
Chapter 13

Quantum Interference

13.1 Two-Slit and Mach-Zehnder Interferometers

Interference effects involving quantum particles reflect both the wave-like and particle-like proper-
ties of quantum entities. One of the best-known examples is the interference pattern produced by a
double slit. Quantum particles—photons or neutrons or electrons—are sent one at a time through
the slit system shown in Fig. 13.1, and later arrive at a series of detectors located in the diffraction
zone far from the slits. The detectors are triggered at random, with each particle triggering just
one detector. After enough particles have been detected, an interference pattern can be discerned
in the relative counting rates of the different detectors, indicated by the length of the horizontal
bars in the figure. Lots of particles arrive at some detectors, very few particles at others.

Figure 13.1: Interference pattern for a wave arriving from the left and passing through the two
slits. Each circle on the right side represents a detector, and the black bar to its right indicates the
relative counting rate.

The relative number of particles arriving at each detector depends on the difference of the
distances between the detector and the two slits, in units of the particle’s de Broglie wavelength.
Furthermore, this interference pattern persists even at very low intensities, say one particle per
second passing through the slit system. Hence it seems very unlikely that it arises from a sort of
cooperative phenomenon in which a particle going through one slit compares notes with a particle
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152 CHAPTER 13. QUANTUM INTERFERENCE

going through the other slit. Instead, each particle must somehow pass through both slits, for how
else can one understand the interference effect?

Figure 13.2: Detectors directly behind the two slits. The black bars are again proportional to the
counting rates.

However, if detectors are placed directly behind the two slits, Fig. 13.2, then either one or the
other detector detects a particle, and it is never the case that both detectors simultaneously detect
a particle. Furthermore, the total counting rate for the arrangement in Fig. 13.2 is the same as
that in Fig. 13.1, suggesting that if a particle had not been detected just behind one of the slits,
it would have continued on into the diffraction zone and arrived at one of the detectors located
there. Thus it seems plausible that the particles which do arrive in the diffraction zone in Fig. 13.1
have earlier passed through one or the other of the two slits, and not both. But this is difficult
to reconcile with the interference effect seen in the diffraction zone, which seems to require that
each particle pass through both slits. Could a particle passing through one slit somehow sense the
presence of the other slit, and take this into account when it arrives in the diffraction zone?

L

Figure 13.3: A light source L between the slits washes out the electron interference pattern.

In Feynman’s discussion of two-slit interference (see bibliography), he considers what happens
if there is a non-destructive measurement of which slit the particle passes through, a measurement
that allows the particle to continue on its way and later be detected in the diffraction zone. His
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quantum particles are electrons, and he places a light source just behind the slits, Fig. 13.3. By
scattering a photon off the electron one can “see” which slit it has just passed through. Illuminating
the slits in this way washes out the interference effect, and the intensities in the diffraction zone
can be explained as sums of intensities due to electrons coming through each of the two slits.

Feynman then imagines reducing the intensity of the light source to such a degree that some-
times an electron scatters a photon, revealing which slit it passed through, and sometimes it does
not. Data for electrons arriving in the diffraction zone are then segregated into two sets: one set
for “visible” electrons which earlier scattered a photon, and the other for electrons which were
“invisible” as they passed through the slit system. When the set of data for the “visible” electrons
is examined it shows no interference effects, whereas that for the “invisible” electrons indicates that
they arrive in the diffraction zone with the same interference pattern as when there is no source of
light behind the slits. Can the behavior of an electron really depend upon whether or not it has
been seen?
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Figure 13.4: Mach-Zehnder interferometer with detectors. The beam splitters are labeled B1 and
B2.

In this chapter we explore these paradoxes using a toy Mach-Zehnder interferometer, which
exhibits the same sorts of paradoxes as a double slit, but is easier to discuss. A Mach-Zehnder
interferometer, Fig. 13.4, consists of a beam splitter followed by two mirrors which bring the split
beams back together again, and a second beam splitter placed where the reflected beams intersect.
Detectors can be placed on the output channels. We assume that light from a monochromatic
source enters the first beam splitter through the a channel. The intensity of light emerging in the
two output channels e and f depends on the difference in path length, measured in units of the
wavelength of the light, in the c and d arms of the interferometer. (The classical wave theory of light
suffices for calculating these intensities; one does not need quantum theory.) We shall assume that
this difference has been adjusted so that after the second beam splitter all the light which enters
through the a channel emerges in the f channel and none in the e channel. Rather than changing
the physical path lengths, it is possible to alter the final intensities by inserting phase shifters in
one or both arms of the interferometer. (A phase shifter is a piece of dielectric material which,
when placed in the light beam, alters the optical path length (number of wavelengths) between the
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two beam splitters.)

