
Randomized Problem-Relaxation Solving for Over-Constrained Schedules

Patrick Rodler , Erich Teppan , Dietmar Jannach
Alpen-Adria Universität Klagenfurt

patrick.rodler@aau.at, erich.teppan@aau.at, dietmar.jannach@aau.at

Abstract

Optimal production planning in the form of job shop schedul-
ing problems (JSSP) is a vital problem in many industries. In
practice, however, it can happen that the volume of jobs (or-
ders) exceeds the production capacity for a given planning
horizon. A reasonable aim in such situations is the comple-
tion of as many jobs as possible in time (while postponing the
rest). We call this the Job Set Optimization Problem (JOP).
Technically, when constraint programming is used for solving
JSSPs, the formulated objective in the constraint model can
be adapted so that the constraint solver addresses JOP, i.e.,
searches for schedules that maximize the number of timely
finished jobs. However, also highly specialized solvers which
proved very powerful for JSSPs may struggle with the in-
creased complexity of the reformulated problem and may fail
to generate a JOP solution given practical computation time-
outs. As a remedy, we suggest a framework for solving mul-
tiple randomly modified instances of a relaxation of the JOP,
which allows to gradually approach a JOP solution. The main
idea is to have one module compute subset-minimal job sets
to be postponed, and another one effectuating that random
job sets are found. Different algorithms from literature can
be used to realize these modules. Using IBM’s cutting-edge
CP Optimizer suite, experiments on well-known JSSP bench-
mark problems show that using the proposed framework con-
sistently leads to more scheduled jobs for various computa-
tion timeouts than a standalone constraint solver approach.

1 Introduction
The scheduling of jobs (Blazewicz et al. 2007) is a cru-
cial task for production industries and several formal prob-
lem variants were defined that capture properties of different
manufacturing environments. Many of those problems, like
the open shop-, the flow shop- or the Job Shop Scheduling
Problem (JSSP), are NP-hard in the general case. Here, we
focus on the JSSP due to its relevance to a wide range of
industrial production fields (Drótos, Erdős, and Kis 2009;
Sun et al. 2021). Different methods have been applied to ap-
proach JSSPs. Among those, constraint programming (CP)
has a long and successful history and present-day CP solv-
ing systems are able to handle large-scale problem instances.
However, today’s often highly dynamic production regimes,
supporting, e.g., make-to-order or lean production, lead to
optimization problems on top of the underlying JSSPs which
may significantly increase computation times.

One typical problem of that type arises when the set of or-
ders (jobs) exceeds the current production capacities with re-
spect to a given planning horizon (e.g., a week). Reasons for
that to happen can be found in seasonal order fluctuations,
unforeseen machine breakdowns, incoming high-priority or-
ders of key accounts, and many more. In such a situation the
producer is confronted with an over-constrained JSSP, i.e., it
is not possible to work off all the orders in time and it must
be decided which of the jobs to postpone. We call the task of
finding a job set of maximal utility (e.g., revenue) that can
be finished within a given planning horizon the Job Set Opti-
mization Problem (JOP), which is NP-hard (Baptiste 2003).

When using constraint programming, a straightforward
approach to solving JOPs is to adapt the CP encoding of the
over-constrained JSSP by adding an optimization statement,
which effectuates that the utility of jobs scheduled and fin-
ished prior to a given deadline is maximized. Since however
the JOP represents a hard problem on top of the JSSP, also
the most powerful state-of-the-art CP solvers may struggle
with the increased problem complexity.

We therefore propose a framework to tackle JOPs based
on the observation that the problem of computing a subset-
minimal job set to be postponed (i) is a relaxation of the JOP,
(ii) can be solved using a linear number of CP solver calls,
each for one JSSP decision problem, and (iii) is not directly
supported in current CP solvers. The idea is to compute mul-
tiple such subset-minimal job sets in a random way, thus
intuitively taking a random sample in a solution space that
covers all JOP solutions. By always storing the best found
solution, the framework allows to successively approach a
JOP solution. Each module in the framework tackles a well-
understood and well-investigated subproblem of JOP and is
viewed as a black-box which can be implemented by differ-
ent specialized state-of-the-art algorithms.

