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Abstract

A fundamental result in differential privacy states that the privacy guarantees of
a mechanism are preserved by any post-processing of its output. In this paper
we investigate under what conditions stochastic post-processing can amplify the
privacy of a mechanism. By interpreting post-processing as the application of a
Markov operator, we first give a series of amplification results in terms of uniform
mixing properties of the Markov process defined by said operator. Next we provide
amplification bounds in terms of coupling arguments which can be applied in cases
where uniform mixing is not available. Finally, we introduce a new family of
mechanisms based on diffusion processes which are closed under post-processing,
and analyze their privacy via a novel heat flow argument. On the applied side, we
generalize the analysis of “privacy amplification by iteration” in Noisy SGD and
show it admits an exponential improvement in the strongly convex case, and study
a mechanism based on the Ornstein–Uhlenbeck diffusion process which contains
the Gaussian mechanism with optimal post-processing on bounded inputs as a
special case.

1 Introduction

Differential privacy (DP) [15] has arisen in the last decade into a strong de-facto standard for privacy-
preserving computation in the context of statistical analysis. The success of DP is based, at least
in part, on the availability of robust building blocks (e.g., the Laplace, exponential and Gaussian
mechanisms) together with relatively simple rules for analyzing complex mechanisms built out of
these blocks (e.g., composition and robustness to post-processing). The inherent tension between
privacy and utility in practical applications has sparked a renewed interest into the development of
further rules leading to tighter privacy bounds. A trend in this direction is to find ways to measure the
privacy introduced by sources of randomness that are not accounted for by standard composition rules.
Generally speaking, these are referred to as privacy amplification rules, with prominent examples
being amplification by subsampling [9, 18, 20, 6, 5, 8, 2, 27], shuffling [16, 10, 3] and iteration [17].

Motivated by these considerations, in this paper we initiate a systematic study of privacy amplification
by stochastic post-processing. Specifically, given a DP mechanism M producing (probabilistic)
outputs in X and a Markov operator K defining a stochastic transition between X and Y, we are
interested in measuring the privacy of the post-processed mechanism K ◦M producing outputs in Y.
The standard post-processing property of DP states that K ◦M is at least as private as M . Our goal
is to understand under what conditions the post-processed mechanism K ◦M is strictly more private
than M . Roughly speaking, this amplification should be non-trivial when the operator K “forgets”
information about the distribution of its input M(D). Our main insight is that, at least when Y = X,
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the forgetfulness of K from the point of view of DP can be measured using similar tools to the ones
developed to analyze the speed of convergence, i.e. mixing, of the Markov process associated with K.

In this setting, we provide three types of results, each associated with a standard method used in the
study of convergence for Markov processes. In the first place, Section 3 provides DP amplification
results for the case where the operatorK satisfies a uniform mixing condition. These include standard
conditions used in the analysis of Markov chains on discrete spaces, including the well-known
Dobrushin coefficent and Doeblin’s minorization condition [19]. Although in principle uniform
mixing conditions can also be defined in more general non-discrete spaces [12], most Markov
operators of interest in Rd do not exhibit uniform mixing since the speed of convergence depends
on how far apart the initial inputs are. Convergence analyses in this case rely on more sophisticated
tools, including Lyapunov functions [22], coupling methods [21] and functional inequalities [1].

Following these ideas, Section 4 investigates the use of coupling methods to quantify privacy
amplification by post-processing under Rényi DP [23]. These methods apply to operators given by,
e.g., Gaussian and Laplace distributions, for which uniform mixing does not hold. Results in this
section are intimately related to the privacy amplification by iteration phenomenon studied in [17]
and can be interpreted as extensions of their main results to more general settings. In particular, our
analysis unpacks the shifted Rényi divergence used in the proofs from [17] and allows us to easily
track the effect of iterating arbitrary noisy Lipschitz maps. As a consequence, we show an exponential
improvement on the privacy amplification by iteration of Noisy SGD in the strongly convex case
which follows from applying this generalized analysis to strict contractions.

Our last set of results concerns the case whereK is replaced by a family of operators (Pt)t≥0 forming
a Markov semigroup [1]. This is the natural setting for continuous-time Markov processes, and
includes diffusion processes defined in terms of stochastic differential equations [25]. In Section 5
we associate (a collection of) diffusion mechanisms (Mt)t≥0 to a diffusion semigroup. Interestingly,
these mechanisms are, by construction, closed under post-processing in the sense thatPs◦Mt = Ms+t.
We show the Gaussian mechanism falls into this family – since Gaussian noise is closed under addition
– and also present a new mechanism based on the Ornstein-Uhlenbeck process which has better mean
squared error than the standard Gaussian mechanism (and matches the error of the optimally post-
processed Gaussian mechanism with bounded inputs). Our main result on diffusion mechanisms
provides a generic Rényi DP guarantee based on an intrinsic notion of sensitivity derived from the
geometry induced by the semigroup. The proof relies on a heat flow argument reminiscent of the
analysis of mixing in diffusion processes based on functional inequalities [1].