An interferometer for neutrons which is analogous to a Mach-Zehnder interferometer for photons
can be constructed using a single crystal of silicon. For our purposes the difference between these
two types of interferometer is not important, since neutrons are quantum particles that behave like
waves, and photons are light waves that behave like particles. Thus while we shall continue to think
of photons going through a Mach-Zehnder interferometer, the toy model introduced in Sec. 13.2
below could equally well describe the interference of neutrons.

The analogy between a Mach-Zehnder interferometer and double-slit interference is the follow-
ing. Each photon on its way through the interferometer must pass through the c arm or the d arm
in much the same way that a particle (photon or something else) must pass through one of the two
slits on its way to a detector in the diffraction zone. The first beam splitter provides a source of
coherent light (that is, the relative phase is well defined) for the two arms of the interferometer,
just as one needs a coherent source of particles illuminating the two slits. (This coherent source
can be a single slit a long distance to the left of the double slit.) The second beam splitter in the
interferometer combines beams from the separate arms and makes them interfere in a way which
is analogous to the interference of the beams emerging from the two slits when they reach the
diffraction zone.

13.2 Toy Mach-Zehnder Interferometer

We shall set up a stochastic or probabilistic model of a toy Mach-Zehnder interferometer, Fig. 13.5,
and discuss what happens when a single particle or photon passes through the instrument. The
model will supply us with probabilities for different possible histories of this single particle. If one
imagines, as in a real experiment, lots of particles going through the apparatus, one after another,
then each particle represents an “independent trial” in the sense of probability theory. That is,
each particle will follow (or undergo) a particular history chosen randomly from the collection of
all possible histories. If a large number of particles are used, then the number which follow some
given history will be proportional to the probability, computed by the laws of quantum theory, that
a single particle will follow that history.

The toy Mach-Zehnder interferometer consists of two toy beam splitters, of the type shown in
Fig. 12.1 in Sec. 12.1, in series. The arms and the entrance and output channels are labeled in a
way which corresponds to Fig. 13.4. The unitary time transformation for the toy model is T = Si,
where the operator Si is defined by

Si|mz〉 = |(m+ 1)z〉 (13.1)

for m an integer, and z = a, b, c, d, e or f , with the exceptions

Si|0a〉 =
(

+|1c〉 + |1d〉
)

/
√

2, Si|0b〉 =
(

−|1c〉 + |1d〉
)

/
√

2,

Si|3c〉 =
(

+|4e〉 + |4f〉
)

/
√

2, Si|3d〉 =
(

−|4e〉 + |4f〉
)

/
√

2.
(13.2)

(See the comment following (12.2) on the choice of phases.) In addition, the usual provision must be
made for periodic boundary conditions, but (as usual) these will not play any role in the discussion
which follows; see the remarks in Sec. 12.1. The transformation Si is unitary because it maps an
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Figure 13.5: Toy Mach-Zehnder interferomter constructed from two beam splitters of the sort shown
in Fig. 12.1.

orthonormal basis, the collection of states {|mz〉}, onto an orthonormal basis of the Hilbert space.
A particle (photon) which enters the a channel undergoes a unitary time evolution of the form

|0a〉 7→ |1ā〉 7→ |2ā〉 7→ |3ā〉 7→ |4f〉 7→ |5f〉 · · · , (13.3)

where, as in (12.6),

|mā〉 =
(

+|mc〉 + |md〉
)

/
√

2, |mb̄〉 =
(

−|mc〉 + |md〉
)

/
√

2 (13.4)

are superpositions of states of the particle in the c and d arms of the interferometer, with phases
chosen to correspond to unitary evolution under Si starting with |0a〉, and |0b〉, respectively.

The probability that the particle emerges in the e or in the f channel is influenced by what
happens in both arms of the interferometer, as can be seen in the following way. Let us introduce
toy phase shifters in the c and d arms by using in place of Si a unitary time transformation S ′

i

identical to Si, (13.1) and (13.2), except that

S′

i |2c〉 = exp(iφc) |3c〉, S′

i |2d〉 = exp(iφd) |3d〉, (13.5)

where φc and φd are phase shifts. Obviously S ′

i is unitary, and it is the same as Si when φc and φd

are zero. If we use S ′

i in place of Si, the unitary time evolution in (13.3) becomes:

|0a〉 7→ |1ā〉 7→ |2ā〉 =
(

|2c〉 + |2d〉
)

/
√

2 7→
(

eiφc |3c〉 + eiφd |3d〉
)

/
√

2

7→ 1

2

[

(

eiφc − eiφd

)

|4e〉 +
(

eiφc + eiφd

)

|4f〉
]

7→ · · · ,
(13.6)

where the result at t = 5 is obtained by replacing |4e〉 by |5e〉, and |4f〉 by |5f〉.
Consider a consistent family of histories based upon an initial state |0a〉 at t = 0 and a de-

composition of the identity corresponding to the orthonormal basis {|mz〉} at a second time t = 4.
There are two histories with positive weight,