In evaluations on Taillard’s well-known JSSP benchmark
suite (Taillard 1993), we show that, given different practical
computation timeouts, the use of the proposed framework
consistently leads to solutions involving more in-time fin-
ished jobs than a standalone CP solver approach.

2 Problem Definition and Approach
The Job Shop Scheduling Problem (JSSP) (Blazewicz et al.
2007) is defined as follows:

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

696

(a) (b) (c)

Figure 1: In the plots, the k-th row refers to machine k, the horizontal axis is the time line starting from zero and ”opj-i” refers to the i-th
operation of job j. (a) JSSP solution for all jobs; (b) JOP/JMP solution (∆ = {job 4}); (c) JMP solution (∆ = {job 1, job 3}).

SolJMP

SolJOP
JOP instance
⟨𝑃, 𝜅, 𝑢⟩

⟨𝑃, 𝜅⟩

𝑢

RNG CP Solver

Problem
Instance
Modifier

MSMP
Algo-
rithm

best solution(s) wrt. 𝑢

𝑃, 𝜅 ௗ

JMP solutions

JSSP Decision
Oracle

CP Solver

JOP instance
⟨𝑃, 𝜅, 𝑢⟩

modified encoding

of 𝑃

JMP solvingOptimization by
randomization

(Black-box)
JOP solving

Adaptation of
JSSP encoding

JOP solution

(a) (b) (c)

“maximize utility (𝑢)
of jobs finished

before 𝜅“

MSMP unit

Figure 2: (a) Proposed framework for JOP based on decomposing JOP into subproblems (i) JMP solving and (ii) optimization via randomiza-
tion. (b) Illustration of solution spaces for JOP and JMP. (c) A direct CP approach to JOP. Remarks: Both approaches require a CP encoding
of the JSSP P . Gray rectangles denote black-boxes and can be realized by different suitable algorithms. “RNG” = random number generator.

Definition 1 (JSSP). Given: A set of machines M and a
set of jobs J where every job j ∈ J consists of an ordered
set of operations Opsj = {op1, . . . , opkj} and each op ∈
Opsj has a length lop ∈ N and has to be executed on a
particular machine mop ∈ M , Find: A schedule σ which
maps every operation op in AllOps :=

⋃
j∈J Opsj to a start

time σ(op) ∈ N0 on its respective machine mop such that
1. σ(opx+1) ≥ σ(opx) + lopx for each pair of successive

operations opx, opx+1 in Opsj for all jobs j ∈ J ,
2. on each machine in M , a next operation may only start af-

ter the current operation has been finished, i.e., for every
pair of operations op, op′ ∈ AllOps with mop = mop′ ,
either σ(op) ≥ σ(op′)+ lop′ or σ(op′) ≥ σ(op)+ lop and

3. completion time is minimized, i.e., among all schedules, σ
has minimal time(σ) := maxop∈AllOps(σ(op) + lop).
The decision version of a JSSP involves a deadline κ ∈ N

as an additional input, and asks whether there is a schedule σ
satisfying criteria 1 and 2 such that time(σ) ≤ κ. This deci-
sion version is NP-complete (for |M | ≥ 2) (Garey, Johnson,
and Sethi 1976) which is why JSSP is NP-hard in general.
Example: Assume a set of four jobs, each consisting of three
operations, that should be scheduled on three machines. Let
the lengths of all operations of the first three jobs be 2, while
the three operations of the fourth job have lengths (3,2,1).
Finally, let the machine numbers where the operations have
to be processed be (1,2,3) for both jobs 1 and 4, (2,3,1) for
job 2, and (3,1,2) for job 3. A solution for this JSSP instance
is shown in Fig. 1(a) and has a completion time of 9.

If not all jobs can be scheduled until a given deadline, a
reasonable remedy is to postpone or reject a set of jobs that
implies the least negative effect on a given utility function
(e.g., company revenue), i.e., the utility of the scheduled jobs
should be maximal. We refer to this problem as the Job Set
Optimization Problem (JOP) and define it as follows:
Definition 2 (JOP). Given: A deadline κ ∈ N, a JSSP in-
stance P with job set J , and a utility function u that assigns
a utility uj ∈ N to each job j ∈ J . Find: Some ∆ ⊆ J

such that (i) P with the reduced job set J \∆ has a solution
schedule σ with time(σ) ≤ κ, and (ii) there is no other such
∆′ ⊆ J that satisfies

∑
j∈J\∆′ uj >

∑
j∈J\∆ uj .

