density
matrices discusses a more advanced topic related to correlations between subsystems.
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15.2 Density Matrix as a Pre-Probability

Recall that in some circumstances a quantum wave function or ket |ψ〉 need not denote an actual
physical property [ψ] of the quantum system; instead it can serve as a pre-probability, a mathe-
matical device which allows one to calculate various probabilities. See the discussion in Sec. 9.4,
and various examples in Sec. 12.1 and Ch. 13. In most cases (see the latter part of Sec. 15.6 below
for one of the exceptions) a density matrix is best thought of as a pre-probability. Thus while it
provides useful information about a quantum system, one should not think of it as corresponding
to an actual physical property; it does not represent “quantum reality”. For this reason, referring
to a density matrix as the “state” of a quantum system can be misleading. However, in classical
statistical mechanics it is customary to refer to probability distributions as “states”, even though
a probability distribution is obviously not a physical property, and hence it is not unreasonable to
use the same term for a density matrix functioning as a quantum pre-probability.

A density matrix which is a pre-probability can be used to generate a probability distribution
in the following way. Given a sample space corresponding to a decomposition of the identity

I =
∑

j

P j (15.2)

into orthogonal projectors, the probability of the property P j is

pj = Tr(P jρP j) = Tr(ρP j), (15.3)

where the traces are equal because of cyclic permutation, Sec. 3.8. The operator P jρP j is positive—
use the criterion (3.86)—and therefore its trace, the sum of its eigenvalues, cannot be negative.
Thus (15.3) defines a set of probabilities: non-negative real numbers whose sum, in view of (15.2),
is equal to 1, the trace of ρ. In particular, if for each j the projector P j = [j] is onto a state
belonging to an orthonormal basis {|j〉}, then

pj = Tr
(

ρ|j〉〈j|
)

= 〈j|ρ|j〉 (15.4)

is the j’th diagonal element of ρ in this basis. Hence the diagonal elements of ρ in an orthonormal
basis form a probability distribution when this basis is used as the quantum sample space. As a
special case, the probabilities given by the Born rule, Secs. 9.3 and 9.4, are of the form (15.4) when
ρ = |ψ1〉〈ψ1| and |j〉 = |φj

1
〉 in the notation used in (9.35).

From (15.3) it is evident that the average 〈V 〉, see (5.42), of an observable

V = V † =
∑

j

vjP
j (15.5)

can be written in a very compact form using the density matrix:

〈V 〉 =
∑

j

pjvj = Tr(ρV ). (15.6)

If ρ is a pure state |ψ1〉〈ψ1|, then 〈V 〉 is 〈ψ1|V |ψ1〉, as in (9.38). It is worth emphasizing that
while the trace in (15.6) can be carried out using any basis, interpreting 〈V 〉 as the average of a
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physical variable requires at least an implicit reference to a basis (or decomposition of the identity)
in which V is diagonal. Thus if two observables V and W do not commute with each other, the
two averages 〈V 〉 and 〈W 〉 cannot be thought of as pertaining to a single (stochastic) description
of a quantum system, for they necessarily involve incompatible quantum sample spaces, and thus
different probability distributions. The comments made about averages in Ch. 9 while discussing
the Born rule, towards the end of Sec. 9.3 and in connection with (9.38), also apply to averages
calculated using density matrices.

15.3 Reduced Density Matrix for Subsystem

Suppose we are interested in a composite system (Ch. 6) with a Hilbert space A⊗B. For example,
A might be the Hilbert space of a particle, and B that of some system (possibly another particle)
with which it interacts. At t0 let |Ψ0〉 be a normalized state of the combined system which evolves,
by Schrödinger’s equation, to a state |Ψ1〉 at time t1. Assume that we are interested in histories for
two times, t0 and t1, of the form Ψ0 � (Aj ⊗ I), where Ψ0 stands for the projector [Ψ0] = |Ψ0〉〈Ψ0|,
and the Aj form a decomposition of the identity of the subsystem A:

IA =
∑

j

Aj . (15.7)

The probability that system A will have the property Aj at t1 can be calculated using the gener-
alization of the Born rule found in (10.34):