2 Background

We start by introducing notation and concepts that will be used throughout the paper. We write
[n] = {1, . . . , n}, a ∧ b = min{a, b} and [a]+ = max{a, 0}.
Probability. Let X = (X,Σ, λ) be a measurable space with sigma-algebra Σ and base measure λ.
We write P(X) to denote the set of probability distributions on X. Given a probability distribution
µ ∈ P(X) and a measurable event E ⊆ X we write µ(E) = P[X ∈ E] for a random variable
X ∼ µ, denote its expectation under f : X→ Rd by E[f(X)], and can get back its distribution as
µ = Law(X). Given two distributions µ, ν (or, in general, arbitrary measures) we write µ � ν to
denote that µ is absolutely continuous with respect to ν, in which case there exists a Radon-Nikodym
derivative dµ

dν . We shall reserve the notation pµ = dµ
dλ to denote the density of µ with respect to the

base measure. We also write C(µ, ν) to denote the set of couplings between µ and ν; i.e. π ∈ C(µ, ν)
is a distribution on P(X× X) with marginals µ and ν. The support of a distribution is supp(µ).

Markov Operators. We will use K(X,Y) to denote the set of Markov operators K : X→ P(Y)
defining a stochastic transition map between X and Y and satisfying that x 7→ K(x)(E) is measurable
for every measurable E ⊆ Y. Markov operators act on distributions µ ∈ P(X) on the left through
(µK)(E) =

∫
K(x)(E)µ(dx), and on functions f : Y → R on the right through (Kf)(x) =∫

f(y)K(x, dy), which can also be written as (Kf)(x) = E[f(X)] with X ∼ K(x). The kernel
of a Markov operator K (with respect to λ) is the function k(x, ·) = dK(x)

dλ associating with x the
density of K(x) with respect to a fixed measure.

Divergences. A popular way to measure dissimilarity between distributions is to use Csiszár
divergences Dφ(µ‖ν) =

∫
φ(dµdν )dν, where φ : R+ → R is convex with φ(1) = 0. Taking
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φ(u) = 1
2 |u− 1| yields the total variation distance TV(µ, ν), and the choice φ(u) = [u− eε]+ with

ε ≥ 0 gives the hockey-stick divergence Deε , which satisfies

Deε(µ‖ν) =

∫ [
dµ

dν
− eε

]

+

dν =

∫
[pµ − eεpν ]+dλ = sup

E⊆X
(µ(E)− eεν(E)) .

It is easy to check that ε 7→ Deε(µ‖ν) is monotonically decreasing and D1 = TV. All Csiszár
divergences satisfy joint convexity D((1 − γ)µ1 + γµ2‖(1 − γ)ν1 + γν2) ≤ (1 − γ)D(µ1‖ν1) +
γD(µ2‖ν2) and the data processing inequality D(µK‖νK) ≤ D(µ‖ν) for any Markov operator K.
Rényi divergences1 are another way to compare distributions. For α > 1 the Rényi divergence of
order α is defined as Rα(µ‖ν) = 1

α−1 log
∫

(dµdν )αdν, and also satisfies the data processing inequality.
Finally, to measure similarity between µ, ν ∈ P(Rd) we sometimes use the∞-Wasserstein distance:

W∞(µ, ν) = inf
π∈C(µ,ν)

inf{w ≥ 0 : ‖X − Y ‖ ≤ w holds almost surely for (X,Y ) ∼ π} .

Differential Privacy. A mechanism M : Dn → P(X) is a randomized function that takes a dataset
D ∈ Dn over some universe of records D and returns a (sample from) distribution M(D). We write
D ' D′ to denote two databases differing in a single record. We say that M satisfies2 (ε, δ)-DP
if supD'D′ Deε(M(D)‖M(D′)) ≤ δ [15]. Furthermore, we say that M satisfies (α, ε)-RDP if
supD'D′ Rα(M(D)‖M(D′)) ≤ ε [23].

3 Amplification From Uniform Mixing

We start our analysis of privacy amplification by stochastic post-processing by considering settings
where the Markov operator K satisfies one of the following uniform mixing conditions.
Definition 1. Let K ∈ K(X,Y) be a Markov operator, γ ∈ [0, 1] and ε ≥ 0. We say that K is:

(1) γ-Dobrushin if supx,x′ TV(K(x),K(x′)) ≤ γ,
(2) (γ, ε)-Dobrushin if supx,x′ Deε(K(x)‖K(x′)) ≤ γ,
(3) γ-Doeblin if there exists a distribution ω ∈ P(Y) such that K(x) ≥ (1− γ)ω for all x ∈ X,
(4) γ-ultra-mixing if for all x, x′ ∈ X we have K(x)� K(x′) and dK(x)

dK(x′) ≥ 1− γ.