A straightforward approach to solving JOPs is to rely
on highly-optimized CP solvers. Given a JOP instance
〈P, κ, u〉, first, the CP encoding of the original JSSP P is
adapted by adding an optimization criterion which achieves
that the utility sum (as per u) of the jobs finished before
κ is maximized. Second, this adapted encoding is fed into
the CP solver to generate a JOP solution. However, as we
found, even state-of-the-art CP solvers may fail to compute
a JOP solution within practical timeouts of one or two hours.
Therefore, we devised an alternative approach to solving
JOPs, which is based on the following observations:
(Obs1) Since the job utilities uj are positive numbers, each
JOP solution ∆ must be a subset-minimal job set that satis-
fies JOP criterion (i). Thus, by modifying JOP criterion (ii)
accordingly, we obtain a relaxed problem where the goal is
to schedule a set of jobs that is maximal (w.r.t. ⊆). We call
this the Job Set Maximization Problem (JMP):
Definition 3 (JMP). Given: A deadline κ ∈ N and a JSSP
instance P with job set J . Find: Some ∆ ⊆ J such that
(i) P with the reduced job set J \∆ has a solution schedule
σ with time(σ) ≤ κ, and (ii) there is no other such ∆′ ⊆ J
that satisfies ∆′ ⊂ ∆.
Example (cont’d): Reconsider our JSSP instance and as-
sume that the deadline κ = 6 (dashed line in Fig. 1) is given.
Further, let all jobs have equal utility. The (only) JOP solu-
tion for this instance is shown in Fig. 1(b). Another JMP
(but not JOP) solution is presented in Fig. 1(c).
(Obs2) Every JOP solution is also a JMP solution. Fig. 2(b)
schematically illustrates the solution spaces SolX of both
problems X ∈ {JMP, JOP}. That is, among k randomly
selected JMP solutions, at least one is a JOP solution with a
probability of 1− qk where q = 1−|Sol JOP|/|Sol JMP|. E.g.,
if every tenth JMP solution is a JOP solution and k = 20,
the chance of finding a JOP solution is already 88 %.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

697

(Obs3) JMP is a manifestation of the MSMP (Minimal Set
w.r.t. a Monotone Predicate) Problem (Marques-Silva, Jan-
ota, and Belov 2013; Marques-Silva, Janota, and Mencia
2017). To see this, let the predicate p(∆) be defined over
a JMP instance 〈P, κ〉 as “For job set J \ ∆, there exists a
schedule σ with time(σ) ≤ κ”. This predicate is monotone,
i.e., p(∆) implies p(∆′) whenever ∆ ⊆ ∆′. In other words,
if there is a schedule such that all jobs J \ ∆ are finished
in time, then there must also be a schedule which allows to
finish as many or fewer jobs J \ ∆′. By Def. 3, JMP ex-
actly calls for a minimal set ∆ subject to p. Hence, any
sufficiently general (Rodler 2020) MSMP algorithm can be
used to solve JMP. Examples of such algorithms are Quick-
Xplain (Junker 2004), Progression (Marques-Silva, Janota,
and Belov 2013), or Inv-QX (Shchekotykhin et al. 2014). In
case of JMP, these algorithms require a worst-case linear (in
|J |) number of calls to a CP solver that decides the predicate
p (or, equivalently, solves the decision version of JSSP).
(Obs4) JMP is easier than JOP. The reason is that JOP es-
sentially requires finding a best JMP solution w.r.t. a utility
function u over J . Thus, a linear number of calls to an NP
oracle, as for JMP, generally does not even allow to verify a
given JOP solution, let alone to compute one.
(Obs5) CP solvers typically do not support JMP solving.

Approach. Based on the analysis above, we propose a
framework to address JOPs by solving multiple randomly
modified JMP instances where the best JMP solution (w.r.t.
utility u) is stored throughout the process. Essentially, the
idea is to randomly sample elements from the JMP solution
space which covers all JOP solutions. Our framework has
three modules: a CP solver for solving decision versions of
JSSP, cf. JMP criterion (i); an MSMP unit for finding subset-
minimal job sets, cf. JMP criterion (ii); and, a random num-
ber generator enabling the optimization by generating mul-
tiple random JMP solutions, cf. JOP criterion (ii).