Y = [0a]0 � [4e]4, Y ′ = [0a]0 � [4f ]4, (13.7)
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where, as usual, subscripts indicate the time. The probabilities can be read off from the t = 4 term
in (13.6), treating it as a pre-probability, by taking the absolute squares of the coefficients of |4e〉
and |4f〉:

Pr([4e]4) = Pr(Y ) = |eiφc − eiφd |2/4 = [sin(∆φ/2)]2,

Pr([4f ]4) = Pr(Y ′) = |eiφc + eiφd |2/4 = [cos(∆φ/2)]2,
(13.8)

where
∆φ = φc − φd (13.9)

is the difference between the two phase shifts. Since these probabilities depend upon ∆φ, and thus
upon what is happening in both arms of the interferometer, the quantum particle must in some
sense be delocalized as it passes through the interferometer, rather than localized in arm c or in
arm d. On the other hand, it is a mistake to think of it as simultaneously present in both arms in
the sense that “it is in c and at the same time it is in d.” See the remarks in Sec. 4.5: a quantum
particle cannot be in two places at the same time.

Similarly, if we want to understand double-slit interference using this analogy, we would like
to say that the particle “goes through both slits,” without meaning that it is present in the upper
slit at the same time as it is present in the lower slit, or that it went through one slit or the other
and we do not know which. See the discussion of the localization of quantum particles in Secs. 2.3
and 4.5. Speaking of the particle as “passing through the slit system” conveys roughly the right
meaning. In the double slit experiment, one could introduce phase shifters behind each slit, and
thereby shift the positions of the peaks and valleys of the interference pattern in the diffraction
zone. Again, it is the difference of the phase shifts which is important, and this shows that one
somehow has to think of the quantum particle as a coherent entity as it passes through the slit
system.

Very similar results are obtained if instead of |0a〉 one uses a wave packet

|ψ0〉 = c |−2a〉 + c′|−1a〉 + c′′|0a〉, (13.10)

in the a channel as the initial state at t = 0, where c, c′, and c′′ are numerical coefficients. For such
an initial state it is convenient to use histories

X = [ψ0] � Et, X ′ = [ψ0] � Ft (13.11)

rather than Y and Y ′ in (13.7), where

E =
∑

m

[me], F =
∑

m

[mf ] (13.12)

are projectors for the particle to be someplace in the e and f channels, respectively, and Et means
the particle is in the e channel at time t; see the analogous (12.16). As long as t ≥ 6, so that the
entire wave packet corresponding to |ψ0〉 has a chance to emerge from the interferometer, one finds
that the corresponding probabilities are

Pr(Et) = Pr(X) = [sin(∆φ/2)]2,

Pr(Ft) = Pr(X ′) = [cos(∆φ/2)]2,
(13.13)
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precisely the same as in (13.8). Since the philosophy behind toy models is simplicity and physical
insight, not generality, we shall use only the simple initial state |0a〉 in what follows, even though a
good part of the discussion would hold (with some fairly obvious modifications) for a more general
initial state representing a wave packet entering the interferometer in the a channel.

What can we say about the particle while it is inside the interferometer, during the time interval
for which the histories in (13.7) provide no information? There are various ways of refining these
histories by inserting additional events at times between t = 0 and 4. For example, one can employ
unitary extensions, Sec. 11.7, of Y and Y ′ by using the unitary time development of the initial |0a〉
at intermediate times to obtain two histories

Y e = [0a] � [1ā] � [2ā] � [3q̄] � [4e],

Y f = [0a] � [1ā] � [2ā] � [3q̄] � [4f ],
(13.14)

defined at t = 0, 1, 2, 3, 4, which form the support of a consistent family with initial state [0a]. The
projector [3q̄] is onto the state

|3q̄〉 :=
(

eiφc |3c〉 + eiφd |3d〉
)

/
√

2. (13.15)

The histories in (13.14) are identical up to t = 3, and then split. One can place the split earlier,
between t = 2 and t = 3, by mapping [4e] and [4f ] unitarily backwards in time to t = 3:

Ȳ e = [0a] � [1ā] � [2ā] � [3b̄] � [4e],

Ȳ f = [0a] � [1ā] � [2ā] � [3ā] � [4f ].
(13.16)

Note that Y , Y e, and Ȳ e all have exactly the same chain operator, for reasons discussed in Sec. 11.7,
and the same is true of Y ′, Y f , and Ȳ f . The consistency of the family (13.7) is automatic, as only
two times are involved, Sec. 11.3. As a consequence the unitary extensions (13.14) and (13.16) of
that family are supports of consistent families; see Sec. 11.7.