Most of these conditions arise in the context of mixing analyses in Markov chains. In particular,
the Dobrushin condition can be tracked back to [13], while Doeblin’s condition was introduced
earlier [14] (see also [24]). Ultra-mixing is a strengthening of Doeblin’s condition used in [12]. The
(γ, ε)-Dobrushin is, on the other hand, new and is designed to be a generalization of Dobrushin
tailored for amplification under the hockey-stick divergence.

It is not hard to see that Dobrushin’s is the weakest among these conditions, and in fact we have the
implications summarized in Figure 1 (see Lemma 9). This explains why the amplification bounds
in the following result are increasingly stronger, and in particular why the first two only provide
amplification in δ, while the last two also amplify the ε parameter.
Theorem 1. Let M be an (ε, δ)-DP mechanism. For a given Markov operator K, the post-processed
mechanism K ◦M satisfies:

(1) (ε, δ′)-DP with δ′ = γδ if K is γ-Dobrushin,
(2) (ε, δ′)-DP with δ′ = γδ if K is (γ, ε̃)-Dobrushin with3 ε̃ = log(1 + eε−1

δ ),
(3) (ε′, δ′)-DP with ε′ = log(1 + γ(eε − 1)) and δ′ = γ(1− eε′−ε(1− δ)) if K is γ-Doeblin,
(4) (ε′, δ′)-DP with ε′ = log(1 + γ(eε − 1)) and δ′ = γδeε

′−ε if K is γ-ultra-mixing.

A few remarks about this result are in order. First we note that (2) is stronger than (1) since the
monotonicity of hockey-stick divergences implies TV = D1 ≥ Deε̃ . Also note how in the results
above we always have ε′ ≤ ε, and in fact the form of ε′ is the same as obtained under amplification

1Rényi divergences do not belong to the family of Csiszár divergences.
2This divergence characterization of DP is due to [4].
3We take the convention ε̃ =∞ whenever δ = 0, in which case the (γ,∞)-Dobrushin condition is obtained

with respect to the divergence D∞(µ‖ν) = µ(supp(µ) \ supp(ν)).
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γ-ultra-mixing γ-Doeblin γ-Dobrushin

(γ, ε)-Dobrushin

Figure 1: Implications between mixing conditions

Mixing Condition Local DP Condition

γ-Dobrushin (0, γ)-LDP

(γ, ε)-Dobrushin (ε, γ)-LDP

γ-Doeblin Blanket condition4

γ-ultra-mixing (log 1
1−γ , 0)-LDP

Table 1: Relation between mixing condi-
tions and local DP

by subsampling when, e.g., a γ-fraction of the original dataset is kept. This is not a coincidence since
the proofs of (3) and (4) leverage the overlapping mixtures technique used to analyze amplification
by subsampling in [2]. However, we note that for (3) we can have δ′ > 0 even with δ = 0. In fact the
Doeblin condition only leads to an amplification in δ if γ ≤ δeε

(1−δ)(eε−1) .

We conclude this section by noting that the conditions in Definition 1, despite being quite natural,
might be too stringent for proving amplification for DP mechanisms on, say, Rd. One way to see
this is to interpret the operator K : X→ P(Y) as a mechanism and to note that the uniform mixing
conditions on K can be rephrased in terms of local DP (LDP) [18] properties (see Table 1 for
property4 translations)where the supremum is taken over any pair of inputs (instead of neighboring
ones). This motivates the results on next section, where we look for finer conditions to prove
amplification by stochastic post-processing.

4 Amplification From Couplings

In this section we turn to coupling-based proofs of amplification by post-processing under the Rényi
DP framework. Our first result is a measure-theoretic generalization of the shift-reduction lemma in
[17] which does not require the underlying space to be a normed vector space. The main differences
in our proof are to use explicit couplings instead of the shifted Rényi divergence which implicitly
relies on the existence of a norm (through the use of W∞), and replace the identity U +W −W = U
between random variables which depends on the vector-space structure with a transport operators Hπ

and Hπ′ which satisfy µHπ′Hπ = µ in a general measure-theoretic setting.

