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Abstract

Abstract argumentation frameworks are by now a major re-
search area in knowledge representation and reasoning. Var-
ious aspects of AFs have been extensively studied over the
last 25 years. Contributing to understanding the expressive
power of AFs, researchers found lower and upper bounds for
the maximal number of extensions, that is, acceptable points
of view, in AFs. One of the classical and most important con-
cepts in AFs are so-called complete extensions. Surprisingly,
the exact bound for the maximal number of complete exten-
sions in an AF has not yet been formally established, although
there is a reasonable conjecture tracing back at least to 2015.
Recently the notion of modularization was introduced and it
was shown that this concept plays a key role for the under-
standing of relations between semantics as well as intrinsic
properties. In this paper, we will use this property to give a
formal proof of the conjecture regarding complete semantics.

1 Introduction
In his seminal 1995 paper (Dung 1995), Dung initiated the
investigation of abstract argumentation frameworks (AFs).
Since then, various semantics have been proposed, exten-
sions of AFs and their relationships are investigated and al-
most all conceivable research questions which are typical for
knowledge representation formalisms are well understood.
A key feature of any such formalism is its expressive power,
i.e. the questions which kind of knowledge can be expressed
and which not. This is not only the case for knowledge rep-
resentation and reasoning, but for almost any formalism con-
sidered in theoretical computer science. Much research is
driven by the expressive power of the studied framework as
it hints at the need to propose extensions in order to aug-
ment its ability to model certain application scenarios. On
the other hand, the search for “good” formalisms needs to
manage the trade-off between expressive power and compu-
tational complexity of natural decision problems.

Both expressive power and computational complexity
have been studied extensively for various extensions and
semantics of AFs over the last decades. We refer the
reader to (Baroni, Caminada, and Giacomin 2018) for an
overview of AF semantics. The computational complex-
ity of standard problems is well understood (Dvorák and
Dunne 2018), but also more involved aspects have been
studied especially in the field of dynamics like enforcing a

desired set of arguments (Wallner, Niskanen, and Järvisalo
2017; Niskanen, Wallner, and Järvisalo 2018), incorporat-
ing new beliefs (Falappa, Kern-Isberner, and Simari 2009;
Haret, Wallner, and Woltran 2018) or repairing a semanti-
cal collapse (Baumann and Ulbricht 2019). More recently,
the role of argumentation for explainable AI was studied
(Fan and Toni 2015; Rago et al. 2020; Alfano et al. 2020;
Saribatur, Wallner, and Woltran 2020; Ulbricht and Wallner
2021). Focusing on the expressive power of AF semantics,
the notion of signatures was coined in (Dunne et al. 2015).
In a nutshell, the signature of an AF semantics is the set
of all possible sets of σ-extensions which can be associated
with an AF. Even earlier, already in (Baumann and Strass
2013) a more basic question was investigated, namely how
many σ-extensions can an AF possess? This question is an-
swered for all but one classical semantics as proposed by
Dung is his seminal 1995 paper. In this paper, we close this
gap and confirm a conjecture mentioned in 2015 (Baumann
and Strass 2015).

Interestingly, in contrast to (Baumann and Strass 2013),
our results build upon recent genuine AF research (Coste-
Marquis, Devred, and Marquis 2005; Baumann, Brewka,
and Ulbricht 2020a) instead of graph theoretical consider-
ations tracing back to the 1960s (Moon and Moser 1965).

2 Background
We fix a non-finite background set U . An argumentation
framework (AF) (Dung 1995) is a directed graph F =
(A,R) where A ⊆ U represents a set of arguments and
R ⊆ A × A models attacks between them. In this paper
we consider finite AFs only and we use F for the set of all
these graphs.

For two arguments a, b ∈ A, if (a, b) ∈ R we say that a
attacks b (the set E) given that b ∈ E ⊆ A. The range of a
setE isE⊕ = E∪E+ whereE+ = {a ∈ A | E attacks a}.
The E-reduct of F is the AF FE = (E∗, R ∩ (E∗ × E∗))
where E∗ = A \ E⊕. We define the union F t G of two
AFs F = (A,R) and G = (B,S) as (A ∪B,R ∪ S). A set
E ⊆ A is conflict-free in F (for short, E ∈ cf (F )) if for no
a, b ∈ E, (a, b) ∈ R. We say a set E defends an argument
a if any attacker of a is attacked by some argument of E. A
semantics is a function σ : F → 22

U
with F 7→ σ(F ) ⊆ 2A.