Compared to a direct CP approach, which can be seen
as tackling two problems at once, i.e., the (implicit) subset-
minimality and the optimal utility of the JOP solution,
our framework achieves a disentanglement of these two
problems by extracting the (efficient and well understood)
MSMP reasoning from the solver and leaving to the solver
the role of deciding a polynomial number of JSSP instances
(for which state-of-the-art solvers are optimized).

The iterative solution process using the described frame-
work (cf. Fig. 2(a)) is: (1) Given a JOP instance 〈P, κ, u〉,
forward the JMP instance 〈P, κ〉 to the MSMP unit. (2) De-
pending on the particular used MSMP algorithm, use a suit-
able random modification 〈P, κ〉rnd of the JMP instance to
obtain a random JMP solution in the next step. (3) Solve the
JMP instance 〈P, κ〉rnd using the MSMP algorithm, which
will involve O(|J |) JSSP decision queries to a CP solver.
(4) Based on the utility function u, update the best solution.
(5) Continue Steps (2)–(4) until some stop criterion (e.g., a
timeout or a required solution quality) is met.

Remarks:1 (a) Solution quality w.r.t. utility will mono-
tonically increase throughout the solving process. (b) Our
approach is complete, i.e., it will yield a JOP solution given

1Cf. online material: http://isbi.aau.at/ontodebug/evaluation

sufficient time and memory, and a full-cycle random num-
ber generator, cf. (Schrage 1979). (c) Each module in our
framework is viewed as a black-box and can be realized
by different algorithms; this allows our approach to profit
from latest research advancements in the JSSP and MSMP
fields. (d) No information exchange is required between dif-
ferent iterations; thus, our approach enables efficient multi-
threaded implementations, which (over)compensates the po-
tential generation of duplicate JMP solutions (cf. results in
Sec. 3). (e) Our approach does not require to manually adapt
the CP encoding of a given JSSP instance to a JOP encoding.

3 Evaluation
Implementation. To evaluate our approach, we developed
a Java-based proof-of-concept implementation. As a CP
solver, we rely on IBM’s CP Optimizer (CPO), which is cur-
rently one of the most efficient solvers for scheduling prob-
lems, in particular JSSPs (Da Col and Teppan 2019a). For
calculating JMP solutions, i.e., as an MSMP algorithm, we
use Inv-QX (Shchekotykhin et al. 2014). Randomization is
done by shuffling the jobs before feeding them to Inv-QX,
so that random JMP solutions are produced (Narodytska et
al. 2018; Rodler and Elichanova 2020). Inv-QX uses CPO
as an oracle for JSSP decision problems, i.e., to test whether
a given set of jobs can be accomplished within a deadline.

As a baseline in our experiments, we also use CPO, but
this time to solve a direct encoding of the JOP, correspond-
ing to a MaxCSP (Minoux and Mavrocordatos 2009) prob-
lem (cf. Fig. 2(c)). Specifically, we adapted the JSSP encod-
ing provided in the documentation of IBM CPO in a way that
a deadline constraint for a job j (stating that a delay for j is
not allowed) is active when an associated integer variable vj
in the range of [0..1] is set to 1. Correspondingly, the opti-
mization criterion is formulated to maximize the sum over
vi where i ∈ Jobs. Calling CPO given this encoding will
lead to the computation of a JOP solution.
Dataset. In our evaluations, we drew upon a dataset based
on a subset of the widely-used benchmark problems of (Tail-
lard 1993). A key plus of these benchmarks is that the opti-
mal completion times are known, which allows us to system-
atically control how much a JOP problem instance is over-
constrained. That is, given a problem instance P and the
corresponding optimal completion time κ∗, a JOP instance
can be created by setting κ = r · κ∗ with r < 1. Clearly, the
smaller r is, the smaller the set of jobs accomplishable given
a maximum completion time κ will tend to be. To explore
various scenarios that might arise for a company in case pro-
duction deadlines prevent it to cover all orders, we specified
five completion time levels r ∈ {0.95, 0.9, 0.85, 0.8, 0.75}.
Thus, our test dataset consists of 20 (Taillard instances) × 5
(completion time levels r) = 100 JOP problem instances.
Experiment. We ran our experiments with timeouts of 1
and 2 hours, respectively. Such timeouts allow for frequent
intra-day recalculations (re-scheduling) to react quickly to
dynamics in industrial scenarios. Since the benchmark prob-
lems do not include individual job utilities, we set them uni-
formly in our tests, which amounts to maximizing the num-
ber of scheduled jobs. Our approach was configured to use
8 worker threads in parallel for independent solution search