Given a coupling π ∈ C(µ, ν) with µ, ν ∈ P(X), we construct a transport Markov operator
Hπ : X→ P(X) with kernel5 hπ(x, y) = pπ(x,y)

pµ(x) , where pπ = dπ
dλ⊗λ and pµ = dµ

dλ . It is immediate
to verify from the definition that Hπ is a Markov operator satisfying the transport property µHπ = ν
(see Lemma 16).
Theorem 2. Let α ≥ 1, µ, ν ∈ P(X) and K ∈ K(X,Y). For any distribution ω ∈ P(X) and
coupling π ∈ C(ω, µ) we have

Rα(µK‖νK) ≤ Rα(ω‖ν) + sup
x∈supp(ν)

Rα((HπK)(x)‖K(x)) . (1)

Note that this result captures the data-processing inequality for Rényi divergences since taking ω = µ
and the identity coupling yields Rα(µK‖νK) ≤ Rα(µ‖ν). The next examples illustrate the use
of this theorem to obtain amplification by operators corresponding to the addition of Gaussian and
Laplace noise.
Example 1 (Iterated Gaussian). We can show that (1) is tight and equivalent to the shift-reduction
lemma [17] on Rd by considering the simple scenario of adding Gaussian noise to the output
of a Gaussian mechanism. In particular, suppose M(D) = N (f(D), σ2

1I) for some function f
with global L2-sensitivity ∆ and the Markov operator K is given by K(x) = N (x, σ2

2I). The
post-processed mechanism is given by (K ◦ M)(D) = N (f(D), (σ2

1 + σ2
2)I), which satisfies

(α, α∆2

2(σ2
1+σ2

2)
)-RDP. We now show how this result also follows from Theorem 2. Given two datasets

D ' D′ we write µ = M(D) = N (u, σ2
1I) and ν = M(D′) = N (v, σ2

1I) with ‖u− v‖ ≤ ∆. We

4The blanket condition is a necessary condition for LDP introduced in [3] to analyze privacy amplification
by shuffling.

5Here we use the convention 0
0

= 0.
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take ω = N (w, σ2
1I) for some w to be determined later, and couple ω and µ through a translation

τ = u − w, yielding a coupling π with pπ(x, y) ∝ exp(−‖x−w‖
2

2σ2
1

)I[y = x + τ ] and a transport
operator Hπ with kernel hπ(x, y) = I[y = x+ τ ]. Plugging these into (1) we get

Rα(µK‖νK) ≤ α‖w − v‖2
2σ2

1

+ sup
x∈Rd

Rα(K(x+ τ)‖K(x)) =
α

2

(‖w − v‖2
σ2

1

+
‖u− w‖2

σ2
2

)
.

Finally, taking w = θu+ (1− θ)v with θ = (1 +
σ2
2

σ2
1
)−1 yields Rα(µK‖νK) ≤ α∆2

2(σ2
1+σ2

2)
.

Example 2 (Iterated Laplace). To illustrate the flexibility of this technique, we also apply it to get
an amplification result for iterated Laplace noise, in which Laplace noise is added to the output of
a Laplace mechanism. We begin by noting a negative result that there is no amplification in the
(ε, 0)-DP regime.
Lemma 3. Let M(D) = Lap(f(D), λ1) for some function f : D → R with global L1-sensitivity
∆ and let the Markov operator K be given by K(x) = Lap(x, λ2). The post-processed mechanism
(K ◦M) does not achieve (ε, 0)-DP for any ε < ∆

max{λ1,λ2} . Note that M achieves ( ∆
λ1
, 0)-DP and

K(f(D)) achieves ( ∆
λ2
, 0)-DP.

However, the iterated Laplace mechanism K ◦M above still offers additional privacy in the relaxed
RDP setting. An application of (1) allows us to identify some of this improvement. Recall from
[23, Corollary 2] that M satisfies (α, 1

α−1 log gα( ∆
λ1

))-RDP with gα(z) = α
2α−1 exp(z(α − 1)) +

α−1
2α−1 exp(−zα). As in Example 1, we take ω = Lap(w, λ1) for some w to be determined later, and
couple ω and µ through a translation τ = u− w. Through (1) we obtain

Rα(µK‖νK) ≤ 1

α− 1
log

(
gα

( |w − v|
λ1

))
+ sup
x∈R

Rα(K(x+ τ)‖K(x))

=
1

α− 1
log

(
gα

( |w − v|
λ1

)
gα

( |u− w|
λ2

))
.

In the simple case where λ1 = λ2, an amplification result is observed from the log-convexity of gα,
since gα(a)gα(b) ≤ gα(a+ b). When λ1 6= λ2, certain values of w still result in amplification, but
they depend nontrivially on α. However, we also observe that this improvement vanishes as α→∞,
since the necessary convexity also vanishes. In the limit, the lowest upper bound offered by (1) for
R∞ (which reduces to (ε, 0)-DP) matches the ∆

max{λ1,λ2} result of Lemma 3.

