
Combining Logic and Natural Language Processing to Support Investment
Management

Marjolein Deryck1,2 , Nuno Comenda3 , Bart Coppens3 , Joost Vennekens1,2
1KU Leuven, Dept. Computer Science, Campus De Nayer

2Leuven.AI – KU Leuven Institute for AI, Leuven, Belgium
3Coppens and Partners Consulting

{marjolein.deryck, joost.vennekens}@kuleuven.be,
{nuno.comenda,bart.jan.coppens}@coppens-and-partners.com

Abstract

This paper presents an application that we developed to assist
users with the creation of an investment profile for the selec-
tion of financial assets. It consists of a natural language inter-
face, an automatic translation to a declarative FO(.) knowl-
edge base, and the IDP reasoning engine with multiple forms
of logical inference. The application speeds up the invest-
ment profile creation process, and reduces the considerable
inherent operational risk linked to the creation of investment
profiles.

1 Introduction

The Knowledge Base Paradigm (KBP) advocates a strict
separation between declarative domain knowledge and log-
ical inference tasks that can be applied to this knowledge
to solve problems of interest (Denecker 2008). As an im-
plementation of this paradigm, the IDP system uses the ex-
pressive extension FO(.) of classical first order logic as
a language for constructing a knowledge base (KB). The
(.) stands for the various extensions, such as arithmetic,
types, partial functions and inductive definitions (De Cat et
al. 2018). In this application we especially use arithmetic
and definitions. IDP offers an imperative shell for applying
various logical inference algorithms to the KB. In this paper,
we present a system that integrates an IDP application with
a Natural Language (NL) interface to easily create the KB.

Multiple real-life applications have been created with
IDP, e.g., for product configuration (Aerts and Vennekens
2018) and the calculation of registration duties (Deryck et al.
2019). Other authors have studied the use of NL to create a
KB (Hoherchak, Darchuk, and Kryvyi 2021),(Khanam, Liu,
and Chen 2019). Our contribution in this paper is to com-
bine the two in order to tackle a real life application in the
financial sector.

In the next section we introduce the case. Then we focus
on the two levels of the application: the natural language
interface in Section 3 and the reasoning engine with its in-
ference tasks in Section 4. In the final sections we evaluate
the application (Section 5) and address the lessons learned
(Section 6) and conclusion (Section 7).

2 Case: Creation Of Investment Profiles
In this paper we report the results from a case study executed
at an international financial institution. Due to the confiden-
tiality required by the institution, some details of the case
have been changed without affecting its essence.

As a part of its service, an investment banker offers
clients advice on the financial products to buy or sell. The
clients’ preferences can be expressed in an investment pro-
file, that determines which assets are eligible for a specific
investment. The eligibility of a specific asset depends on
a plethora of interacting rules and constraints. The bank
uses software to automatically select assets according to the
client’s selection criteria. Previously, a bank operator trans-
lated the several requests into lengthy programs that contain
a lot of enumerations, repetitions, and complex nesting of
if-then clauses and exceptions that need to be followed in
the right order. This makes each creation of an investment
selection program a complex and time consuming task. Fur-
thermore, the result is hard to validate, which entails a sub-
stantial operational risk.

3 A Natural Language Interface
To overcome the aforementioned challenges we propose a
declarative reasoning system with a NL interface. It allows
the eligibility of financial products to be defined by means
of controlled natural language (CNL). Each sentence is con-
structed from a number of building blocks that are selected
step by step to get to a complete sentence (see Fig.1). The re-
sulting highly structured NL sentence is automatically trans-
lated to FO(.).

The building blocks are defined in a manually created tu-
ple tree. The standard tree in our application consists of 400
nodes and took two weeks to construct. Each node repre-
sents a concept, like country or asset type, and each concept
accepts possible values related to it. Users can extend the
available picklist of values by introducing and defining new
concepts. E.g., in the standard tuple tree ‘rating’ can take
different values, from AAA, AA, A,... to D. A user could
create a definition ‘Investment Grade’, defining it as ratings
above BBB. ‘Investment Grade’ then becomes a new value
in the picklist, that can be used to construct CNL sentences.

In addition to the interface to construct CNL sentences,
the application also contains a deep learning NLP module

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

666



Figure 1: Creating a CNL sentence with building blocks.

that accepts free-form English. It proposes three CNL state-
ments that are most likely to present the English sentence
(see Fig.2). The user then selects the most correct sentence,
makes adjustments if necessary, and validates the result. As
before, this CNL statement is added to the KB in FO(.). The
NLP module consists of a custom attention-based network,
that was implemented in Tensorflow. The models use a
sequence-to-sequence architecture with attention. The train-
ing data uses a combination of real and synthetic data. The
real data are previous interactions from the users. The syn-
thetic data is achieved by creating random walks on the tuple
tree and several grammatical transformations to achieve a
rich set of examples. The model is trained with an NVIDIA
RTX 2080 with training times from tree to five hours.

The possibility to enter sentences in (controlled) natural
language allows the users to create a complete and correct
KB of their investment profile.