This means, given an AF F = (A,R) a semantics returns a
set of subsets of A. These subsets are called σ-extension.
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In this paper we consider so-called admissible, complete,
preferred, and stable semantics (abbr. ad , co, pr , stb). They
were, among others, already introduced by Dung in 1995.
As usual we let ΓF (E) = {a ∈ A | E defends a}.
Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈ ad(F ) iff E ⊆ ΓF (E),
2. E ∈ co(F ) iff E = ΓF (E),
3. E ∈ pr(F ) iff E is ⊆-maximal in co(F ),
4. E ∈ stb(F ) iff E+ = A \ E.

We recall a characterization of co given in (Baumann,
Brewka, and Ulbricht 2020a, Proposition 3.2)
Proposition 2.2. E ∈ co(F ) iff E ∈ ad(F ) and no argu-
ment in FE is unattacked.

3 The Conjecture
We recall the conjecture from (Baumann and Strass 2015,
Conjecture 4). For a given semantics σ we let

σmax(n) = max
F=(A,R)∈F ,|A|≤n

|σ(F )|.

We have admax(n) = 2n; moreover, stbmax(n) is known
(Baumann and Strass 2013) and in (Dunne et al. 2015) this
result was, among others, extended to prmax(n). Hence,
out of Dung’s classical semantics the question is answered
for all semantics but co. The conjecture here is (n ≥ 2)

comax(n) =

{
3n/2 if n is even ,
4 · 3(n−3)/2 if n is odd .

(1)

This is a lower bound since the AFs indicated below (F for
even, G for odd) show that these numbers can be attained.

F : . . . G : . . .

Hence “≥” in (1) was known in (Baumann and Strass 2015)
already and their Conjecture 4 states that “≤” is also true.

4 Preparatory Considerations
Assume we are given an AF F = (A,R).
Definition 4.1. By F↔ we denote the AF F amplified by
symmetric attacks, i.e. we let F↔ = (A,R↔) where R↔ is
given as R↔ = {(a, b) | (a, b) ∈ R ∨ (b, a) ∈ R}

Although quite straightforward to show, the following as-
sertion is crucial. It shows that we can restrict our investi-
gation to symmetric AFs (Coste-Marquis, Devred, and Mar-
quis 2005), which is a quite simple fragment.
Lemma 4.2. We have co(F ) ⊆ co(F↔).

Proof. Let E ∈ co(F ). We show admissibility of E in F↔:
Assume a attacks E in F↔. By symmetry of F↔, E coun-
terattacks a. Now assume E defends a in F↔. Assume E
does not defend a in F . Then, there is an attacker b of a
which is not attacked by E in F . Since E attacks b in F↔, b
must attack E in F since only symmetric attacks are added.
This contradicts admissibility of E in F . Thus, E defends a
in F , i.e. a ∈ E and hence, E ∈ co(F↔).

From now on we assume we are given a symmetric AF
F = (A,R). We now define the notion of a bi-cover of
an AF which formalizes how to partition F into the gadget
G = ({a, b}, {(a, b), (b, a)}) “as good as possible”:1

Definition 4.3. Let F = (A,R). A bi-cover for F is a set
C = {C1, . . . , Cs} of subsets Ci ⊆ A of A satisfying the
following conditions:

• Ci ∩ Cj = ∅ for i 6= j,
• |Ci| = 2 for each i,
• Ci = {ai, bi} implies (ai, bi) ∈ R (and hence, due to

symmetry (bi, ai) ∈ R as well).

A bi-cover is maximal if
⋃
Ci is ⊆-maximal among all bi-

covers for F . We call S = A \
⋃
Ci the remainder of the

cover. A cover is exhaustive if S = ∅.
Example 4.4. Let F be the following symmetric AF which
we depict as undirected graph:

a

b

c

d

e

A maximal bi-cover is given via {C1, C2} where the sets are
C1 = {a, b}, C2 = {c, d}. The remainder is {e}.

The remainder of a maximal bi-cover is conflict-free.

