"One-Way Functions" without One-Way Functions

William Kretschmer UC Berkeley

Luowen Qian NTT Research, Inc. Avishay Tal UC Berkeley

Note: This talk may contain a slight amount of quantum cryptography despite the title. Technical background on quantum computing is probably NOT necessary.

(Post-Quantum) One-Way Functions (OWFs)

- Easy to compute for P $_{\circ}$
- Hard to invert for BQP

Randomized-Computable OWF

- Easy to compute for BPP (pseudo-deterministic)
- Hard to invert for BQP

Why not consider this?

- Current standard assumptions \Rightarrow OWF directly
- A randomized-computable f(x; r) is distributionally one-way \Rightarrow 30WF

Quantum-Computable OWF (qOWF)

- Easy to compute for BQP (pseudo-deterministic)
- Hard to invert for BQP

Why not consider this?

- Current standard assumptions \Rightarrow OWF directly
- This work: qOWF ≠ OWF

Main theorem 1

Relative to a classical oracle,

- 3Quantum-computable one-way functions
- P = NP (thus $\nexists OWF$)

Corollary: no relativizing or fully-black-box reductions can prove " $\exists qOWF \Rightarrow P \neq NP$ " [Reingold-Trevisan-Vadhan'04]

(unlike " \exists randomized-computable OWF $\Rightarrow \exists$ OWF $\Rightarrow P \neq NP$ "!)

Main theorem 2

Relative to a classical oracle,

- 3Quantum-computable cryptography:
 - Public-key encryption (PKE) with semantic security
 - Public-key signatures with existential unforgeable security
 - Oblivious transfer (OT) with simulation security

(without quantum communication/long-term quantum memory)

• P = NP

Interpretation:

[Impagliazzo'95]

Background: Quantum Cryptography without OWF

Construction

Separation

Do quantum cryptography require weaker assumptions *just* because challenges are quantum? (e.g. QKD)

Our work: no, e.g. qOWF

QKD: Bennett-Brassard'84

OT⇒unitaryPSPACE: Bostanci-Efron-Metger-Poremba-Q-Yuen'23, Lombardi-Ma-Wright'24 OWSG⇒OT: Khurana-Tomer'24

OT w/ quantum advice: Morimae-Nehoran-Yamakawa'24 & Q'24

Our work: an intermediate category

Proof sketch for main theorem 1

Construct a classical oracle relative to which:

- 3Quantum-computable one-way functions
- P = NP

Tool: Forrelation

Boracle distributions $A \sim$ (Forrelated, Uniform) such that

• Distinguishing is easy for BQP^A [Aaronson'09]

• Computationally indistinguishable even against $PH^A = NP^{NP^{NP...A}}$ [Raz-Tal'18]

 \succ Classically indistinguishable even if P = NP

Key idea: oracle encryption

[Aaronson-Ingram-Kretschmer'22]

Use Forrelation as a "quantum-exclusive" encryption

Oracle construction

Random oracle $R: \{0, 1\}^* \rightarrow \{0, 1\}$

 $\succ R(k, x)$ is a pseudorandom function (PRF) for $k, x \in \{0, 1\}^{\lambda}$ $\succ \Rightarrow \exists OWF^{R}$

Encode/encrypt *R* with Forrelation: *Forr*[*R*]

> R is now only accessible by quantum computers

Our oracle (informal): PH^{Forr[R]}

✓ Collapses P = NP

 \succ Is *R* still a quantum-secure PRF?

Main technical lemma (informal)

• Sample $h \leftarrow H, k^* \leftarrow [N]$ u.a.r.

Then the following oracles are indistinguishable against BQP^{PH}: $\{A, h\} \approx \{A^{k^* \mapsto Forr[h]}, h\}$

$$h = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$$

 \Downarrow

	Uniform	Forrelated	Uniform	Uniform	
k^*	Forrelated	Uniform	Forrelated	Forrelated	T
	Forrelated	Uniform	Forrelated	Uniform	VS.
	Uniform	Uniform	Forrelated	Forrelated	

Uniform	Forrelated	Uniform	Uniform
Uniform	Forrelated	Uniform	Forrelated
Forrelated	Uniform	Forrelated	Uniform
Uniform	Uniform	Forrelated	Forrelated

Proof sketch for main theorem 2

Construct a classical oracle relative to which:

- 3Quantum-computable trapdoor one-way functions
 - Public key is pseudorandom (for OT)
- P = NP

Our oracle (informal): PH^{Forr[R,I^R]} (I^R inverts some region of R)
➢ Reduce security to main lemma under non-uniform H

Cryptographic protocols from qOWF

Recall: $\exists OWF \Rightarrow Prove "\exists x: OWF(x) = y"$ in zero knowledge \checkmark " $\exists x: OWF(x) = y"$ is an NP statement $\checkmark \exists OWF \Rightarrow zero$ knowledge proof for NP **Question**: $\exists q OWF \Rightarrow Prove "\exists x: q OWF(x) = y"$ in zero knowledge? \triangleright Careful! " $\exists x: q OWF(x) = y"$ is a QCMA statement

 \geq 30WF \Rightarrow <u>classical</u> zero knowledge proof for QCMA? (open)

Resolution: use <u>post-quantum fully-black-box</u> reductions

e.g. Chatterjee-Liang-Pandey-Yamakawa

Concrete candidate assumptions?

- Possible approach: heuristically instantiate Forr[R]
 - ISSUE: Forrelated distribution is not known to be efficient

Founding Quantum Cryptography on Quantum Advantage

or, Towards Cryptography from *#P-Hardness*

Dakshita Khurana*

Kabir Tomer[†]

Efficient Quantum Pseudorandomness from Hamiltonian Phase States

John Bostanci¹, Jonas Haferkamp², Dominik Hangleiter^{3,4}, and Alexander Poremba⁵

Quantum Cryptography from Meta-Complexity

Taiga Hiroka¹ and Tomoyuki Morimae¹

A Meta-Complexity Characterization of Quantum Cryptography Bruno P. Cavalar^{*} Eli Goldin[†] Matthew Grav[‡] Peter Hall[§]

• Hope our new separation also inspires future research