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

698

http://isbi.aau.at/ontodebug/evaluation

avgs

r jobs machines # generated solutions (CP)# generated solutions (Proposed)# generated solutions (CP)# generated solutions (Proposed)r jobs machines # generated solutions (CP)# generated solutions (Proposed)# generated solutions (CP)
0.95 50 15 34 3 34 2 0.95 100 20 51 3 51

0.9 50 15 33 3 33 3 0.9 100 20 48 4 48
0.85 50 15 30 3 30 3 0.85 100 20 38 3 38

0.8 50 15 29 3 30 3 0.8 100 20 42 3 42
0.75 50 15 29 3 29 3 0.75 100 20 41 4 41

1h 2h 1h 2h

30

35

40

45

50
. .

0.95 0.9 0.85 0.8 0.75 0.95 0.9 0.85 0.8 0.75

1h 2h
50 jobs on 15 machines

CP Proposed 70
75
80
85
90
95

100
. .

0.95 0.9 0.85 0.8 0.75 0.95 0.9 0.85 0.8 0.75

1h 2h

100 jobs on 20 machines

CP Proposed

3 3 3 3 3 2 3 3 3 3 3 4 3 3 4 3 3 4 4 3
34 33 30 29 29 34 33 30 30 29 51 48 38 42 41 51 48 38 42 41

Figure 3: Evaluation results: Each data point indicates the number of accomplished jobs (y-axis) of the CP approach (blue) versus the
proposed approach (orange) per benchmark problem instance, for different timeouts (1h, 2h) and different values (0.95, . . . , 0.75) of r (x-
axis). The orange / blue numbers along the x-axis indicate the average number (per value of r) of (within-timeout) generated JMP solutions
(proposed approach) / intermediate solutions towards JOP (CP approach), each of which improved the current best solution (w.r.t. utility).

(memorizing only the best solution). Also IBM’s CPO was
configured to instantiate the same number of worker threads.
Results. Fig. 3 shows our results.2 For both timeouts,
we can observe that our approach consistently yields better
schedules with more finished jobs than the direct CP encod-
ing. In numbers, our approach enables to schedule an avg. of
8 % and up to 15 % more jobs for the (50 jobs, 15 machines)
instances, as well as 5 % (avg.) and 13 % (max.) more jobs
for (100 jobs, 20 machines). Moreover, the proposed ap-
proach is faster as it always produces better results (up to
12 % more jobs) within 1 hour than the direct CP implemen-
tation is able to do in 2 hours. Notably, our approach needed
one order of magnitude fewer internal solution improvement
steps towards the final solution than the direct approach, by
requiring each intermediate result to be a solution to JMP
and thus ruling out obvious non-JOP-solutions.

4 Related Work
Scheduling is a well-studied topic, in terms of both com-
plexity results and algorithmic approaches (Garey, Johnson,
and Sethi 1976; Brucker, Sotskov, and Werner 2007; Barták,
Salido, and Rossi 2010; Brucker, Jurisch, and Sievers 1994;
Stecco, Cordeau, and Moretti 2008; Ku and Beck 2016;
Bożejko et al. 2017; Danna and Perron 2003; Sadegheih
2006). See also (Potts and Strusevich 2009) for an overview.

Approaches related to our goal of relaxing over-
constrained JSSPs are (weighted) MaxCSP methods, e.g.,
(Schiex et al. 1995; Domshlak et al. 2009; Bakker et al.
1993), which target the minimization of the number (weight)
of violated constraints in a CSP. However, for this work we
needed a state-of-the-art CP solver that is specialized on
scheduling problems in particular. For that, IBM’s CP Op-
timizer (CPO) proved to be the currently strongest available
solver (Da Col and Teppan 2019a). An open source alterna-
tive, not as strong for scheduling as CPO but still competi-
tive, are Google’s OR Tools (Da Col and Teppan 2019b).