Pr(Aj) = 〈Ψ1|Aj ⊗ I|Ψ1〉 = Tr
[

Ψ1(A
j ⊗ I)

]

. (15.8)

The trace on the right side of (15.8) can be carried out in two steps, see Sec. 6.5: first a partial
trace over B to yield an operator on A, followed by a trace over A. In the first step the operator
Aj , since it acts on A rather than B, can be taken out of the trace, so that

TrB
[

Ψ1(A
j ⊗ I)

]

= ρAj , (15.9)

where
ρ = TrB(Ψ1) (15.10)

is called the reduced density matrix, because it is used to describe the subsystem A rather than
the whole system A ⊗ B. Since ρ is the partial trace of a positive operator, it is itself a positive
operator: apply the test in (3.86). In addition, the trace of ρ is

TrA(ρ) = Tr(Ψ1) = 〈Ψ1|Ψ1〉 = 1, (15.11)

so ρ is a density matrix. Upon taking the trace of both sides of (15.9) over A, one obtains, see
(15.8), the expression

Pr(Aj) = TrA
(

ρAj
)

(15.12)

for the probability of the property Aj , in agreement with (15.3). Note that |Ψ1〉, the counterpart of
|ψ1〉 in the discussion of the Born rule in Sec. 9.4, functions as a pre-probability, not as a physical
property, and its partial trace ρ also functions as a pre-probability, which can be used to calculate
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probabilities for any sample space of the form (15.7). In the same way one can define the reduced
density matrix

ρ′ = TrA(Ψ1) (15.13)

for system B and use it to calculate probabilities of various properties of system B.
Let us consider a simple example. Let A and B be the spin spaces for two spin-half particles a

and b, and let
|Ψ1〉 = α|z+

a 〉 ⊗ |z−b 〉 + β|z−a 〉 ⊗ |z+

b 〉, (15.14)

where the subscripts identify the particles, and the coefficients satisfy

|α|2 + |β|2 = 1, (15.15)

so that |Ψ1〉 is normalized. The corresponding projector is

Ψ1 = |Ψ1〉〈Ψ1| = |α|2|z+
a 〉〈z+

a | ⊗ |z−b 〉〈z−b | + |β|2|z−a 〉〈z−a | ⊗ |z+

b 〉〈z+

b |
+ αβ∗|z+

a 〉〈z−a | ⊗ |z−b 〉〈z+

b | + α∗β|z−a 〉〈z+
a | ⊗ |z+

b 〉〈z−b |.
(15.16)

The partial trace in (15.10) is easily evaluated by noting that

TrB
(

|z−b 〉〈z+

b |
)

= 〈z+

b |z−b 〉 = 0, (15.17)

etc.; thus
ρ = |α|2[z+

a ] + |β|2[z−a ]. (15.18)

This is a positive operator, since its eigenvalues are |α|2 and |β|2, and its trace is equal to 1, (15.15).
If both α and β are nonzero, ρ is a mixed state.

Employing either (15.8) or (15.12), one can show that if the decomposition [z+
a ], [z−a ], the Saz

framework, is used as a sample space, the corresponding probabilities are |α|2 and |β|2, whereas if
one uses [x+

a ], [x−a ], the Sax framework, the probability of each is 1/2. Of course it makes no sense
to suppose that these two sets of probabilities refer simultaneously to the same particle, as the
two sample spaces are incompatible. Using either the Sax or the Saz framework precludes treating
Ψ1 at t1 as a physical property when α and β are both nonzero, since as a projector it does not
commute with [w+

a ] for any direction w. Thus Ψ1 and its partial trace ρ should be thought of as
pre-probabilities.

Except when |α|2 = |β|2 there is a unique basis, |z+
a 〉, |z−a 〉, in which ρ is diagonal. However,

ρ can be used to assign a probability distribution for any basis, and thus there is nothing special
about the basis in which it is diagonal. In this respect ρ differs from operators that represent
physical variables, such as the Hamiltonian, for which the eigenfunctions do have a particular
physical significance.

