
First we would like to thank all the reviewers for their feedback. We address the reviewers’ questions below.1

Reviewer 1: “In the related work you mention a lower bound of (1/ε)O(d) for *any* estimator – I didn’t quite2

understand the exact difference from your formulation that allows a poly time upper bound.”3

The (1/ε)O(d) is a bound on the number of independent samples, n, required to learn a d-dimensional logconcave4

distribution within error ε in squared Hellinger distance, and this bound is tight in the worst-case. Our algorithm runs5

in time polynomial in d, n, and 1/error, and computes the logconcave MLE of any set of n points in Rd. The best6

previous algorithms had runtime polynomial in nΩ(d).7

8

“I understand that there is much prior work on this problem and the result seems interesting and significant – but it9

would be nice to point out any specific applications or directions that could potentially be enabled by this finding.”10

Any application where one might be tempted to model the distribution as a multivariate Gaussian, may also be suitable11

for the log-concave MLE. Provided sufficient data, the log-concave MLE would capture properties such as asymmetry12

and skewness in the distribution. For example, this has been used to better predict breast cancer malignancies [1].13

Reviewer 3: “The paper is theoretically interesting and provides a polynomial time algorithm, however, the degree of14

the polynomial is quite high. For example, step 1 of the Algorithm 2 takes time O(d5) for d dimensional data. Further,15

given the sample complexity of the algorithm itself is exponential in d, the advantage of the polynomial time algorithm16

is not clear.”17

An interesting direction of future work is reducing the d-dependence. The main bottleneck of the current algorithm is the18

volume computation (step 1 of Algorithm 2). Recent developments in RHMC based methods for volume computation19

have resulted in much faster algorithms for computing volumes of polytopes [2]. However, the aforementioned20

algorithms require a different oracle model and do not apply directly in our setting. That said, we are optimistic that21

similar ideas might apply, and could plausibly lead to a much more efficient implementation of our algorithm.22

23

24

“In lemma 1, tent poles are defined as points Xi, but in line 184 it is defined as pairs (Xi, yi)”25

Thank you for pointing this out. It will be fixed in the next revision.26

27

28

“Is the epsilon in the sample complexity discussion (lines 156 - 170) different than the epsilon in Definition 2? If so,29

please clarify.”30

Appendix E shows that a small value of one implies a small value of the other. Thus, if suffices to think of them as31

equivalent in the regime where the log-concave MLE has converged.32

Reviewer 5:33

“The authors could present some more exposition of the sampler.”34

We will add further exposition in the revised version of our paper.35
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