The families in (13.14) and (13.16) can be used to discuss some aspects of the particle’s behavior
while inside the interferometer, but cannot tell us whether it was in the c or in the d arm, because
the projectors C and D, (12.9), do not commute with projectors onto superposition states, such as
[1ā], [3q̄], or [3b̄]. Instead, we must look for alternative families in which events of the form [mc] or
[md] appear at intermediate times. It will simplify the discussion if we assume that φc = 0 = φd,
i.e., use Si for time development rather than the more general S ′

i.
One consistent family of this type has for its support the two elementary histories

Y c = [0a] � [1c] � [2c] � [3c] � [4c̄] � [5c̄] � · · · [τ c̄],
Y d = [0a] � [1d] � [2d] � [3d] � [4d̄] � [5d̄] � · · · [τ d̄],

(13.17)

where
|mc̄〉 =

(

+|me〉 + |mf〉
)

/
√

2, |md̄〉 =
(

−|me〉 + |mf〉
)

/
√

2 (13.18)

for m ≥ 4 correspond to unitary time evolution starting with |3c〉 and |3d〉, respectively. The final
time τ can be as large as one wants, consistent with the particle not having passed out of the e or
f channels due to the periodic boundary condition. The histories in (13.17) are unitary extensions
of [0a]� [1c] and [0a]� [1d], and consistency follows from the general arguments given in Sec. 11.7.
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Note that if we use Y c and Y d, we cannot say whether the particle emerges in the e or f channel
of the second beam splitter, whereas if we use Y e and Y f in (13.14), with φc = 0 = φd, we can say
that the particle leaves this beam splitter in a definite channel, but we cannot discuss the channel
in which it arrives at the beam splitter.

In order to describe the particle as being in a definite arm of the interferometer and emerging
in a definite channel from the second beam splitter, one might try a family which includes

Y ce = [0a] � [1c] � [2c] � [3c] � [4e] � [5e] � · · · [τe],
Y cf = [0a] � [1c] � [2c] � [3c] � [4f ] � [5f ] � · · · [τf ],

Y de = [0a] � [1d] � [2d] � [3d] � [4e] � [5e] � · · · [τe],
Y df = [0a] � [1d] � [2d] � [3d] � [4f ] � [5f ] � · · · [τf ],

(13.19)

continuing till some final time τ . Alas, this will not work. The family is inconsistent, because

〈K(Y ce),K(Y de)〉 6= 0, 〈K(Y cf ),K(Y df )〉 6= 0, (13.20)

as is easily shown using the corresponding chain kets (Sec. 11.6). In fact, each of the histories in
(13.19) is intrinsically inconsistent in the sense that there is no way of making it part of some
consistent family. See the discussion of intrinsic inconsistency in Sec. 11.8; the strategy used there
for histories involving three times is easily extended to cover the somewhat more complicated
situation represented in (13.19).

The analog of (13.14) for two-slit interference is a consistent family F in which the particle
passes through the slit system in a delocalized state, but arrives at a definite location in the
diffraction zone. It is F which lies behind conventional discussions of two-slit interference, which
emphasize (correctly) that in such circumstances it is meaningless to discuss which slit the particle
passed through. However, there is also another consistent family G, the analog of (13.17), in which
the particle passes through one or the other of the two slits, and is described in the diffraction
zone by one of two delocalized wave packets, the counterparts of the c̄ and d̄ superpositions defined
in (13.18). Although these wave packets overlap in space, they are orthogonal to each other and
thus represent distinct quantum states. The families F and G are incompatible, and hence the
descriptions they provide cannot be combined. Attempting to do so by assuming that the particle
goes through a definite slit and arrives at a definite location in the diffraction zone gives rise to
inconsistencies analogous to those noted in connection with (13.19).

From the perspective of fundamental quantum theory there is no reason to prefer one of these
two families to the other. Each has its use for addressing certain types of physical question. If one
wants to know the location of the particle when it reaches the diffraction zone, F must be used in
preference to G, because it is only in F that this location makes sense. On the other hand, if one
wants to know which slit the particle passed through, G must be employed, for in F the concept
of passing through a particular slit makes no sense. Experiments can be carried out to check the
predictions of either family, and the Mach-Zehnder analogs of these two kinds of experiments are
discussed in the next two sections.
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13.3 Detector in Output of Interferometer

Let us add to the e output channel of our toy Mach Zehnder interferometer a simple two-state
detector of the type introduced in Sec. 7.4 and used in Sec. 12.2, see Fig. 12.2. The detector states
are |0ê〉, “ready”, and |1ê〉, “triggered”, and the unitary time development operator is

T = S′

iRe, (13.21)

where Re is the identity on the Hilbert space M⊗E of particle-plus-detector, except for

Re|4e, nê〉 = |4e, (1 − n)ê〉, (13.22)

with n = 0 or 1, which is the analog of (12.27). Thus, in particular,

T |4e, 0ê〉 = |5e, 1ê〉, T |4f, 0ê〉 = |5f, 0ê〉, (13.23)

so the detector is triggered by the particle emerging in the e channel as it hops from 4e to 5e, but
is not triggered if the particle emerges in the f channel. We could add a second detector for the
f channel, but that is not necessary: if the e channel detector remains in its ready state after a
certain time, that will tell us that the particle emerged in the f channel. See the discussion in
Sec. 12.2.

