
We thank all reviewers for very helpful comments. This letter addresses the major questions raised by the reviewers.1

Specific questions by Reviewer 1. Please see the response below for “distribution assumptions” and “global null and2

group of coefficients”. We will correct our references and typos in the table. Thanks.3

Specific questions by Reviewer 2. (1) We agree with the reviewer that the low signal-to-noise ratio (SNR) setting4

is very interesting and hurts us in high dimensions. Indeed, when the SNR is below a certain threshold, no testing5

procedure can succeed; therefore our goal is to completely characterize this detection boundary and establish a valid6

test as soon as the SNR exceeds this detection boundary. Our upper and lower bounds established in Section 3 are steps7

towards such exact characterizations. (2) We refer the reviewer to our response below for “more discussions of our8

simulations”. On the design of the simulations, in the first part of the simulation section, we have varied the following9

factors: • signal-to-noise ratio • distribution of X • distribution of noise by varying (i) the Frobenius norm of Σ; (ii)10

the eigen-structure of Σ; (iii) the noise distribution for different scenarios. We also examine the effect of dimension in11

the second part of the simulation section. We shall elaborate more in our revised version to make these more clear.12

Other comments: (1) While the optimality of our proposed test is validated in various settings, the optimal procedure in13

the most general form still remains open. We agree it is very interesting and non-trivial to see whether a modified F -test14

can be adapted for optimal testing in the low-SNR setting. (2) We share the reviewer’s intuition that Lemma 1 should15

hold as in the small p case. However, it is non-trivial to demonstrate this result in the proportional regime where p16

grows together with n. In addition, considering the local alternatives for small βT Σβ, only makes the testing problems17

more challenging. (3) The ARE compares the samples required for two tests to achieve the same power and it is defined18

as n2/n1. Therefore, ARE < 1 means the first test is more effective. Sorry there was a typo in our manuscript and we19

will correct it in the revised version. Thanks for catching this. Indeed, there is randomness associated with Sk in the20

testing procedure. To conquer this issue, we provided high-probability guarantees in Section 2 and 3. Please also see21

the response below for “distribution assumptions”.22

Specific questions by Reviewer 3. Please see below for “global null and group of coefficients” and “more discussions23

of our simulations”. We will elaborate more in our revised version when the eigen-spetra are not as nicely behaved. For24

Table 2, the Type I error rates are reflected in the column ‖β‖2 = 0; we shall make it more clear in the revised version.25

Specific questions by Reviewer 4. Please see the response below for “global null and group of coefficients” and26

“novelty of the method and theory”. We will add the comparisons of the running time in our revision. Thanks.27
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Fig 1: Sketched F -test for group testing.
Here n = 200, p = 500 and q = 50.

Global null and group of coefficients. To better demonstrate our main idea,28

our focus so far is mainly on testing the global null, however, our results and29

techniques can be substantially extended to testing other hypotheses. Built30

upon an improved argument of the high-dimensional F -test (see [36]), our31

framework can be provably adapted to testing whether H0 : Gβ = r0 or32

H1 : Gβ 6= r0 for G ∈ Rq×p and r0 ∈ Rq with q ≤ p. For example, to test33

the joint significance of a group of coefficients, our test combines a sketching34

step (over the complement set of features) with the classical F -test. Fig 135

demonstrates its efficacy in the same setting as in our Section 4.36

Distribution assumptions. In our settings, each row of the design matrix X37

and noise vector Z follow Gaussian distributions and are independent of each38

other. We shall make these more explicit in our theorem statements. We will39

also make it clear that Theorem 1 and 3 hold beyond Gaussian settings, and a set of weaker distributional assumptions40

are stated in Appendix A. Moreover, we remark that the Bayesian-type assumption (A) in Proposition 1 is made only for41

illustrative purposes and is not used outside of line 192-215. Sorry for the confusion. In fact, the specific assumption42

(A) is invoked to provide intuition for the ARE expression in (8). We will also make it clear that we apply the frequentist43

approach throughout the entire paper, and all the theorems hold for any specific (β,Σ, σ) under mild conditions.44

More discussions of our simulations. In most of our simulations, we consider cases where the eigenvalues of Σ enjoy45

a decaying structure, in which setting, the designs are of intrinsically lower dimensions. For such decaying structures,46

the U-statistics type tests (e.g. CGZ, ZC) by design are not suitable, therefore are not as competitive. These simulation47

results support our theoretical findings in Theorem 2 and 3. We emphasize that the optimality of our procedure relies on48

the intrinsic low-dimensional structure (in Definition 2/Appendix B); when there is no such structure, it is impossible to49

do feature-dimension reduction without losing information, and the optimal test for the global null remains open.50

Novelty of the method and theory. As far as we know, the proposed procedure is the first attempt to analyze in details51

how sketching techniques work for testing regression coefficients. By a novel definition of the intrinsic dimension, we52

provide a systematic approach to determine the optimal sketching dimensions. While our theoretical results are built53

upon random matrix theory and the minimax decision framework, some technical lemmas introduced new techniques54

and are of independent interests.55


