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Position verification via distance bounding



Attack with colluding adversaries



Position verification impossibility
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State of the art for position verification (PV)

• Chandran, Goyal, Moriarty, Ostrovsky (2009):
• Impossibility

• Protocol secure against bounded-storage adversaries

• Quantum protocols (quantum communication)
• Kent (2002)

• Burhman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner (2010)

• Beigi, König (2011)

• Kent, Munro, Spiller (2011)

• Tomamichel, Fehr, Kaniewski, Wehner (2013)

• Unruh (2014)

• …



In this talk…

Quantum hardness of Learning with Errors (LWE) →
Classically verifiable position verification against quantum* adversaries

Can we do better?

• Quantum prover is necessary

• Computational assumptions are necessary
(proofs of quantumness are necessary)

*security against entangled adversaries can be achieved with a stronger (standard) assumption/model

Classical verifiers
Classical communication



Practical advantages

Freespace communication has a high loss!

• Qi and Siopsis (2015): known quantum PVs break with high loss

• Loss-tolerant quantum PV:
• Qi, Lo, Lim, Siopsis, Chitambar, Pooser, Evans, Grice (2015)

• Chakraborty, Leverrier (2015)

• Lim, Xu, Siopsis, Chitambar, Evans, Qi (2016)

• Speelman (2016)

• LXSCEQ (2016) & Allerstorfer, Buhrman, Speelman, Lunel (2021):
fully loss-tolerant quantum PV against unentangled adversaries

• Our work: full loss tolerance against entangled adversaries



Practical advantages, cont’d

Freespace quantum communication requires a tracking laser

Quantum information is harder to compose for position-based 
cryptography, e.g., authentication



BB84 states [Wiesner ca. 1969]

• Computational basis: 0 , 1

• Hadamard basis:

• 𝐻 0 =
1

2
0 + 1

• 𝐻 1 =
1

2
0 − 1

• Can recover the bit given the basis and the state

• Provably information theoretically unclonable w/o knowing basis



Quantum position verification with BB84
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*Disclaimer: potentially inaccurate physical devices

[BCFGGOS10, BK11, KMS11, TFKW13, …]



BB84 position verification security [TFKW13]
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Position verification impossibility
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if 𝑓 is classical

To get around the impossibility,
𝑓 must be inherently quantum,

e.g., take quantum inputs Idea for 𝑓:
make prover prepare 

computationally 
unclonable states



Trapdoor claw-free functions
[Goldwasser, Micali, Rivest ’84]

𝑓𝑝𝑘: 0,1 𝑛 → 0,1 𝑚

• Claw-free: 2-to-1, hard to find collisions efficiently

• Trapdoor: ∃𝑡𝑑 allows efficient inversion 𝑦 → 𝑥0, 𝑥1
• Adaptive hardcore bit: …



Proof of quantumness
[Brakerski, Christiano, Mahadev, Vazirani, Vidick; 2018]
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from LWE



First attempt
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First attempt, cont’d
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First attempt, cont’d
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First attempt, attack
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Second attempt
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Second attempt, analysis
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Security proof

𝑥

𝑡

𝑝𝑘 𝜃

𝑦, 𝑎𝑛𝑠𝑎𝑛𝑠

𝑦



Computational non-local game of TCFs
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Computational non-local game of TCFs

𝑝𝑘

𝑦
𝜓

𝑎𝑛𝑠𝐴

𝜃
𝑎𝑛𝑠𝐵

Claim: success probability of 
passing both checks 

simultaneously is at most 
3

4

Implies 𝜓 is 
unclonable



Computational non-local game of TCFs
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Reduction to adaptive hardcore bit

Claim: By no-signaling, Pr 𝑊0
′ = Pr 𝑊0 𝜃 = 0

Pr 𝑊1
′ = Pr 𝑊1 𝜃 = 1

Pr 𝑊0 ∧𝑊1 =
1

2
Pr 𝑊0 ∧𝑊1|𝜃 = 0 + Pr 𝑊0 ∧𝑊1|𝜃 = 1

Pr 𝑊0 ∧𝑊1 ≤
1

2
Pr 𝑊0|𝜃 = 0 + Pr 𝑊1|𝜃 = 1

Pr 𝑊0 ∧𝑊1 =
1

2
Pr 𝑊0

′ + Pr 𝑊1
′ (no signaling)

Pr 𝑊0 ∧𝑊1 ≤
1

2
1 + Pr 𝑊0

′ ∧𝑊1
′ (union bound)

Pr 𝑊0 ∧𝑊1 ≤
3

4
+ negl (adaptive hardcore bit)



Other results

• Negligible soundness via parallel repetition
[Radian, Sattath 2019; Alagic, Childs, Grilo, Hung 2020; Chia, Chung, Yamakawa 2020]

• Security against entangled adversaries
• Bounded entanglement from subexponential hardness (exp 𝑛𝜀 -hardness)

[Aaronson 2005; TFKW13]

• Unbounded entanglement in the quantum random oracle model (QROM)
[Unr14]

• Attack with entangled adversaries for standard model constructions



Future directions

• High dimensional classically verifiable position verification (CVPV)

• Time-entanglement trade-offs

• Is quantum memory/unclonability inherent for CVPV?

• Weakening the assumption/ideal model



Thank you!

Icons from flaticon.com
Picture of laser from wikipedia.org