Example 3 (Lipschitz Kernel). As a warm-up for the results in Section 4.1, we now re-work
Example 1 with a slightly more complex Markov operator. Suppose ψ is an L-Lipschitz map6 and let
K(x) = N (ψ(x), σ2

2I). Taking M to be the Gaussian mechanism from Example 1, we will show
that the post-processed mechanism K ◦M satisfies (α, α∆2

2σ2
∗

)-RDP with σ2
∗ = σ2

1 +
σ2
2

L2 . To prove
this bound, we instantiate the notation from Example 1, and use the same coupling strategy to obtain

Rα(µK‖νK) ≤ α

2

(‖w − v‖2
σ2

1

+ sup
x∈Rd

‖ψ(x+ τ)− ψ(x)‖2
σ2

2

)
≤ α

2

(‖w − v‖2
σ2

1

+
L2‖u− w‖2

σ2
2

)
,

where the second inequality uses the Lipschitz property. As before, the result follows from taking
w = θu + (1 − θ)v with θ = (1 +

σ2
2

L2σ2
1
)−1. This example shows that we get amplification (i.e.

σ2
∗ > σ2

1) for any L <∞ and σ2 > 0, although the amount of amplification decreases as L grows. On
the other hand, for L < 1 the amplification is stronger than just adding Gaussian noise (Example 1).

4.1 Amplification by Iteration in Noisy Projected SGD with Strongly Convex Losses

Now we use Theorem 2 and the computations above to show that the proof of privacy amplification
by iteration [17, Theorem 22] can be extended to explicitly track the Lipschitz coefficients in a
“noisy iteration” algorithm. In particular, this allows us to show an exponential improvement on
the rate of privacy amplification by iteration in noisy SGD when the loss is strongly convex. To
obtain this result we first provide an iterated version of Theorem 2 in Rd with Lipschitz Gaussian

6That is, ‖ψ(x)− ψ(y)‖ ≤ L‖x− y‖ for any pair x, y.
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kernels. This version of the analysis introduces an explicit dependence on the W∞ distances along an
“interpolating” path between the initial distributions µ, ν ∈ P(Rd) which could later be optimized for
different applications. In our view, this helps to clarify the intuition behind the previous analysis of
amplification by iteration.
Theorem 4. Let α ≥ 1, µ, ν ∈ P(Rd) and let K ⊆ Rd be a convex set. Suppose K1, . . . ,Kr ∈
K(Rd,Rd) are Markov operators where Yi ∼ Ki(x) is obtained as7 Yi = ΠK(ψi(x)+Zi) with Zi ∼
N (0, σ2I), where the maps ψi : K→ Rd are L-Lipschitz for all i ∈ [r]. For any µ0, µ1, . . . , µr ∈
P(Rd) with µ0 = µ and µr = ν we have

Rα(µK1 · · ·Kr‖νK1 · · ·Kr) ≤
αL2

2σ2

r∑

i=1

L2(r−i)W∞(µi, µi−1)2 . (2)

Furthermore, if L ≤ 1 and W∞(µ, ν) = ∆, then

Rα(µK1 · · ·Kr‖νK1 · · ·Kr) ≤
α∆2Lr+1

2rσ2
. (3)

Note how taking L = 1 in the bound above we obtain α∆2

2rσ2 = O(1/r), which matches [17, Theorem
1]. On the other hand, for L strictly smaller than 1, the analysis above shows that the amplification
rate is O(Lr+1/r) as a consequence of the maps ψi being strict contractions, i.e. ‖ψi(x)− ψi(y)‖ <
‖x − y‖. For L > 1 this result is not useful since the sum will diverge; however, the proof could
easily be adapted to handle the case where each ψi is Li-Lipschitz with some Li > 1 and some
Li < 1. We now apply this result to improve the per-person privacy guarantees of noisy projected
SGD (Algorithm 1) in the case where the loss function is smooth and strongly convex.

Algorithm 1: Noisy Projected Stochastic Gradient Descent — NoisyProjSGD(D, `, η, σ, ξ0)

Input: Dataset D = (z1, . . . , zn), loss function ` : K×D→ R, learning rate η, noise parameter
σ, initial distribution ξ0 ∈ P(K)

Sample x0 ∼ ξ0
for i ∈ [n] do

xi ← ΠK (xi−1 − η(∇x`(xi−1, zi) + Z)) with Z ∼ N (0, σ2I)

return xn

A function f : K ⊆ Rd → R defined on a convex set is β-smooth if it is continuously differentiable
and∇f is β-Lipschitz, i.e., ‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖, and is ρ-strongly convex if the function
g(x) = f(x)− ρ

