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Position verification via distance bounding




Attack with colluding adversaries




Position verification impossibility
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State of the art for position verification (PV)

* Chandran, Goyal, Moriarty, Ostrovsky (2009):
* Impossibility
* Protocol secure against bounded-storage adversaries

* Quantum protocols (quantum communication)
» Kent (2002)
 Burhman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner (2010)
Beigi, Konig (2011)
Kent, Munro, Spiller (2011)
Tomamichel, Fehr, Kaniewski, Wehner (2013)
Unruh (2014)



In this talk...

Quantum hardness of Learning with Errors (LWE) —
Classically verifiable position verification against quantum+* adversaries

Classical verifiers
Classical communication

* Quantum prover is necessary

Can we do better?

* Computational assumptions are necessary
(proofs of quantumness are necessary)

*security against entangled adversaries can be achieved with a stronger (standard) assumption/model



Practical advantages

Freespace communication has a high loss!
* Qi and Siopsis (2015): known quantum PVs break with high loss

* Loss-tolerant quantum PV:
* Qj, Lo, Lim, Siopsis, Chitambar, Pooser, Evans, Grice (2015)
e Chakraborty, Leverrier (2015)
e Lim, Xu, Siopsis, Chitambar, Evans, Qi (2016)
* Speelman (2016)

e LXSCEQ (2016) & Allerstorfer, Buhrman, Speelman, Lunel (2021):
fully loss-tolerant quantum PV against unentangled adversaries

* Our work: full loss tolerance against entangled adversaries



Practical advantages, cont’d

Freespace quantum communication requires a tracking laser

Quantum information is harder to compose for position-based
cryptography, e.g., authentication



BB&4 states [Wiesner ca. 1969]

« Computational basis: [0), |1)
e Hadamard basis:
1
* H|0) =§( 0) + [1))
* H[1) =5( 0) —[1))

e Can recover the bit given the basis and the state

* Provably information theoretically unclonable w/o knowing basis



Quantum position verification with BB84

[BCFGGOS10, BK11, KMS11, TFKW13, ...]
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*Disclaimer: potentially inaccurate physical devices



BB84 position verification security [TFKW13]
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Position verification impossibility
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Trapdoor claw-free functions

|Goldwasser, Micali, Rivest '84]

for: 10,1} - {0,1}™
e Claw-free: 2-to-1, hard to find collisions efficiently
* Trapdoor: 3td allows efficient inversion y = x,, X1
* Adaptive hardcore bit: ...



Proof of guantumness
[Brakerski, Christiano, Mahadev, Vazirani, Vidick; 2018]
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If @ =0, ans = xy or ans = x;
If6 =1, ans - (xo @ x;) = 0 (and ans # 0™) OO

cannot efficiently produce y, ans,, ans;
simultaneously with probability > %



First attempt
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First attempt, cont’d
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First attempt, cont’d
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First attempt, attack
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Second attempt
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Second attempt, analysis
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Security proof




Computational non-local game of TCFs

=

)

ans




Computational non-local game of TCFs
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Computational non-local game of TCFs
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Reduction to adaptive hardcore bit

Claim: By no-signaling, Pr[W,] = Pr[W,|6 = 0]
Pr[W,] = Pr[W;|0 = 1]
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Other results

* Negligible soundness via parallel repetition
[Radian, Sattath 2019; Alagic, Childs, Grilo, Hung 2020; Chia, Chung, Yamakawa 2020]

e Security against entangled adversaries

* Bounded entanglement from subexponential hardness (exp(n¢)-hardness)
[Aaronson 2005; TFKW13]

* Unbounded entanglement in the quantum random oracle model (QROM)
[Unr14]

» Attack with entangled adversaries for standard model constructions



Future directions

* High dimensional classically verifiable position verification (CVPV)
* Time-entanglement trade-offs

* |[s quantum memory/unclonability inherent for CVPV?

* Weakening the assumption/ideal model



Thank youl!

Icons from flaticon.com
Picture of laser from wikipedia.org