The expression on the right side of (15.14) is an example of the Schmidt form

|Ψ1〉 =
∑

j

λj |âj〉 ⊗ |b̂j〉 (15.19)

introduced in (6.18), where {|âj〉} and {|b̂k〉} are special choices of orthonormal bases for A and B.
The reduced density matrices ρ and ρ′ for A and B are easily calculated from the Schmidt form



15.3. REDUCED DENSITY MATRIX FOR SUBSYSTEM 179

using (15.10) and (15.13), and one finds:

ρ =
∑

j

|λj |2[âj ], ρ′ =
∑

j

|λj |2[b̂j ]. (15.20)

One can check that ρ in (15.18) is, indeed, given by this expression.

Relative to the physical state of the subsystem A at time t1, ρ contains the same amount of
information as Ψ1. However, relative to the total system A⊗B, ρ is much less informative. Suppose
that

IB =
∑

k

Bk (15.21)

is some decomposition of the identity for subsystem B, and we are interested in histories of the
form Ψ0 � (Aj ⊗Bk). Then the joint probability distribution

Pr(Aj ∧Bk) = Tr
(

Ψ1(A
j ⊗Bk)

)

(15.22)

can be calculated using Ψ1, whereas from ρ we can obtain only the marginal distribution

Pr(Aj) =
∑

k

Pr(Aj ∧Bk). (15.23)

The other marginal distribution, Pr(Bk), can be obtained using the reduced density matrix ρ′

for subsystem B. However, from a knowledge of both ρ and ρ′, one still cannot calculate the
correlations between the two subsystems. For instance, in the two-spin example of (15.14), if we
use a framework in which Saz and Sbz are both defined at t1, Ψ1 implies that Saz = −Sbz, a result
which is not contained in ρ or ρ′. This illustrates the fact pointed out in the introduction, that
density matrices typically provide partial descriptions of a quantum systems, descriptions from
which certain features are omitted.

Rather than a projector on a one-dimensional subspace, Ψ1 could itself be a density matrix on
A ⊗ B. For example, if the total quantum system with Hilbert space A ⊗ B ⊗ C consists of three
subsystems A, B, and C, and unitary time evolution beginning with a normalized initial state |Φ0〉
at t0 results in a state |Φ1〉 with projector Φ1 at t1, then

Ψ1 = TrC(Φ1) (15.24)

is a density matrix. The partial traces of Ψ1, (15.10) and (15.13) again define density matrices ρ
and ρ′ appropriate for calculating probabilities of properties of A or B, since, for example,

ρ = TrB(Ψ1) = TrBC(Φ1) (15.25)

can be obtained from Ψ1 or directly from Φ1. Even when A ⊗ B is not part of a larger system it
can be described by means of a density matrix as discussed in Sec. 15.6.
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15.4 Time Dependence of Reduced Density Matrix

There is, of course, nothing very special about the time t1 used in the discussion in Sec. 15.3. If
|Ψt〉 is a solution to the Schrödinger equation as a function of time t for the composite system
A⊗ B, and Ψt the corresponding projector, then one can define a density matrix

ρt = TrB(Ψt) (15.26)

for subsystem A at any time t, and use it to calculate the probability of a history of the form
Ψ0 �Aj based on the two times 0 and t, where Aj is a projector on A. One should not think of ρt

as some sort of physical property which develops in time. Instead, it is somewhat analogous to the
classical single-time probability distribution ρt(s) at time t for a particle undergoing a random walk,
or ρt(r) for a Brownian particle, discussed in Sec. 9.2. In particular, ρt provides no information
about correlations of quantum properties at successive times. To discuss such correlations requires
the use of quantum histories, see Sec. 15.5 below.

In general, ρt as a function of time does not satisfy a simple differential equation. An exception
is the case in which A is itself an isolated subsystem, so that the time development operator for
A⊗ B factors,

T (t′, t) = TA(t′, t) ⊗ TB(t′, t), (15.27)

or, equivalently, the Hamiltonian is of the form

H = HA ⊗ I + I ⊗HB (15.28)

during the times which are of interest. This would, for example, be the case if A and B were
particles (or larger systems) flying away from each other after a collision. Using the fact that

Ψt = |Ψt〉〈Ψt| = T (t, 0)Ψ0T (0, t), (15.29)

one can show (e.g., by writing Ψ0 as a sum of product operators of the form P ⊗ Q) that when
T (t, 0) factors, (15.27),

