"One-Way Functions" without One-Way Functions

William Kretschmer UC Berkeley

Luowen Qian NTT Research, Inc.

Avishay Tal UC Berkeley

Note: This talk may contain a slight amount of quantum cryptography despite the title. Technical background on quantum computing is probably NOT necessary.

(Post-Quantum) One-Way Functions (OWFs)

- \bullet Easy to compute for P $_{\circ}$
- Hard to invert for BQP

Randomized-Computable OWF

- Easy to compute for BPP (pseudo-deterministic)
- Hard to invert for BQP

Why not consider this?

- Current standard assumptions ⇒ OWF directly
- A randomized-computable $f(x; r)$ is distributionally one-way ⇒ ∃OWF

Quantum-Computable OWF (qOWF)

- Easy to compute for BQP (pseudo-deterministic)
- Hard to invert for BQP

Why not consider this?

- Current standard assumptions ⇒ OWF directly
- This work: $qOWF \nRightarrow OWF$

Main theorem 1

Relative to a classical oracle,

- ∃Quantum-computable one-way functions
- $P = NP$ (thus $\exists OWF$)

Corollary: no relativizing or fully-black-box reductions can prove "∃qOWF ⇒ P ≠ NP" [Reingold-Trevisan-Vadhan'04]

(unlike "∃randomized-computable OWF \Rightarrow 3OWF \Rightarrow P \neq NP"!)

Main theorem 2

Relative to a classical oracle,

- ∃Quantum-computable cryptography:
	- Public-key encryption (PKE) with semantic security
	- Public-key signatures with existential unforgeable security
	- Oblivious transfer (OT) with simulation security

(without quantum communication/long-term quantum memory)

 \bullet P = NP

Background: Quantum Cryptography without OWF

Separation

Construction

Do quantum cryptography require weaker assumptions *just* because challenges are quantum? (e.g. QKD)

Our work: no, e.g. qOWF

QKD: Bennett-Brassard'84

OT⇒unitaryPSPACE: Bostanci-Efron-Metger-Poremba-Q-Yuen'23, Lombardi-Ma-Wright'24 OWSG⇒OT: Khurana-Tomer'24

OT w/ quantum advice: Morimae-Nehoran-Yamakawa'24 & Q'24

Our work: an intermediate category

Proof sketch for main theorem 1

Construct a classical oracle relative to which:

- ∃Quantum-computable one-way functions
- \bullet P = NP

Tool: Forrelation

 \exists oracle distributions $A \sim$ (Forrelated, Uniform) such that

 \bullet Distinguishing is easy for $\mathrm{BQP^A}$ [Aaronson'09]

 \bullet Computationally indistinguishable even against $\mathrm{PH}^\mathrm{A} = \mathrm{NP}^{\mathrm{NP}^{\mathrm{NP} \cdots \mathrm{A}}}$ [Raz-Tal'18]

 \triangleright Classically indistinguishable even if $P = NP$

Key idea: oracle encryption

[Aaronson-Ingram-Kretschmer'22]

Use Forrelation as a "quantum-exclusive" encryption

Oracle construction

Random oracle $R: \{0, 1\}^* \to \{0, 1\}$

 $\triangleright R(k, x)$ is a pseudorandom function (PRF) for $k, x \in \{0, 1\}^{\lambda}$ $\triangleright \Rightarrow \exists OWF^R$

Encode/encrypt R with Forrelation: $Forr[R]$

 \triangleright R is now only accessible by quantum computers

Our oracle (informal): $PH^{Forr}[R]$

 \checkmark Collapses P = NP

 \triangleright Is R still a quantum-secure PRF?

Main technical lemma (informal)

• Sample $h \leftarrow H, k^* \leftarrow [N]$ u.a.r.

Then the following oracles are indistinguishable against $\mathrm{BQP}^{\mathrm{PH}}$: A, h $\approx \{A^{k^* \mapsto Forr[h]}\}$, h

$$
h=\begin{bmatrix} \qquad\qquad 0\qquad\qquad&\qquad 1\qquad\qquad&\qquad 0\qquad\qquad&\qquad 1\qquad\qquad&\
$$

⇓

Proof sketch for main theorem 2

Construct a classical oracle relative to which:

- ∃Quantum-computable trapdoor one-way functions
	- Public key is pseudorandom (for OT)
- \bullet P = NP

Our oracle (informal): $\text{PH}^{\text{Forr}[R,I^R]}$ $(I^R$ inverts some region of $R)$ \triangleright Reduce security to main lemma under non-uniform H

Cryptographic protocols from qOWF

Recall: \exists OWF \Rightarrow Prove " $\exists x$: OWF $(x) = y$ " in zero knowledge \checkmark " $\exists x: \text{OWF}(x) = y$ " is an NP statement \checkmark ∃OWF \Rightarrow zero knowledge proof for NP **Question:** $\exists q$ OWF \Rightarrow Prove " $\exists x: q$ OWF $(x) = y$ " in zero knowledge? \triangleright Careful! " $\exists x: qOWF(x) = y"$ is a QCMA statement GMW compiler does this

➢ ∃OWF ⇒ classical zero knowledge proof for QCMA? (open)

Resolution: use post-quantum fully-black-box reductions

e.g. Chatterjee-Liang-Pandey-Yamakawa

Concrete candidate assumptions?

- Possible approach: heuristically instantiate $Forr[R]$
	- ISSUE: Forrelated distribution is not known to be efficient

Founding Quantum Cryptography on Quantum Advantage

or, Towards Cryptography from $#P$ -Hardness

Dakshita Khurana*

Kabir Tomer⁺

Efficient Quantum Pseudorandomness from Hamiltonian Phase States

John Bostanci¹, Jonas Haferkamp², Dominik Hangleiter^{3,4}, and Alexander Poremba⁵

Quantum Cryptography from Meta-Complexity

Taiga Hiroka¹ and Tomoyuki Morimae¹

A Meta-Complexity Characterization of Quantum Cryptography Bruno P. Cavalar* Eli Goldin[†] Matthew Gray[‡] Peter $Hall$ [§]

• Hope our new separation also inspires future research