2‖x‖2 is convex. When we say that a loss function ` : K×D→ R satisfies a property
(e.g. smoothness) we mean the property is satisfied by `(·, z) for all z ∈ D. Furthermore, we recall
from [17] that a mechanism M : Dn → X satisfies (α, ε)-RDP at index i if Rα(M(D)‖M(D′)) ≤ ε
holds for any pair of databases D and D′ differing on the ith coordinate.
Theorem 5. Let ` : K × D → R be a C-Lipschitz, β-smooth, ρ-strongly convex loss function. If
η ≤ 2

β+ρ , then NoisyProjSGD(D, `, η, σ, ξ0) satisfies (α, αεi)-RDP at index i, where εn = 2C2

σ2

and εi = 2C2

(n−i)σ2 (1− 2ηβρ
β+ρ )

n−i+1
2 for 1 ≤ i ≤ n− 1.

Since [17, Theorem 23] shows that for smooth Lipschitz loss functions the guarantee at index i
of NoisyProjSGD is given by εi = O( C2

(n−i)σ2 ), our result provides an exponential improvement
in the strongly convex case. This implies, for example, that using the technique in [17, Corollary
31] one can show that, in the strongly convex setting, running Θ(log(d)) additional iterations of
NoisyProjSGD on public data is enough to attain (up to constant factors) the same optimization
error as non-private SGD while providing privacy for all individuals.

5 Diffusion Mechanisms

Now we go beyond the analysis from previous sections and simultaneously consider a family of
Markov operators P = (Pt)t≥0 indexed by a continuous parameter t and satisfying the semigroup

7Here ΠK(x) = arg miny∈K ‖x− y‖ denotes the projection operator onto the convex set K ⊆ Rd.
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property PtPs = Pt+s. Such P is called a Markov semigroup and can be used to define a family of
output perturbation mechanisms Mf

t (D) = Pt(f(D)) which are closed under post-processing by P

in the sense that Ps ◦Mf
t = Mf

t+s. The semigroup property greatly simplifies the analysis of privacy
amplification by post-processing, since, for example, if we show that Mf

t satisfies (α, ε(t))-RDP,
then this immediately provides RDP guarantees for any post-processing of Mt by any number of
operators in P. The main result of this section provides such privacy analysis for mechanisms arising
from symmetric diffusion Markov semigroups in Euclidean space. We will show this class includes
the well-known Gaussian mechanism, and also identify another interesting mechanism in this class
arising from the Ornstein-Uhlenbeck diffusion process.

Roughly speaking, a diffusion Markov semigroup P = (Pt)t≥0 on Rd corresponds to the case where
Xt ∼ Pt(x) defines a Markov process (Xt)t≥0 arising from a (time-homogeneous Itô) stochastic
differential equation (SDE) of the form X0 = x and dXt = u(Xt)dt+ v(Xt)dWt, where Wt is a
standard d-dimensional Wiener process, and the drift u : Rd → Rd and diffusion v : Rd → Rd×d
coefficients satisfy appropriate regularity assumptions.8 In this paper, however, we shall follow [1]
and take a more abstract approach to Markov diffusion semigroups. We synthesize this approach by
making a number of hypotheses on P that we discuss after introducing two core concepts from the
theory of Markov semigroups.

In the context of a Markov semigroup P, the action of the Markov operators Pt on functions can
be used to define the generator L of the semigroup as the operator given by Lf = d

dt (Ptf)|t=0.
In particular, for a diffusion semigroup arising from the SDE dXt = u(Xt)dt + v(Xt)dWt it is
well-known that one can write the generator as Lf = 〈u,∇f〉+ 1

2 〈vv>, H(f)〉, where H(f) is the
Hessian of f and the second term is a Frobenius inner product. Using the generator one also defines
the so-called carré du champ operator Γ(f, g) = 1

2 (L(fg)− fLg − gLf). This operator is bilinear
and non-negative in the sense that Γ(f) , Γ(f, f) ≥ 0. The carré du champ operator operator can
be interpreted as a device to measure how far L is from being a first-order differential operator, since,
e.g., if L =

∑
i ai

∂
∂xi

then L(fg) = fLg+ gLf and therefore Γ(f, g) = 0. The operator Γ can also
be related to notions of curvature/contractivity of the underlying semigroup [1]. Below we illustrate
these concepts with the example of Brownian motion; but first we formally state our assumptions on
the semigroup.
Assumption 1. Suppose the Markov semigroup P = (Pt)t≥0 ⊂ K(Rd,Rd) satisfies the following:

(1) There exists a unique non-negative invariant measure λ; that is, λPt = λ for all t ≥ 0. When
the invariant measure is finite we normalize it to be a probability measure.