Due to the equal expressivity of CSP and SAT lan-
guages (Walsh 2000), problem instances from one class
can be translated to the other (Argelich and Manya 2006;
De Givry et al. 2003) using sophisticated encoding tech-
niques (Argelich et al. 2008; Tamura et al. 2009). Hence, in

2Code and raw data: http://isbi.aau.at/ontodebug/evaluation

principle also MaxSAT solvers, e.g., (Morgado et al. 2013;
Alsinet, Manya, and Planes 2005; Pipatsrisawat and Dar-
wiche 2007; Xing and Zhang 2005), could be used in place
of the CP solver in our framework. However, this requires
an initial non-trivial extra SAT encoding step.

JOP is related to the Throughput Maximization Problem
(TMP) (Berman and DasGupta 2000; Bar-Noy et al. 2001)
which also seeks to maximize the weight of jobs finished
in time. However, the problems differ in that a JOP instance
prescribes one particular machine for each job, while a TMP
instance allows each job to be performed on any machine.

The direct and problem-decomposition approaches, as
shown in Fig. 2, are conceptually similar to two types of
MaxSAT solvers, ones that solve a problem instance di-
rectly versus others that iteratively call a SAT solver as infer-
ence engine (Koshimura et al. 2012; Morgado et al. 2013).
Whereas our proposed framework views all involved algo-
rithms as black-boxes, relies on a randomization of problem
instances, and keeps iterations completely independent of
one another, the latter types of MaxSAT approaches often
assume that oracles provide information beyond the answer
to a decision problem (Fu and Malik 2006), couple oracle
calls with additional reasoning techniques (Martins, Man-
quinho, and Lynce 2012), or reuse information from earlier
iterations (Ansótegui, Bonet, and Levy 2009).

Finally, there are works that approximate optimization
problems such as MaxSAT by enumerating subset-minimal
sets (Marques-Silva, Heras, et al. 2013; Mencia et al. 2015;
Terra-Neves et al. 2018). Despite sharing the general idea
with these works, our framework differs by using random-
ized, independent and parallel computations, requires no
SAT encoding or SAT-specific techniques, and focuses on
scheduling (different benchmarks, existing solvers, etc.).

5 Conclusion
We proposed a framework for resolving over-constrained
scheduling problems based on a randomized computation of
solutions to a relaxed problem. The framework is generic in
that its modules are black-boxes that can be realized by dif-
ferent specialized algorithms from well-understood research
fields. Evaluations on a well-known benchmark dataset at-
test that the suggested approach consistently outperforms a
cutting-edge constraint solver for scheduling problems.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

699

http://isbi.aau.at/ontodebug/evaluation

Acknowledgments
This work is an extension of (Rodler and Teppan 2020) and
was supported by the Austrian Science Fund (FWF), con-
tract P-32445-N38. We thank the anonymous referees for
their valuable comments.