Lemma 4.5. Let C be a maximal bi-cover for F and let S
be the remainder. Then S ∈ cf (F ).

Proof. If r1, r2 ∈ S with (r1, r2) ∈ R, then C ∪ {{r1, r2}}
is a bi-cover with smaller remainder, contradiction.

In order to demonstrate the power of our bi-covers, let us
mention without proof that we can already infer the conjec-
ture for all AFs admitting an exhaustive one.

Proposition 4.6. If C is an exhaustive bi-cover for F , then

co(F ) ⊆ {E ⊆ A | ∀{ai, bi} ∈ C : ai /∈ E ∨ bi /∈ E}.

In particular, |A| = n is even with |co(F )| ≤ 3n/2.

We require an adjustment to the modularization prop-
erty (Baumann, Brewka, and Ulbricht 2020a), actually al-
ready shown in this way for weakly admissible (Baumann,
Brewka, and Ulbricht 2020b) semantics.

Proposition 4.7 (Modularization Property). Assume we
have E = E′ ∪̇E′′ and let E′ ∈ ad(F ). Then E ∈ ad(F )

if and only if E′′ ∈ ad(FE′
).

Proof. (⇒) Clearly, E′′ ∈ cf (F ). Now assume a attacks
E′′ in FE′

. Due to E ∈ ad(F ), some e ∈ E counterattacks
a. Since a occurs in FE′

we infer a /∈ (E′)+ and hence,
a ∈ (E′′)+. Hence, E′′ counterattacks a.

(⇐) See (Baumann, Brewka, and Ulbricht 2020a, Propo-
sition 3.4).

1This is essentially a matching in an undirected graph, but we
want our terminology to focus on the structure of the arguments.
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We infer the following decisive property about complete
extensions:
Proposition 4.8. Let E ∈ co(F ) with E = E′ ∪̇E′′ s.t.
E′ ∈ ad(F ). Then E′′ ∈ co(FE′

).

Proof. Since all considered sets are in particular admissible,
the modularization property yields E′′ ∈ ad(FE′

). From
Proposition 2.2 we know that E is complete iff E ∈ ad(F )
and FE does not contain unattacked arguments. Since this is
the case forE, FE = FE′∪E′′

= (FE′
)E

′′
does not contain

unattacked arguments which means E′′ ∈ co(FE′
).

Let us now return to F and a maximal bi-cover C. The
next step is to establish that the complete extensions of F
can be computed by choosing E′ ⊆ S , considering E′′ ∈
co(FE′

) and letting E = E′ ∪ E′′.
Proposition 4.9. If E = E′ ∪̇E′′ is a complete extension
for someE′ ⊆ S , thenE′′ ∈ co(FE′

). In particular, eachE
of this form can be constructed in such way thatE′′ ⊆

⋃
Ci.

Proof. As F is symmetric, E′ ⊆ S is admissible due to
being conflict-free. Hence the first claim is due to Proposi-
tion 4.8. In order to meet the condition E′′ ⊆

⋃
Ci, choose

E′ = E ∩ S .

5 A Combinatorical Proof
Now consider an AF F and let C be a maximal bi-cover for
F with remainder S = {a1, . . . , a`}. For ai, let Xi be the
arguments which are linked to ai in F .

We call each set E′ ⊆ S a guess. By Proposition 4.9 each
complete extension of F is induced by such a guess and a
complete extension of the reduct FE′

. We will proceed by
counting the number of guesses and the maximal number of
extensions associated with it. The overall idea is that each
guess excludes certain extensions due to conflicts or addi-
tional arguments being defended. Thereby, we benefit from
the bi-cover as it helps us to keep track of the structure of
the AF. Before proceeding to our calculations, we need to
make our guesses proper: Consider such a guess E′ ⊆ S .
Without loss of generality assume E′ = {a1, . . . , at}. If
Xi ⊆

⋃
i6=j Xj , then the guess E′ induces the same com-

plete extensions as E′ \ {ai}, because ai is defended by the
remaining arguments that have been guessed. Formally:
Definition 5.1. We call a guess E′ = {a1, . . . , at} ⊆ S
proper if there is no 1 ≤ i ≤ t s.t. Xi ⊆

⋃
i6=j Xj .