(2) The operators Pt admit a symmetric kernel pt(x, y) = pt(y, x) with respect to the invariant
measure. Equivalently, the invariant measure λ is reversible for the Markov process Xt.

(3) The generator L satisfies the diffusion property Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f) for any
differentiable φ : R→ R. This is a chain rule property saying that L is a second-order differential
operator without constant terms.

Example 4 (Brownian Motion). The simplest diffusion process is the Brownian motion given by the
simple SDE dXt =

√
2dWt., which corresponds to the semigroup P given by Pt(x) = N (x, 2t).

In this case, the mechanism Mf
t (D) = Pt(f(D)) is a Gaussian mechanism with variance σ2 = 2t

and therefore satisfies (α, α∆2

4t )-RDP, where ∆ is the global L2-sensitivity of f . A direct substitution
with u = 0 and v =

√
2I shows that the semigroup’s generator is the standard Laplacian in

Rd, L = ∇2 =
∑d
i=1

∂2

∂x2
i

, and a simple calculation yields the expression Γ(f, g) = 〈∇f,∇g〉
for the carré du champ operator. Now we check that P satisfies the conditions in Assumption 1.
First, we recall that Brownian motion has the Lebesgue measure λ on Rd as its unique invariant
measure; this happens to be a non-finite measure. With respect to λ, the semigroup has kernel
pt(x, y) ∝ exp(−‖x−y‖

2

4t ) which is clearly symmetric. Finally, we use the chain rule for the gradient
to verify that

Lf = ∇2φ(f) = ∇(φ′(f)∇f) = φ′′(f)〈∇f,∇f〉+ φ′(f)∇2f = φ′′(f)Γ(f) + φ′(f)Lf .

Now we turn to the main result of this section, which provides a privacy analysis for the diffusion
mechanism Mf

t associated with an arbitrary symmetric diffusion Markov semigroup. The key insight
8The details are not relevant here since we work directly with semigroups satisfying Assumption 1. We refer

to [25] for details.
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behind this result is that the carré du champ operator of the semigroup provides a measure Λ(t) of
intrinsic sensitivity for the mechanism Mf

t defined as:

Λ(t) = sup
D'D′

∫ ∞

t

κf(D),f(D′)(s)ds , where κx,x′(t) = sup
y∈Rd

Γ

(
log

pt(x, y)

pt(x′, y)

)
.

Theorem 6. Let f : Dn → Rd and let P = (Pt)t≥0 by a Markov semigroup on Rd satisfying
Assumption 1. If the mechanism Mf

t (D) = Pt(f(D)) has intrinsic sensitivity Λ(t), then it satisfies
(α, αΛ(t))-RDP for any α > 1 and t > 0.
Example 5 (Brownian Motion, Continued). To illustrate the use of Theorem 6 we show how it can
be used to recover the privacy guarantees of the Gaussian mechanism through its connection with
Brownian motion. We let P be the semigroup from Example 4 and start by using Γ(f) = ‖∇f‖2 to
compute κx,x′(t) as follows:

Γ

(
log

pt(x, y)

pt(x′, y)

)
=

∥∥∥∥∇y
(‖x′ − y‖2 − ‖x− y‖2

4t

)∥∥∥∥
2

=
‖x− x′‖2

4t2
.

Now we use
∫∞
t

1
s2 ds = 1

t and ∆2 = supD'D′ ‖f(D) − f(D′)‖2 to see that the mechanism
associated with P has intrinsic sensitivity Λ(t) = ∆2

4t , yielding the privacy guarantee from Example 4.

5.1 The Ornstein-Uhlenbeck Mechanism

Beyond Brownian motion, another well-known diffusion process is the Ornstein-Uhlenbeck process
with parameters θ, ρ > 0 given by the SDE dXt = −θXtdt +

√
2ρdWt. This diffusion process

is associate with the semigroup P = (Pt)t≥0 given by Pt(x) = N (e−θtx, ρ
2

θ (1 − e−2θt)I). One
interpretation of this diffusion process is to think of Xt as a Brownian motion with variance ρ2

applied to a mean reverting flow that pulls a particle towards the origin at a rate θ. In particular, the
mechanism Mf

t (D) is given by releasing e−θtf(D) +N (0, ρ
2

θ (1− e−2θt)).