References
Alsinet, T.; Manya, F.; and Planes, J. 2005. Improved exact
solvers for weighted Max-SAT. In International Conference
on Theory and Applications of Satisfiability Testing, 371–
377. Springer.
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2009. Solv-
ing (weighted) partial MaxSAT through satisfiability testing.
In International Conference on Theory and Applications of
Satisfiability Testing, 427–440. Springer.
Argelich, J., and Manya, F. 2006. Exact Max-SAT
solvers for over-constrained problems. Journal of Heuris-
tics 12(4):375–392.
Argelich, J.; Cabiscol, A.; Lynce, I.; and Manya, F. 2008.
Modelling Max-CSP as partial Max-SAT. In International
Conference on Theory and Applications of Satisfiability
Testing, 1–14. Springer.
Bakker, R. R.; Dikker, F.; Tempelman, F.; and Wognum,
P. M. 1993. Diagnosing and solving over-determined con-
straint satisfaction problems. In International Joint Confer-
ence on Artificial Intelligence, volume 93, 276–281.
Baptiste, P. 2003. On minimizing the weighted number
of late jobs in unit execution time open-shops. European
Journal of Operational Research 149(2):344–354.
Bar-Noy, A.; Guha, S.; Naor, J.; and Schieber, B. 2001.
Approximating the throughput of multiple machines in real-
time scheduling. SIAM Journal on Computing 31(2):331–
352.
Barták, R.; Salido, M.; and Rossi, F. 2010. New trends in
constraint satisfaction, planning, and scheduling: a survey.
The Knowledge Engineering Review 25(3):249––279.
Berman, P., and DasGupta, B. 2000. Multi-phase algorithms
for throughput maximization for real-time scheduling. Jour-
nal of Combinatorial Optimization 4(3):307–323.
Blazewicz, J.; Ecker, K.; Pesch, E.; Schmidt, G.; and
Weglarz, J. 2007. Handbook on Scheduling: Models and
Methods for Advanced Planning (International Handbooks
on Information Systems). Secaucus, NJ, USA: Springer-
Verlag New York, Inc.
Bożejko, W.; Gnatowski, A.; Pempera, J.; and Wodecki, M.
2017. Parallel tabu search for the cyclic job shop scheduling
problem. Computers and Industrial Engineering 113:512 –
524.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics 49(1):107 – 127.
Brucker, P.; Sotskov, Y. N.; and Werner, F. 2007. Complex-
ity of shop-scheduling problems with fixed number of jobs:
a survey. Mathematical Methods of Operations Research
65(3):461–481.

Da Col, G., and Teppan, E. C. 2019a. Industrial size job
shop scheduling tackled by present day CP solvers. In In-
ternational Conference on Principles and Practice of Con-
straint Programming, 144–160. Springer.
Da Col, G., and Teppan, E. C. 2019b. Google vs IBM:
A constraint solving challenge on the job-shop scheduling
problem. In International Conference on Logic Program-
ming.
Danna, E., and Perron, L. 2003. Structured vs. unstruc-
tured large neighborhood search: A case study on job-shop
scheduling problems with earliness and tardiness costs. In
Rossi, F., ed., Principles and Practice of Constraint Pro-
gramming, 817–821. Berlin, Heidelberg: Springer Berlin
Heidelberg.
De Givry, S.; Larrosa, J.; Meseguer, P.; and Schiex, T. 2003.
Solving Max-SAT as weighted CSP. In International Con-
ference on Principles and Practice of Constraint Program-
ming, 363–376. Springer.
Domshlak, C.; Rossi, F.; Venable, K. B.; and Walsh, T.
2009. Reasoning about soft constraints and conditional pref-
erences: complexity results and approximation techniques.
arXiv preprint arXiv:0905.3766.
Drótos, M.; Erdős, G.; and Kis, T. 2009. Computing
lower and upper bounds for a large-scale industrial job shop
scheduling problem. European Journal of Operational Re-
search 197(1):296–306.
Fu, Z., and Malik, S. 2006. On solving the partial Max-
SAT problem. In International Conference on Theory and
Applications of Satisfiability Testing, 252–265. Springer.
Garey, M. R.; Johnson, D. S.; and Sethi, R. 1976. The com-
plexity of flowshop and jobshop scheduling. Mathematics
of Operations Research 1(2):117–129.
Junker, U. 2004. QuickXplain: Preferred Explanations and
Relaxations for Over-Constrained Problems. In National
Conference on Artificial Intelligence, volume 3, 167–172.
AAAI Press / The MIT Press.
Koshimura, M.; Zhang, T.; Fujita, H.; and Hasegawa, R.
2012. QMaxSAT: A partial Max-SAT solver. Journal
on Satisfiability, Boolean Modeling and Computation 8(1-
2):95–100.
Ku, W. Y., and Beck, J. C. 2016. Mixed integer pro-
gramming models for job shop scheduling: A computational
analysis. Computers and Operations Research 73:165 – 173.
Marques-Silva, J.; Janota, M.; and Belov, A. 2013. Mini-
mal sets over monotone predicates in Boolean formulae. In
International Conference on Computer Aided Verification,
592–607. Springer.
Marques-Silva, J.; Janota, M.; and Mencia, C. 2017. Min-
imal sets on propositional formulae: Problems and reduc-
tions. Artificial Intelligence 252:22–50.
Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and
Belov, A. 2013. On Computing Minimal Correction Sub-
sets. In International Joint Conference on Artificial Intelli-
gence 615–622.
Martins, R.; Manquinho, V.; and Lynce, I. 2012. On parti-