ρt = TA(t, 0)ρ0TA(0, t). (15.30)

Upon differentiating this equation one obtains

ih̄
dρt

dt
= [HA, ρt], (15.31)

since for an isolated system TA(t, 0) satisfies (7.45) and (7.46) with HA in place of H. Note that
(15.31) is also valid when HA depends on time. If HA is independent of time and diagonal in the
orthonormal basis {|en〉},

HA =
∑

n

En|en〉〈en|, (15.32)

one can use (7.48) to rewrite (15.30) in the form

ρt = e−itHA/h̄ρ0e
itHA/h̄, (15.33)
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or the equivalent in terms of matrix elements:

〈em|ρt|en〉 = 〈em|ρ0|en〉 exp (−i(Em − En)t/h̄) . (15.34)

There are situations in which (15.28) is only true in a first approximation, and there is an addi-
tional weak interaction between A and B, so that A is not truly isolated. Under such circumstances
it may still be possible, given a suitable system B, to write an approximate differential equation
for ρt in which additional terms appear on the right side. A discussion of open systems of this type
lies outside the scope of this book.

15.5 Reduced Density Matrix as Initial Condition

Let Ψ0 be a projector representing an initial pure state at time t0 for the composite system A⊗B,
and assume that for t > t0 the subsystem A is isolated from B, so that the time time-development
operator factors, (15.27). We shall be interested in histories of the form

Zα = Ψ0 � Y α, (15.35)

where
Y α = Aα1

1
�Aα2

2
� · · ·Aαf

f (15.36)

is a history of A at the times t1 < t2 < · · · tf , with t1 > t0, and each of the projectors A
αj

j at time
tj comes from a decomposition of the identity

IA =
∑

αj

A
αj

j (15.37)

of subsystem A. A history of the form Zα says nothing at all about what is going on in B after
the initial time t0, even though there might be non-trivial correlations between A and B.

The Heisenberg chain operator for Zα, Sec. 11.4, using a reference time tr = t0, can be written
in the form

K̂(Zα) =
(

K̂A(Y α) ⊗ I
)

Ψ0, (15.38)

where
K̂A(Y α) = Â

αf

f · · · Âα2

2
Âα1

1
(15.39)

is the Heisenberg chain operator for Y α, considered as a history of A, with

Â
αj

j = TA(t0, tj)A
αj

j TA(tj , t0) (15.40)

the Heisenberg counterpart of the Schrödinger operator A
αj

j , see (11.7).
By first taking a partial trace over B, one can write the operator inner products needed to check

consistency and calculate weights for the histories in (15.35) in the form

〈K̂(Zα), K̂(Zᾱ)〉 = Tr
(

Ψ0K̂
†
A(Y α)K̂A(Y ᾱ)

)

= TrA

(

ρK̂†
A(Y α)K̂A(Y ᾱ)

)

= 〈K̂A(Y α), K̂A(Y ᾱ)〉ρ,
(15.41)
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where the operator inner product 〈, 〉ρ is defined for any pair of operators A and Ā on A by

〈A, Ā〉ρ := TrA(ρA†Ā), (15.42)

using the reduced density matrix

ρ = TrB(Ψ0). (15.43)

The definition (15.42) yields an inner product with all of the usual properties, including 〈A,A〉ρ ≥ 0,
except that it might be possible (depending on ρ) for 〈A,A〉ρ to vanish when A is not zero.

The consistency conditions for the histories in (15.35) take the form

〈K̂A(Y α), K̂A(Y ᾱ)〉ρ = 0 for α 6= ᾱ, (15.44)

and the probability of occurrence of Zα or, equivalently, Y α is given by

Pr(Zα) = Pr(Y α) = 〈K̂A(Y α), K̂A(Y α)〉ρ. (15.45)

Thus as long as we are only interested in histories of the form (15.35) that make no reference at all
to B (aside from the initial state Ψ0), the consistency conditions and weights can be evaluated with
formulas which only involve A and make no reference to B. They are of the same form employed
in Ch. 10, except for replacing the operator inner product 〈, 〉 defined in (10.12) by 〈, 〉ρ defined
in (15.42). It is also possible to write (15.44) and (15.45) using the Schrödinger chain operators
K(Y α) in place of the Heisenberg operators K̂(Y α), and this alternative form is employed in (15.48)
and (15.50) in the next section.