Assume an initial state

|Ψ0〉 = |0a, 0ê〉, (13.24)

and consider histories that are the obvious counterparts of those in (13.14),

Ze = Zi � [4e, 0ê] � [5e, 1ê] � [6e, 1ê] � · · · [τe, 1ê],
Zf = Zi � [4f, 0ê] � [5f, 0ê] � [6f, 0ê] � · · · [τf, 0ê],

(13.25)

but which continue on to some final time τ . The initial unitary portion

Zi = [Ψ0] � [1ā, 0ê] � [2ā, 0ê] � [3q̄, 0ê] (13.26)

is the same for both Ze and Zf . The histories in (13.25) are the support of a consistent family with
initial state |Ψ0〉, and they contain no surprises. If the particle passes through the interferometer
in a coherent superposition and emerges in channel e, it triggers the detector and keeps going. If
it emerges in f it does not trigger the detector, and continues to move out that channel. The
probability that the detector will be in its triggered state at t = 5 or later is sin2(∆φ/2), the same
as the probability calculated earlier, (13.8), that the particle will emerge in the e channel when no
detector is present.

As a second example, suppose that φc = 0 = φd, and consider the consistent family whose
support consists of the two histories

Zc = [Ψ0] � [1c] � [2c] � [3c] � [4c̄, 0ê] � [5r] � [6r] � · · · [τr],
Zd = [Ψ0] � [1d] � [2d] � [3d] � [4d̄, 0ê] � [5s] � [6s] � · · · [τs],

(13.27)
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where the detector state [0ê] has been omitted for times earlier than t = 4 (it could be included at
all these times in both histories), and

|mr〉 =
|me, 1ê〉 + |mf, 0ê〉√

2
, |ms〉 =

−|me, 1ê〉 + |mf, 0ê〉√
2

(13.28)

are superpositions of states in which the detector has and has not been triggered, so they are
toy MQS (macroscopic quantum superposition) states, as in (12.29). The histories in (13.27) are
obvious counterparts of those in (13.17), and they are unitary extensions (Sec. 11.7) to later times
of [Ψ0] � [1c, 0ê], and [Ψ0] � [1d, 0ê].

The toy MQS states at time t ≥ 5 in (13.27) are hard to interpret, and their grown-up counter-
parts for a real Mach-Zehnder or neutron interferometer are impossible to observe in the laboratory.
Can we get around this manifestation of Schrödinger’s cat (Sec. 9.6) by the same method we used
in Sec. 12.2: using histories in which the detector is in its pointer basis (see the definition at the
end of Sec. 9.5) rather than in some MQS state? The obvious choice would be something like

Zce = [Ψ0] � [1c] � [2c] � [3c] � [4e, 0ê] � [5e, 1ê] � · · · ,
Zcf = [Ψ0] � [1c] � [2c] � [3c] � [4f, 0ê] � [5f, 0ê] � · · · ,
Zde = [Ψ0] � [1d] � [2d] � [3d] � [4e, 0ê] � [5e, 1ê] � · · · ,
Zdf = [Ψ0] � [1d] � [2d] � [3d] � [4f, 0ê] � [5f, 0ê] � · · · ,

(13.29)

where, once again, we have omitted the detector state [0ê] at times earlier than t = 4. However,
this family is inconsistent: (13.20) holds with Y replaced by Z, and one can even show that the
individual histories in (13.29), like those in (13.19), are intrinsically inconsistent. Indeed, the
history

[Ψ0]0 � Ct � [1ê]t′ , (13.30)

in which the initial state is followed by a particle in the c arm at some time in the interval 1 ≤ t ≤ 3,
and then the detector in its triggered state at a later time t′ ≥ 5, is intrinsically inconsistent, and
the same is true if Ct is replaced by Dt, or [1ê]t′ by [0ê]t′ . (For the meaning of Ct or Dt, see the
discussion following (12.15).)

A similar analysis can be applied to the analogous situation of two-slit interference in which a
detector is located at some point in the diffraction zone. By using a family in which the particle
passes through the slit system in a delocalized state corresponding to unitary time evolution, the
analog of (13.25), one can show that the probability of detection is the same as the probability of
the particle arriving at the corresponding region in space in the absence of a detector. There is
also a family, the analog of (13.27), in which the particle passes through a definite slit, and later on
the detector is described by an MQS state, the counterpart of one of the states defined in (13.28).
There is no way of “collapsing” these MQS states into pointer states of the detector—this is the
lesson to be drawn from the inconsistent family (13.29)—as long as one insists upon assigning a
definite slit to the particle.