Taking the limit t→∞ one sees that the (unique) invariant measure of P is the Gaussian distribution
λ = N (0, ρ

2

θ I). From the SDE characterization of this process it is easy to check that its generator
is Lf = ρ2∇2f − θ〈x,∇f〉 and the associated carré du champ operator is Γ(f, g) = ρ2〈∇f,∇g〉.
Thus, P satisfies conditions (1) and (3) in Assumption 1. To check the symmetry condition we apply
a change of measure to the Gaussian density p̃t(x, y) of Pt with respect to the Lebesgue measure to
get its density w.r.t. λ:

pt(x, y) =
p̃t(x, y)

p̃λ(y)
∝

exp
(
− θ‖y−e−θtx‖2

2ρ2(1−e−2θt)

)

exp
(
− θ‖y‖22ρ2

) = exp

(
−θ‖x‖

2 − 2eθt〈x, y〉+ ‖y‖2
2ρ2(e2θt − 1)

)
,

where p̃λ is the density of λ w.r.t. the Lebesgue measure. Thus, Theorem 6 yields the following.
Corollary 7. Let f : Dn → Rd have global L2-sensitivity ∆ and P = (Pt)t≥0 be the Ornstein-
Uhlenbeck semigroup with parameters θ, ρ. For any α > 1 and t > 0 the mechanism Mf

t (D) =

Pt(f(D)) satisfies (α, αΛ(t))-RDP with Λ(t) = θ∆2

2ρ2(e2θt−1)
.

The Ornstein-Uhlenbeck mechanism is not an unbiased mechanism since E[Mf
t (D)] = e−θtf(D).

This bias is the reason why the privacy guarantee in Corollary 7 exhibits a rate O(e−2θt), while, for
example, the Brownian motion mechanism only exhibits a rate O(t−1). In particular, the Ornstein-
Uhlenbeck mechanism achieves its privacy not only by introducing noise, but also by shrinking f(D)
towards a data-independent point (the origin in this case); this effectively corresponds to reducing
the sensitivity of f from ∆ to e−θt∆. This provides a way to trade-off variance and bias in the
mean-squared error (MSE) incurred by privately releasing f(D) in a similar way that can be achieved
by post-processing the Gaussian mechanism when f(D) is known to be bounded.

To formalize this result we define the mean squared error EOU(θ, ρ, t) of the Ornstein-Uhlenbeck
mechanism with parameters θ, ρ at time t, which is given by:

EOU(θ, ρ, t) , E[‖f(D)−Mf
t (D)‖2] = (1− e−θt)2‖f(D)‖2 +

dρ2

θ
(1− e−2θt) . (4)
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Similarly, we define EGM(θ, ρ, t) as the mean squared error of a Gaussian mechanism with the same
privacy guarantees as Mf

t with parameters θ, ρ. In particular, we have EGM(θ, ρ, t) = dσ̃2, where
σ̃2 , ρ2(e2θt−1)

θ (cf. Corollary 7). We also note the post-processed Gaussian mechanism (PGM)
D 7→ β(f(D) +N (0, σ̃2I)) which multiplies the output by a scalar β optimized to minimize the
MSE under the condition ‖f(D)‖ ≤ R yields error EPGM(θ, ρ, t) ≤ EGM(θ, ρ, t)(1 + dσ̃2

R2 )−1.

Theorem 8. Suppose f : Dn → Rd has global L2-sensitivity ∆ and satisfies supD ‖f(D)‖ ≤ R. If
θR2 ≤ 4dρ2 then we have EOU(θ,ρ,t)

EGM(θ,ρ,t) ≤ 1 for all t ≥ 0 and limt→∞
EOU(θ,ρ,t)
EGM(θ,ρ,t) = 0. In particular,

taking θ = log
(

1 + d∆2

2εR2

)
and ρ2 = θ∆2

2ε(e2θ−1)
with ε > 0, the mechanismMf

t satisfies (α, αε)-RDP

at time t = 1 and we have EOU(θ,ρ,1)
EGM(θ,ρ,1) ≤

(
1 + d∆2

2εR2

)−1

.

This result not only shows that the Ornstein-Uhlenbeck mechanism is uniformly better than the
Gaussian mechanism for any level of privacy, but also shows that in this mechanism the error always
stays bounded and can attain the same level of error as the Gaussian mechanism with optimal post-
processing. To see this note that with the choices of parameters made in the second statement give
EGM(θ, ρ, 1) = d∆2

2ε and therefore EOU(θ, ρ, 1) ≤ d∆2R2

2εR2+d∆2 , which behaves like O(R2) with ∆
constant and either ε→ 0 or d→∞.

6 Conclusion

We have undertaken a systematic study of amplification by post-processing. Our results yield
improvements over recent work on amplification by iteration, and introduce a new Ornstein-Uhlenbeck
mechanism which is more accurate than the Gaussian mechanism. In the future it would be interesting
to study applications of amplification by post-processing. One promising application is Hierarchical
Differential Privacy, where information is released under increasingly strong privacy constraints (e.g.
to a restricted group within a company, globally within a company, and finally to outside parties).
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