If A is a small system and B is large, the second trace in (15.41) will be much easier to
evaluate than the first. Thus using a density matrix can simplify what might otherwise be a rather
complicated problem. To be sure, calculating ρ from Ψ0 using (15.43) may be a nontrivial task.
However, it is often the case that Ψ0 is not known, so what one does is to assume that ρ has
some form involving adjustable parameters, which might, for example, be chosen on the basis of
experiment. Thus even if one does not know its precise form, the very fact that ρ exists can assist
in analyzing a problem.

In the special case f = 1 in which the histories Y α involve only a single time t, and the
consistency conditions (15.44) are automatically satisfied, the probability (15.45) can be written in
the form (15.3),

Pr(Aj , t) = TrA(ρtA
j), (15.46)

where ρt is a solution of (15.31), or given by (15.33) in the case in which HA is independent of
time. In this equation ρt is functioning as a time-dependent pre-probability; see the comments at
the beginning of Sec. 15.4.

15.6 Density Matrix for Isolated System

It is also possible to use a density matrix ρ, thought of as a pre-probability, as the initial state of
an isolated system which is not regarded as part of a larger, composite system. In such a case ρ
embodies whatever information is available about the system, and this information does not have
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to be in the form of a particular property represented by a projector, or a probability distribution
associated with some decomposition of the identity. As an example, the canonical density matrix

ρ = e−H/kθ/Tr(e−H/kθ), (15.47)

where k is Boltzmann’s constant and H the time-independent Hamiltonian, is used in quantum
statistical mechanics to describe a system in thermal equilibrium at an absolute temperature θ.
While one often pictures such a system as being in contact with a thermal reservoir, and thus part
of a larger, composite system, the density matrix (15.47) makes perfectly good sense for an isolated
system, and a system of macroscopic size can constitute its own thermal reservoir.

The formulas employed in Sec. 15.5 can be used, with some obvious modifications, to check
consistency and assign probabilities to histories of an isolated system for which ρ is the initial
pre-probability at the time t0. Thus for a family of histories of the form (15.36) at the times
t1 < t2 < · · · tf , with t1 ≥ t0, the consistency condition takes the form

〈K(Y α),K(Y ᾱ)〉ρ = Tr
[

ρK†(Y α)K(Y ᾱ)
]

= 0 for α 6= ᾱ, (15.48)

where the (Schrödinger) chain operator is defined by

K(Y α) = A
αf

f T (tf , tf−1) · · ·Aα2

2
T (t2, t1)A

α1

1
T (t1, t0), (15.49)

and the inner product 〈, 〉ρ is the same as in (15.42), except for omitting the subscript on Tr. If
the consistency conditions are satisfied, the probability of occurrence of a history Y α is equal to
its weight:

W (Y α) = 〈K(Y α),K(Y α)〉ρ = Tr
[

ρK†(Y α)K(Y α)
]

. (15.50)

One could equally well use Heisenberg chain operators K̂ in (15.48) and (15.50), as in the analogous
formulas (15.44) and (15.45) in Sec. 15.5. Note that (15.48) and (15.50) are essentially the same as
the corresponding formulas (10.20) and (10.11) in Ch. 10, aside from the presence of the density
matrix ρ inside the trace defining the operator inner product 〈, 〉ρ.

In the special case of histories involving only a single time t > t0 and a decomposition of the
identity I =

∑

Aj at this time, consistency is automatic, and the corresponding probabilities take
the form

Pr(Aj , t) = Tr(ρtA
j), (15.51)

or 〈j|ρt|j〉 when Aj = |j〉〈j| is a projector on a pure state, where ρt is a solution to the Schrödinger
equation (15.31) with the subscript A omitted from H, or of the form (15.33) when the Hamiltonian
H is independent of time. One should, however, not make the mistake of thinking that ρt as a
function of time represents anything like a complete description of the time development of a
quantum system; see the remarks at the beginning of Sec. 15.4. In order to discuss correlations
it is necessary to employ histories with two or more times following t0. For these the consistency
conditions (15.48) are not automatic, and probabilities must be worked out using (15.50). Both of
these formulas require more information about time development than is contained in ρt.