This example shows that it is possible to construct families of histories using events at earlier
times which are “normal” (non-MQS), but which have the consequence that at later times one is
“forced” to employ MQS states. If one does not want to use MQS states at a later time, it is
necessary to change the events in the histories at earlier times, or alter the initial states. Note
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that consistency depends upon all the events which occur in a history, because the chain operator
depends upon all the events, so one cannot say that inconsistency is “caused” by a particular event
in the history, unless one has decided that other events shall, by definition, not share in the blame.

13.4 Detector in Internal Arm of Interferometer

Let us see what happens if a detector is placed in the c arm inside the toy interferometer. (A
detector could also be placed in the d arm, but this would not lead to anything new, since if the
particle is not detected in the c arm one can conclude that it passed through the d arm.) The
detector states are |0ĉ〉 “ready” and |1ĉ〉 “triggered”. The unitary time operator is

T = S′

iRc, (13.31)

where S′

i is defined in (13.5), and Rc is the identity on the space M⊗ C of particle and detector,
except for

Rc|2c, nĉ〉 = |2c, (1 − n)ĉ〉. (13.32)

In particular,

T |2c, 0ĉ〉 = eiφc |3c, 1ĉ〉, T |2d, 0ĉ〉 = eiφd |3d, 0ĉ〉, (13.33)

so the detector is triggered as the particle hops from 2c to 3c when passing through the c arm, but
is not triggered if the particle passes through the d arm.

Consider the unitary time development,

|Φt〉 = T t|Φ0〉, |Φ0〉 = |0a, 0ĉ〉, (13.34)

of an initial state in which the particle is in the a channel, and the c channel detector is in its ready
state. At t = 4 we have:

|Φ4〉 = 1

2

[

eiφc |4e, 1ĉ〉 − eiφd |4e, 0ĉ〉 + eiφc |4f, 1ĉ〉 + eiφd |4f, 0ĉ〉
]

, (13.35)

where all four states in the sum on the right side are mutually orthogonal.

One can use (13.35) as a pre-probability to compute the probabilities of two-time histories
beginning with the initial state |Φ0〉 at t = 0, and with the particle in either the e or in the f
channel at t = 4. Thus consider a family in which the four histories with non-zero weight are of
the form Φ0 � [φj ], where |φj〉 is one of the four kets on the right side of (13.35). Each will occur
with probability 1/4, and thus

Pr([4e]4) = 1/4 + 1/4 = 1/2 = Pr([4f ]4). (13.36)

Upon comparing these with (13.8) when no detector is present, one sees that inserting a detector
in one arm of the interferometer has a drastic effect: there is no longer any dependence of these
probabilities upon the phase difference ∆φ. Thus a measurement of which arm the particle passes
through wipes out all the interference effects which would otherwise be apparent in the output
intensities following the second beam splitter. Note the analogy with Feynman’s discussion of the
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double slit: determining which slit the electron goes through, by scattering light off of it, destroys
the interference pattern in the diffraction zone.

Now let us consider various possible histories describing what the particle does while it is inside
the interferometer, assuming φc = 0 = φd in order to simplify the discussion. Straightforward
unitary time evolution will result in a family in which every [Φt] for t ≥ 3 is a toy MQS state
involving both |0ĉ〉 and the triggered state |1ĉ〉 of the detector. In order to obtain a consistent
family without MQS states, we can let unitary time development continue up until the measurement
occurs, and then have a split (or collapse) to produce the analog of (12.33)) in the previous chapter:
a family whose support consists of the two histories

V c = [0a, 0ĉ] � [1ā, 0ĉ] � [2ā, 0ĉ] � [3c, 1ĉ] � [4c̄, 1ĉ] � · · · ,
V d = [0a, 0ĉ] � [1ā, 0ĉ] � [2ā, 0ĉ] � [3d, 0ĉ] � [4d̄, 0ĉ] � · · · ,

(13.37)

with states |mc̄〉 and |md̄〉 defined in (13.18). One can equally well put the split at an earlier time,
by using histories

Z̄c = [0a, 0ĉ] � [1c, 0ĉ] � [2c, 0ĉ] � [3c, 1ĉ] � [4c̄, 1ĉ] � · · · ,
Z̄d = [0a, 0ĉ] � [1d, 0ĉ] � [2d, 0ĉ] � [3d, 0ĉ] � [4d̄, 0ĉ] � · · · ,

(13.38)

which resemble those in (13.17) in that the particle is in the c or in the d arm from the moment it
leaves the first beam splitter.