4 The Knowledge Base System
When completed, the KB can be used by different inference
methods to perform multiple tasks in the problem domain.
This section discusses the underlying IDP reasoning engine
of the application, which consists of a KB at one hand, and
inference tasks that can be applied to the KB on the other
hand.

4.1 Structure Of The KB
A KB consists of three parts: a vocabulary that contains the
ontology of the domain, a theory that contains rules and con-
straints on the concepts in the vocabulary, and a structure,
that delineates the domain of the concepts, and typically
gives an interpretation for some of them.

Deciding On Eligibility The KB is constructed by
translating the CNL sentences to FO(.). The CNL sentences
can end in one of two possible ways: either the asset is
eligible, or it is not eligible. Every sentence is created
independently of other sentences. This means that for a

given asset, contradicting rules might occur. In this case, the
non-eligibility rule should take precedence over the eligibil-
ity rule. To reflect this in our theory, we create two separate
predicates ’Eligible(asset)’ and ‘NotEligible(asset)’. It is
the predicate ‘Eligible(asset)’ that determines if an asset
is eligible for selection in the profile. The theory consists
of two definitions, one for each predicate. A definition in
FO(.) consists of a set of rules of the form head ← body.
In our setting, all rules in the same definition have the same
head. Each body is a sufficient condition for the general
head to be true. Together, the rules are also necessary, i.e.,
the head can only be true if at least one body is (Denecker
and Vennekens 2014). The NotEligible(asset) is used as an
exception in the definition of Eligible(asset). The general
structure of our theory is shown in the example below:
∀ a[Asset] : Eligible(a)← ϕ1 & ¬NotEligible(a).

∀ a[Asset] : Eligible(a)← ϕ2 & ¬NotEligible(a).

∀ a[Asset] : Eligible(a)← ϕ3 & ¬NotEligible(a).


{ ∀ a[Asset] : NotEligible(a)← ϕ4. }

These two definitions are equivalent to the formulas:
∀ a[Asset] : NotEligible(a)⇔ ϕ4.

∀ a[Asset] : Eligible(a)⇔ ¬NotEligible(a) ∧
(ϕ1 ∨ ϕ2 ∨ ϕ3).

Maintaining Concentration Limits Typically, an in-
vestor will not only describe the kind of assets they want to
accept in their investment portfolio, but they will also have
requirements for the profile of his entire portfolio. A sound
portfolio should be diverse (e.g., in terms of asset coun-
tries or industries) and investors implement this by defin-
ing concentration limits. For the enforcement of these
concentration limits we create a separate theory, as it con-
cerns the next step after determining the eligibility, i.e., the
actual selection of eligible assets. An example to force con-
centration limits on countries is shown below. We start by

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

667



Figure 2: Natural language statement and its interpretations.

calculating the concentration amount of each country, that
is the sum of the market values of each asset with the same
country:

∀c : CA(c) = sum{a v : Country(a) = c ∧
MV (a) = v : v}. (1)

with CA(c) the concentration amount of country c, c the
Country of asset a and v the market value (MV) of asset
a. The sum-aggregate consists of three components : the
variables a and v over which it ranges, a condition that a and
v must satisfy (Country(a) = c ∧ MV (a) = v), and the
value that needs to be summed up (v). The concentration,
expressed as percentage, is given by

∀ c : CONC(c) = (CA(c)× 100/TMV ). (2)

with CONC(c) the concentration percentage of country c and
TMV the total market value of the portfolio.

Finally we force the concentration limit by comparing the
user-set concentration limit percentage l of each country c
(CL(c,l)) with the concentration percentage in the portfolio:

∀ c l : CL(c, l) ≥ CON(c) . (3)

4.2 Inference Tasks
The information that is declaratively stated in the KB, can be
used for different purposes. This section describes how dif-
ferent inference tasks can be applied to implement different
requirements. Several of these inference tasks take as input
not just the KB T itself, but also a partial interpretation Ip
for part of the vocabulary V of T .

Model Expansion The inference task of
model expansion can be used to decide on the eligi-
bility of a specific asset. Given a theory T (that contains the
rules of eligibility), and an interpretation Ip for part of its
vocabulary V , the model expansion inference computes
interpretations It for the entire V such that Ip ⊂ It and
It |= T (Wittocx, Mariën, and Denecker 2008). Consider
the following highly simplified theory. If an asset has a

triple A rating, it is investment grade (IG). If the asset is IG
and is issued in Belgium (BE), it is eligible:
{∀ a[Asset] : IG(a)← Rating(a) = AAA.}
{∀ a[Asset] : Eligible(a)← IG(a)∧

Country(a) = BE.}

The interpretation Ip that contains Rating(asset) =
AAA, has two model expansions It:
Rating(asset) = AAA Rating(asset) = AAA
IG(asset) = true IG(asset) = true
Country(asset) = BE Country(asset) = FR
Eligible(asset) = true Eligible(asset) = false

In our application we typically possess all the informa-
tion on the asset, such that only the values of Eligible and
NotEligible need to be computed.