There are also situations in which information about the initial state of an isolated system is
given in the form of a probability distribution on a set of initial states, and an initial density matrix
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is generated from this probability distribution. The basic idea can be understood by considering a
family of histories

[ψj
0
] � [φk

1] (15.52)

involving two times t0 and t1, where {|ψj
0
〉} and {|φk

1〉} are orthonormal bases, and the initial

condition is that [ψj
0
] occurs with probability pj . The probability that [φk

1] occurs at time t1 is
given by

Pr(φk
1) =

∑

j

Pr(φk
1 |ψj

0
) pj , (15.53)

where the conditional probabilities come from the Born formula

Pr(φk
1 |ψj

0
) = |〈φk

1|T (t1, t0)|ψj
0
〉|2. (15.54)

An alternative method for calculating Pr(φk
1) is to define a density matrix

ρ0 =
∑

j

pj [ψ
j
0
] (15.55)

at t0 using the initial probability distribution. Since each summand is a positive operator, the sum
is positive, Sec.3.9, and the trace of ρ0 is

∑

j pj = 1. Unlike the situations discussed previously, the
eigenvalues of ρ0 are of direct physical significance, since they are the probabilities of the initial
distribution, and the eigenvectors are the physical properties of the system at t0 for this family of
histories. Next, let

ρ1 = T (t1, t0)ρ0T (t0, t1) (15.56)

be the result of integrating Schrödinger’s equation, (15.31) with H in place of HA, from t0 to t1.
Then the probabilities (15.53) can be written as

Pr(φk
1) = Tr

(

ρ1[φ
k
1]

)

. (15.57)

In this expression the density matrix ρ1, in contrast to ρ0, functions as a pre-probability, and its
eigenvalues and eigenvectors have no particular physical significance.

The expression (15.57) is more compact than (15.53), as it does not involve the collection
of conditional probabilities in (15.54). On the other hand, the description of the quantum system
provided by ρ1 is also less detailed. For example, one cannot use it to calculate correlations between
the various initial and final states, or conditional probabilities such as

Pr(ψj
0
|φk

1). (15.58)

To be sure, a less detailed description is often more useful than one that is more detailed, especially
when one is not interested in the details. The point is that a density matrix provides a partial
description, and it is in principle possible to construct a more detailed description if one is interested
in doing so.
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15.7 Conditional Density Matrices

Suppose that at time t0 a particle A has interacted with a device B and is moving away from it, so
that the two no longer interact, and assume that the projectors {Bk} in the decomposition of the
identity (15.21) for B represent some states of physical significance. Given that B is in the state
Bk at time t0, what can one say about the future behavior of A? For example, B might be a device
which emits a spin-half particle with a spin polarization Sv = +1/2, where the direction v depends
on some setting of the device indicated by the index k of Bk.

The question of interest to us can be addressed using a family of histories of the form

Zkα = Bk � Y kα, (15.59)

defined for the times t0 < t1 < · · · , where the Y kα are histories of A of the sort defined in
(15.36), except that they are labeled with k as well as with α to allow for the possibility that the
decomposition of the identity in (15.7) could depend upon k. (One could also employ a set of times
t1 < t2 < · · · that depend on k.)

Assume that the combined system A ⊗ B is described at time t0 by an initial density matrix
Ψ0, which functions as a pre-probability. For example, Ψ0 could result from unitary time evolution
of an initial state defined at a still earlier time. Let

pk = Tr(Ψ0B
k) (15.60)

be the probability of the event Bk. If pk is greater than zero, the k’th conditional density matrix

is an operator on A defined by the partial trace

ρk = (1/pk)TrB(Ψ0B
k). (15.61)