One can also introduce a second split at the second beam splitter, to produce a family with
support

Z̄ce = [0a, 0ĉ] � [1c, 0ĉ] � [2c, 0ĉ] � [3c, 1ĉ] � [4e, 1ĉ] � [5e, 1ĉ] · · · ,
Z̄cf = [0a, 0ĉ] � [1c, 0ĉ] � [2c, 0ĉ] � [3c, 1ĉ] � [4f, 1ĉ] � [5f, 1ĉ] · · · ,
Z̄de = [0a, 0ĉ] � [1d, 0ĉ] � [2d, 0ĉ] � [3d, 0ĉ] � [4e, 0ĉ] � [5e, 0ĉ] · · · ,
Z̄df = [0a, 0ĉ] � [1d, 0ĉ] � [2d, 0ĉ] � [3d, 0ĉ] � [4f, 0ĉ] � [5f, 0ĉ] · · · .

(13.39)

This family is consistent, in contrast to (13.19), because the projectors of the different histories at
some final time τ are mutually orthogonal: the orthogonal final states of the detector prevent the
inconsistency which would arise, as in (13.20), if one only had particle states. In addition, one could
place another detector in one of the output channels. However, when used with a family analogous
to (13.39) this detector would simply confirm the arrival of the particle in the corresponding channel
with the same probability as if the detector had been absent, so one would learn nothing new.

Inserting a detector into the c arm of the interferometer provides an instance of what is often
called decoherence. The states |mā〉 and |mb̄〉 defined in (13.4) are coherent superpositions of the
states |mc〉 and |md〉 in which the particle is localized in one or the other arm of the interferometer,
and the relative phases in the superposition are of physical significance, since in the absence of a
detector one of these superpositions will result in the particle emerging in the f channel, and the
other in its emerging in e. However, when something like a cosmic ray interacts with the particle
in a sufficiently different way in the c and the d arm, it destroys the coherence (the influence of the
relative phase), and thus produces decoherence.

The scattering of light in Feynman’s version of the double slit experiment is an example of deco-
herence in this sense, and it results in interference effects being washed out. However, decoherence
is usually not an “all or nothing” affair. The weakly-coupled detectors discussed in Sec. 13.5 below
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provide an example of partial decoherence. As well as washing out interference effects, decoherence
can expand the range of possibilities for constructing consistent families. Thus the family based
on (13.19) in which the particle is in a definite arm inside the interferometer and emerges from
the interferometer in a definite channel is inconsistent, whereas its counterpart in (13.39), with
decoherence taking place inside the interferometer, is consistent. Some additional discussion of
decoherence will be found in Ch. 26.

13.5 Weak Detectors in Internal Arms

As noted in Sec. 13.1, Feynman in his discussion of double-slit interference tells us that as the
intensity of the light behind the double slits is reduced, one will find that those electrons which do
not scatter a photon will, when they arrive in the diffraction zone, exhibit the same interference
pattern as when the light is off. Let us try and understand this effect by placing weakly-coupled or
weak detectors in the c and d arms of the toy Mach-Zehnder interferometer.

A simple toy weak detector has two orthogonal states, |0ĉ〉 “ready” and |1ĉ〉 “triggered”, and
the weak coupling is arranged by replacing the unitary transformation Rc in (13.32) with R′

c, which
is the identity except for

R′

c|2c, 0ĉ〉 = α|2c, 0ĉ〉 + β|2c, 1ĉ〉,
R′

c|2c, 1ĉ〉 = γ|2c, 0ĉ〉 + δ|2c, 1ĉ〉,
(13.40)

where α, β, γ, and δ are (in general complex) numbers forming a unitary 2 × 2 matrix
(

α β
γ δ

)

. (13.41)

The “strongly-coupled” or “strong” detector used previously is a special case in which β = 1 = γ,
α = δ = 0. Making |β| small results in a weak coupling, since the probability that the detector
will be triggered by the presence of a particle at site 2c is |β|2. (One can also modify the time-
elapse detector of Sec. 12.3 to make it a weakly-coupled detector, by modifying (12.40) in a manner
analogous to (13.40), but we will not need it for the present discussion.) It is convenient for
purposes of exposition to assume a symmetrical arrangement in which there is a second detector,
with ready and triggered states |0d̂〉 and |1d̂〉, in the d arm of the interferometer, with its coupling
to the particle governed by a unitary transformation R′

d equal to the identity except for

R′

d|2d, 0d̂〉 = α|2d, 0d̂〉 + β|2d, 1d̂〉,
R′

d|2d, 1d̂〉 = γ|2d, 0d̂〉 + δ|2d, 1d̂〉,
(13.42)

where the numerical coefficients α, β, γ, and δ are the same as in (13.40).
The overall unitary time development of the entire system M⊗C⊗D consisting of the particle

and the two detectors is determined by the operator

T = SiR
′

cR
′

d = SiR
′

dR
′

c, (13.43)

