Gas Chromatography-Mass Spectrometry Technology: Application in the Study of Inflammatory Mechanism in COVID-19 Patients

Chromatographia. 2023;86(2):175-183. doi: 10.1007/s10337-022-04222-3. Epub 2023 Jan 25.

Abstract

SARS-CoV-2 infection in the human body induces a severe storm of inflammatory factors. However, its specific mechanism is still not clear. Gas chromatography-mass spectrometry (GC-MS) technology is expected to explain the possible mechanism of the disease by detecting differential metabolites. 15 COVID-19 patients and healthy controls were included in this study. Immune indicators such as hs CRP and cytokines were detected to reflect the level of inflammation in patients with COVID-19. The distribution of lymphocytes and subpopulations in peripheral whole blood were detected using flow cytometry to assess the immune function of COVID-19 patients. The expression of differential metabolites in serum was analyzed using GC-MS non-targeted metabolomics. The results showed that hs CRP, IL-5/6/8/10 and IFN-α in the serum of COVID-19 patients increased to varying degrees, and CD3/4/8+ T lymphocytes decreased. Additionally, 53 metabolites in the serum of COVID-19 patients were up regulated, 18 metabolites were down regulated, and 8 metabolites remained unchanged. Increased Cholesterol, Lactic Acid and 1-Monopalmitin may be the mechanism that causes excessive inflammation in COVID-19 patients. The increase of D-Allose may be involved in the process of lymphocyte decrease. In conclusion, the significance of our study is to reveal the possible mechanism of inflammatory response in patients with COVID-19 from the perspective of metabolomics. This provided a new idea for the treatment of COVID-19.

Keywords: COVID-19; Inflammation; Lymphocytes; Metabolism.