A simply corollary of Proposition 4.9 is thus:
Lemma 5.2. If E ∈ co(F ), then E = E∗ ∪ E′′ where
E′ ⊆ S is a proper guess,E∗ = Γ(E′), andE′′ ∈ co(FE′

).

Proof. By Lemma 4.5, a guess which is not proper contains
some argument defended by the rest of the guess.

We hence assume that each guess we make is proper. The
following result is important for our calculations:
Lemma 5.3. If E′ is a proper guess, then the arguments
in E′ are in conflict with at least |E′| of the sets Ci in our
bi-cover.

Proof. Let Ci = {ci1, ci2} and assume a ∈ E′ attacks ci1
and b ∈ E′ attacks ci2. Then we can move to a bi-cover
with smaller remainder; contradiction. So, since our guess
is proper, each argument in E′ must attack some Ci which
is not yet attacked by the other arguments in E′.

Given a proper guess E′ = {a1, . . . , at}, how many com-
plete extensions of F are induced? That is, what is the
size of |{E ∈ co(F ) | E ∩ S = Γ(E′)}| ? This is a suitable
starting point, because due to Lemma 5.2⋃

E′ proper guess

{
E ∈ co(F ) | E ∩ S = Γ(E′)

}
= co(F ) (2)

so we may iterate over any possible proper guess. Now as-
sume a ∈ E′, i.e. we include a into our guess. Say a attacks
one (or two) arguments inCi = {ci1, ci2}, where our bi-cover
is {C1, . . . , Cs}. If a attacks ci1 and a ∈ E′, then our com-
plete extensions containing E′ do not contain ci1. Since we
have no information about ci2, we know Ci contributes (at
most) 2 choices (include ci2 or not). As we learned from the
proof of Proposition 4.6 the other sets Cj contribute at most
3 choices.

Now let |A| = n, |E′| = t and |S| = `. Our covered part
contains n − ` arguments and hence the bi-cover contains
(n− `)/2 sets Ci. A proper guess is in conflict with at least
|E′| = t sets Ci (Lemma 5.3) and is not in conflict with at
most (n − `)/2 − t. Hence, the set of complete extensions
E with E ∩ S = Γ(E′) is at most 2t · 3(n−`)/2−t.

(n− `) arguments covered;
(n− `)/2 sets in bi-cover

. . . ...

` arguments
not covered

a1

a`

Now we implement (2) by taking the sum over each possible
proper guess E′, i.e. we find the upper bound

|co(F )| ≤
∑̀
t=0

(
`

t

)
2t · 3(n−`)/2−t.

The number n is fixed, but ` depends on the bi-cover. So we
view this expression as a function

f(`) =
∑̀
t=0

(
`

t

)
2t · 3(n−`)/2−t = 3n/2 ·

(
5

33/2

)`

. (3)

This is a monotonically decreasing function in `, thus attain-
ing the maximum in f(0) = 3n/2 which yields “≤” in (1) if
n is even.

For odd numbers n this is not good enough. Even if we
use ` ≥ 1 in this case, we find a larger number than the
bound 4 · 3(n−3)/2 we are looking for. The reason is that
our method to calculate the upper bound is too liberal as we
ignore most of the structure of F .
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We distinguish some cases to handle the rest of the proof.
Let us first assume that each a ∈ S possesses exactly one

attack (that is one in- and one out-going attack). Suppose
there are a, a′ ∈ S both attacking the same set in the cover,
say Ci = {ci1, ci2}. Recall the proof of Lemma 5.3: a and
a′ cannot attack different arguments in Ci. However, we
may also w.l.o.g. assume a and a′ do not attack the same
argument in Ci since otherwise, a ∈ E iff a′ ∈ E for any
complete extension and we obtain the same number |co(F )|
as in the AF without a′. Hence, there is a bijection between
S and a subset of C.

ci1

ci2

. . . ...

a

a`

Now assume a attacks ci1 ∈ Ci. If a is in our guess, then ci1
is not, but ci2 might or might not be (2 choices). Now comes
the interesting part: If a is not in our guess, then ci2 cannot
be, either, because in the considered situation, ci2 defends a.
Hence we also only have 2 choices in this case. Thus, our
calculation does not depend on the size of the guess E′: We
have ` times 2 choices and exactly (n− `)/2− ` sets Ci that
are not attacked and thus inducing 3 choices each. We find∑̀

t=0

(
`

t

)
2` · 3(n−`)/2−` = 33/2

(
4

3(3/2)

)`

· 3(n−3)/2

which is again monotonically decreasing in `. We assume
` ≥ 1 yielding |co(F )| ≤ 4 · 3(n−3)/2.