where Si (rather than S ′

i) means the phase shifts φc and φd are zero. The unitary time evolution,

|Ωt〉 = T t|Ω0〉, |Ω0〉 = |0a, 0ĉ, 0d̂〉, (13.44)
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of an initial state |Ω0〉 in which the particle is at [0a] and both detectors are in their ready states
results in

|Ω4〉 = α |4f, 0ĉ, 0d̂〉
+ 1

2
β
{

|4e, 1ĉ, 0d̂〉 + |4f, 1ĉ, 0d̂〉 − |4e, 0ĉ, 1d̂〉 + |4f, 0ĉ, 1d̂〉
}

(13.45)

at t = 4; for any later time |Ωt〉 is given by the same expression with 4 replaced by t.
Consider a family of two-time histories with initial state |Ω0〉 at t = 0, and at t = 4 a decom-

position of the identity in which each detector is in a pointer state (ready or triggered) and the
particle emerges in either the e or the f channel. Consistency follows from the fact that there are
only two times, and the probabilities can be computed using (13.45) as a pre-probability. There is
a finite probability |α|2 that at t = 4 neither detector has detected the particle, and in this case
it always emerges in the f channel. On the other hand, if the particle has been detected by the
c detector, it will emerge with equal probability in either the e or the f channel, and the same is
true if it has been detected by the d detector.

All of this agrees with Feynman’s discussion of electrons passing through a double slit and
illuminated by a weak light source. Emerging in the f channel rather than the e channel is what
happens when no detectors are present inside the interferometer, and represents an interference
effect. By contrast, detection of the particle in either arm washes out the interference effect,
and the particle emerges with equal probability in either the e or the f channel. Note that the
probability is zero that both detectors will detect the particle. This is what one would expect,
since the particle cannot be both be in the c arm and in the d arm of the interferometer; quantum
particles are never in two different places at the same time.

Additional complications arise when there is a weakly-coupled detector in only one arm, or
when the numerical coefficients in (13.42) are different from those in (13.40). Sorting them out is
best done using T = S ′

iR
′

cR
′

d or T = S′

iR
′

c in place of (13.43), and thinking about what happens
when the phase shifts φc and φd are allowed to vary. Exploring this is left to the reader.

When weakly coupled detectors are present, what can we say about the particle while it is

inside the interferometer? Again assume, for simplicity, that φc and φd are zero. There are many
possible frameworks, and we shall only consider one example, a consistent family whose support
consists of the five histories

[Ω0] � [1c, 0ĉ, 0d̂] � [2c, 0ĉ, 0d̂] � [3c, 1ĉ, 0d̂] � [4e, 1ĉ, 0d̂],

[Ω0] � [1c, 0ĉ, 0d̂] � [2c, 0ĉ, 0d̂] � [3c, 1ĉ, 0d̂] � [4f, 1ĉ, 0d̂],

[Ω0] � [1d, 0ĉ, 0d̂] � [2d, 0ĉ, 0d̂] � [3d, 0ĉ, 1d̂] � [4e, 0ĉ, 1d̂],

[Ω0] � [1d, 0ĉ, 0d̂] � [2d, 0ĉ, 0d̂] � [3d, 0ĉ, 1d̂] � [4f, 0ĉ, 1d̂],

[Ω0] � [1ā, 0ĉ, 0d̂] � [2ā, 0ĉ, 0d̂] � [3ā, 0ĉ, 0d̂] � [4f, 0ĉ, 0d̂].

(13.46)

(Consistency follows from the orthogonality of the final projectors, Sec. 11.3.) Using this family
one can conclude that if at t = 4 the ĉ detector has been triggered, the particle was earlier (t = 1,
2, or 3) in the c arm; if the d̂ detector has been triggered, the particle was earlier in the d arm;
and if neither detector has been triggered, the particle was earlier in a superposition state |ā〉. The
corresponding statements for Feynman’s double slit with a weak light source would be that if a
photon scatters off an electron which has just passed through the slit system, then the electron
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previously passed through the slit indicated by the scattered photon, whereas if no photon scatters
off the electron, it passed through the slit system in a coherent superposition.

While these results are not unreasonable, there is nonetheless something a bit odd going on.
The projector [1ā, 0ĉ, 0d̂] at time t = 1 in the last history in (13.46) does not commute with the
projectors at t = 1 in the other histories, even though the projectors for the histories themselves (on
the history space H̆) do commute with each other, since their products are zero. This means that
the Boolean algebra associated with (13.46) does not contain the projector [1ā]1 for the particle to
be in a coherent superposition state at the time t = 1, nor does it contain [1c]1 or [1d]1. Thus the
events at t = 1, and also at t = 2 and t = 3, in these histories are dependent or contextual in the
sense employed in Sec. 6.6 when discussing (6.55). Within the framework represented by (13.46),
they only make sense when discussed together with certain later events; they depend on the later
outcomes of the weak measurements in a sense which will be discussed in Ch. 14.