Each conditional density matrix gives rise to an inner product

〈A, Ā〉k := TrA(ρkA†Ā) (15.62)

of the form (15.42).
Using the same sort of analysis as in Sec. 15.5, one can show that the family of histories (15.59)

is consistent provided
〈K̂(Y kα), K̂(Y kᾱ)〉k = 0 for α 6= ᾱ (15.63)

is satisfied for every k with pk > 0, where the Heisenberg chain operators K̂(Y kα) are defined as in
(15.39), but with the addition of a superscript k for each projector on the right side. Schrödinger
chain operators could also be used, as in Sec. 15.6. Note that one does not have to check “cross
terms” involving chain operators of histories with different values of k. If the consistency conditions
are satisfied, the behavior of A given that B is in the state Bk at t0 is described by the conditional
probabilities

Pr(Y kα |Bk) = 〈K̂(Y kα), K̂(Y kα)〉k. (15.64)

The physical interpretation of the conditional density matrix is essentially the same as that of
the simple density matrix ρ discussed in Sec. 15.5. Indeed, the latter can be thought of as a special
case in which the decomposition of the identity of B in (15.21) consists of nothing but the identity
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itself. Note in particular that the eigenvalues and eigenvectors of ρk play no (direct) role in its
physical interpretation, since ρk functions as a pre-probability.

Time-dependent conditional density matrices can be defined in the obvious way,

ρk
t = TA(t, t0)ρ

kTA(t0, t), (15.65)

as solutions of the Schrödinger equation (15.31). One can use ρk
t to calculate the probability of an

event A in A at time t conditional upon Bk, but not correlations between events in A at several
different times. The comments about ρt at the beginning of Sec. 15.4 also apply to ρk

t .
The simple or “unconditional” density matrix of A at time t0,

ρ = TrB(Ψ0), (15.66)

is an average of the conditional density matrices:

ρ =
∑

k

pkρ
k. (15.67)

While ρ can be used to check consistency and calculate probabilities of histories in A which make
no reference to B, for these purposes there is no need to introduce the refined family (15.59) in place
of the coarser (15.35). To put it somewhat differently, the context in which the average (15.67)
might be of interest is one in which ρ is not the appropriate mathematical tool for addressing the
questions one is likely to be interested in.

Let us consider the particular case in which Ψ0 = |Ψ0〉〈Ψ0| and the projectors

Bk = |bk〉〈bk| (15.68)

are pure states. Then one can expand |Ψ0〉 in terms of the |bk〉 in the form

|Ψ0〉 =
∑

k

√
pk|αk〉 ⊗ |bk〉, (15.69)

where pk was defined in (15.60). Inserting the coefficient
√
pk in (15.69) means that the {|αk〉} are

normalized, 〈αk|αk〉 = 1, but there is no reason to expect |αk〉 and |αl〉 to be orthogonal for k 6= l.
The conditional density matrices are now pure states represented by the dyads

ρk = |αk〉〈αk|, (15.70)

and (15.67) takes the form

ρ =
∑

k

pk|αk〉〈αk| =
∑

k

pk[α
k]. (15.71)

The expression (15.71) is sometimes interpreted to mean that the system A is in the state |αk〉
with probability pk at time t0. However, this is a bit misleading, because in general the |αk〉 are
not mutually orthogonal, and if two quantum states are not orthogonal to each other, it does not
make sense to ask whether a system is in one or the other, as they do not represent mutually
exclusive possibilities; see Sec. 4.6. Instead, one should assign a probability pk at time t0 to the
state |αk〉 ⊗ |bk〉 of the combined system A⊗ B. Such states are mutually orthogonal because the
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|bk〉 are mutually orthogonal. In general, |αk〉 is an event dependent on |bk〉 in the sense discussed in
Ch. 14, so it does not make sense to speak of [αk] as a property of A by itself without making at least
implicit reference to the state |bk〉 of B. If one wants to ascribe a probability to |αk〉⊗ |bk〉, this ket
or the corresponding projector must be an element of an appropriate sample space. The projector
does not appear in (15.59), but one can insert it by replacing Bk = [bk] with [αk] ⊗ [bk]. The
resulting collection of histories then forms the support of what is, at least technically, a different
consistent family or histories. However, the consistency conditions and the probabilities in the
new family are the same as those in the original family (15.59), so the distinction is of no great
importance.