Now let us consider the case where at least one a pos-
sesses two attacks. First, assume there is some Ci s.t. both
arguments in Ci are attacked by a ∈ S .

. . .
ci1

ci2

...

a

ai

Recall the proof of Lemma 5.3: No argument in S \ {a} can
attack Ci since this would induce a bi-cover with smaller
remainder. Assume a is in our guess and let E′a be the set
without a. We have (n − `)/2 sets Ci, but we lose one of
them due to a defeating both arguments. So if |E′a| = t, we
have at most (n−`)/2− t−1 sets Ci which are not attacked
(3 choices) and t sets that still yield 2 choices. Since a is
fixed, we only have `−1 arguments to choose from, yielding
at most

`−1∑
t=0

(
`− 1

t

)
2t · 3(n−`)/2−t−1 =

(
5

33/2

)`−1

3(n−3)/2.

extensions containing a. If we do not include a, the situation
is as before and we find at most additional

`−1∑
t=0

(
`− 1

t

)
2t · 3(n−`)/2−t = 3 ·

(
5

33/2

)`−1

3(n−3)/2.

extensions. Both functions are monotonically decreasing in
`. We add the terms and plug in ` = 1 which again yields
|co(F )| ≤ 4 · 3(n−3)/2 as desired.

Now assume there is an argument a attacking m ≥ 2 dis-
tinct Ci. Recall that Xi is the set of arguments in F con-
nected to ai. Let X be this set of arguments for a. We
distinguish two cases: First assume there are p ≥ 1 ai s.t.
Xi ⊆ X . This means ` ≥ 3 since a 6= ai and ` is odd.

. . . ...

a

ai

This yields some asymmetry: A proper guess containing a
does not contain these ai, but the converse is not true. Ac-
cording to the m sets Ci attacked by a there are 2m cases
where a can be contained in the guess. Besides a, we have
`− 1− p arguments to chose from and (n− `)/2−m sets
Ci which are not yet handled. This yields at most

2m ·
`−p−1∑
t=0

(
`− p− 1

t

)
2t · 3(n−`)/2−t−m (4)

situations where a is in our guess and by standard consid-
erations at most

∑`−1
t=0

(
`−1
t

)
2t · 3(n−`)/2−t where a is not.

These numbers are not very convenient, but using m ≥ 2,
p ≥ 1 and ` ≥ 3 yields a smaller value than 4 · 3(n−3)/2.

Now assume no Xi satisfies Xi ⊆ X , i.e. each argument
can be contained in a proper guess even if a is included.

. . . ...

a

ai

Thus if a is included, we have ` − 1 arguments to choose
from. Letting E′a = E′ \ {a} as before with |E′a| = t, then
at most (n− `)/2− t−m sets Ci are not attacked, yielding

2m ·
`−1∑
t=0

(
`− 1

t

)
2t · 3(n−`)/2−t−m

proper guesses including a and by standard considerations at
most

∑`−1
t=0

(
`−1
t

)
2t · 3(n−`)/2−t proper guesses not includ-

ing a. Summing up and plugging in ` ≥ 1 and m ≥ 2 yields
the desired inequality |co(F )| ≤ 4 · 3(n−3)/2 concluding the
last case we had to consider.

6 Discussion
In this paper we verified a conjecture tracing back to 2015
by proving the precise upper bound for the maximal num-
ber of complete extensions in an AF with at most n argu-
ments. In contrast to the technique utilized in (Baumann
and Strass 2013), our proof relies on genuine recent AF re-
search instead of finding a suitable classical graph problem
and applying mathematical results. This is no surprise since
defense is a concept tailored for argumentation and hence,
requires techniques tailored for argumentation.

Although immediate applications of this result presum-
ably reduce to stopping enumerating algorithms after at most
3n/2 steps, we believe this is a fundamental contribution to
the foundations of AF research.
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