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

700

tioning for maximum satisfiability. In European Conference
on Artificial Intelligence. IOS Press. 913–914.
Mencia, C.; Previti, A.; and Marques-Silva, J. 2015. Literal-
Based MCS Extraction. In International Joint Conference
on Artificial Intelligence 1973–1979.
Minoux, M., and Mavrocordatos, P. 2009. Maximum Con-
straint Satisfaction: Relaxations and Upper Bounds. In
Encyclopedia of Optimization. Boston, MA: Springer US.
1981–1991.
Morgado, A.; Heras, F.; Liffiton, M.; Planes, J.; and
Marques-Silva, J. 2013. Iterative and core-guided MaxSAT
solving: A survey and assessment. Constraints 18(4):478–
534.
Narodytska, N.; Bjørner, N.; Marinescu, M.; and Sagiv, M.
2018. Core-Guided Minimal Correction Set and Core Enu-
meration. In International Joint Conference on Artificial In-
telligence. 1353–1361.
Pipatsrisawat, K., and Darwiche, A. 2007. Clone: Solv-
ing weighted Max-SAT in a reduced search space. In Aus-
tralasian Joint Conference on Artificial Intelligence, 223–
233. Springer.
Potts, C. N., and Strusevich, V. A. 2009. Fifty years of
scheduling: a survey of milestones. Journal of the Opera-
tional Research Society 60(1):S41–S68.
Rodler, P., and Elichanova, F. 2020. Do we really sample
right in model-based diagnosis? In International Workshop
on Principles of Diagnosis (Corr abs/2009.12178).
Rodler, P., and Teppan, E. 2020. The Scheduling Job-Set
Optimization Problem: A Model-based Diagnosis Approach
In International Workshop on Principles of Diagnosis (Corr
abs/2009.11142).
Rodler, P. 2020. Understanding the QuickXplain Al-
gorithm: Simple Explanation and Formal Proof. CoRR
abs/2001.01835.
Sadegheih, A. 2006. Scheduling problem using genetic al-
gorithm, simulated annealing and the effects of parameter
values on GA performance. Applied Mathematical Mod-
elling 30(2):147 – 154.
Schiex, T.; Fargier, H.; Verfaillie, G.; et al. 1995. Val-
ued constraint satisfaction problems: Hard and easy prob-
lems. International Joint Conference on Artificial Intelli-
gence, 631–639.
Schrage, L. 1979. A more portable Fortran random num-
ber generator. ACM Transactions on Mathematical Software
5(2):132–138.
Shchekotykhin, K.; Friedrich, G.; Rodler, P.; and Fleiss,
P. 2014. Sequential diagnosis of high cardinality faults in
knowledge-bases by direct diagnosis generation. In Euro-
pean Conference on Artificial Intelligence, 813–818.
Stecco, G.; Cordeau, J.-F.; and Moretti, E. 2008. A branch-
and-cut algorithm for a production scheduling problem with
sequence-dependent and time-dependent setup times. Com-
puters and Operations Research 35(8):2635–2655.
Sun, Y.; Chung, S.-H.; Wen, X.; and Ma, H.-L. 2021. Novel
robotic job-shop scheduling models with deadlock and robot

movement considerations. Transportation Research Part E:
Logistics and Transportation Review 149:102273.
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research 64(2):278
– 285.
Tamura, N.; Taga, A.; Kitagawa, S.; and Banbara, M.
2009. Compiling finite linear CSP into SAT. Constraints
14(2):254–272.
Terra-Neves, M.; Lynce, I.; and Manquinho, V. 2018. Multi-
Objective Optimization Through Pareto Minimal Correction
Subsets. In International Joint Conference on Artificial In-
telligence 5379–5383.
Walsh, T. 2000. SAT v CSP. In International Conference on
Principles and Practice of Constraint Programming, 441–
456. Springer.
Xing, Z., and Zhang, W. 2005. MaxSolver: An efficient
exact algorithm for (weighted) maximum satisfiability. Ar-
tificial intelligence 164(1-2):47–80.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

701

	Introduction
	Problem Definition and Approach
	Evaluation
	Related Work
	Conclusion