Optimization The optimize inference is used to find a
combination of eligible assets that can be acquired at min-
imal cost. To this end we create an additional term m that
represents this cost. Given a theory T , interpretation Ip and
term m, the optimize inference will look for a model ex-
pansion It of Ip that minimizes m (De Cat et al. 2018). This
is, it will select a combination of assets with the lowest as-
sociated cost that follows the eligibility rules and given Ip.

Propagation The propagation inference computes a set
of facts that are consequences of T given Ip, i.e., that hold
in all model expansions It of T with Ip ⊂ It (De Cat
et al. 2018). In the example above, if the partial interpre-
tation Ip contains Rating(asset) = AAA, than the value
IG(asset) = true is propagated, since it will be true in ev-
ery possible model. Nothing can be derived about the value
of Eligible(asset) because this still depends on the coun-
try. In the application, the propagation works interactively:
as soon as a new rule is created, the impact on the eligibility
is immediately shown by coloring the asset green (eligible)
or red (not eligible) as shown in Fig.3.

Explanation The explanation inference traces the prop-
agated values back to the given values of the interpretation

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

668



Figure 3: Visualization of interactive propagation.

Ip (Deryck et al. 2019). The application allows the user
to click on a propagated value and see immediately which
atoms steered the decision. This helps the user to under-
stand unexpected propagations, for example in case an asset
is not eligible, when the client expected that it would be. In
the running example, the explanation of IG(asset) = true
is that Rating(asset) = AAA.

Explain Unsat In Section 4 we described the theory to re-
flect preferences with regards to concentration limits. When
formalized this way, an existing profile can be checked to
see if it satisfies the given concentration limits with a simple
model expansion. If one of the limits is breached, no model
will be found, and the explain unsat inference task can be
used to find which limit is breached.

Theory Comparison Active investors will typically up-
date their profile regularly. In this case an automated com-
parison of two versions of the profile is helpful to en-
sure that correct amendments have been made. With the
model expansion inference the logical equivalence of two
theories can be checked by merging two theories T1 and T2,
with concepts Eligible1 and Eligible2 respectively, such
that T3 = T1 ∪ T2 and adding the constraint that an asset
can only be eligible in one of both theories. If no model It
that satisfies T3 is found, the two theories are equivalent. If
differences are found, the model expansion inference will re-
turn the model that contains these differences, which allows
their manual validation.

5 Evaluation
As the saying goes: the proof of the pudding is in the eat-
ing. The inference tasks were showcased to the company
in a prototype. Following this, the company has launched
a project to further develop this prototype into a produc-
tion application. The first technical release in production
was done in February 2021 and a second release with im-
proved workflow for signing the profiles between counter-
parties was released in June 2021. As of the second release,
clients from large investment banks have access to a sand-
box environment for training purposes. A full commercial
roll-out will be done by September 2021. The target users
for this commercial release are operations teams in the trea-
sury back offices of large investment banks globally (target
around 500 users across 150 organisations).The correctness

of the knowledge base was insured by performing empirical
tests. The testing of eligibility of assets against the profile
has been done for descriptions with up to 20 rules, applied to
portfolios of up to 300 assets with response times less than
3 seconds. These represent reasonable tranches for proper
business use. Any larger portfolios can be tested off line
with reporting being sent when processing has finished.

Profiles of 20 lines in NL might take up to 2000 to 3000
”if-then-else” statements when entered into the legacy sys-
tems. This is due to the large number of attributes (up to
150), the long lists of values behind most of these attributes
(asset taxonomies, lists of countries, currencies, industries,
ratings, issuers, etc.) and many overlaps and gaps in terms
of eligibility. The ”if-then-else” approach of the legacy sys-
tem forces a sequential way of organising the information
in the profiles, leading to thousands of statements. Our FO-
based approach allows for an almost line-by-line translation
of the statements into logic. This leads to increased self-
service by end clients, less operational errors and facilitated
maintenance.

6 Lessons Learned
Previous case studies have shown that the Knowledge Base
Paradigm and its implementation in the IDP system is
very useful to develop powerful applications in knowledge-
intensive domains (Aerts and Vennekens 2018; Deryck et al.
2019). This also proves to be the case here. Having the
domain knowledge separated from the inference tasks keeps
the maintenance of the code easy and lean. This is a big
advantage over the way this kind of applications are usu-
ally governed. The addition of new concepts with minimum
effort as discussed in Section 3 is an example of this. Typi-
cally, the creation of a KB is a challenging task (Feigenbaum
1977). Here, our NL interface offers two main advantages.
Because of the complexity of the domain, detecting and fix-
ing errors in the implementations of the policies used to be
a time and resource intensive process. Now, the interface
allows clients to enter the rules of their profile themselves,
and immediately see the impact of them. The use of building
blocks to create CNL sentences also has the advantage that
it helps to elicit user’s preferences, that might have stayed
hidden without prompting by the building blocks. For in-
stance, the start of a CNL sentence shows among others the
following blocks: all bonds, all equities, all cash,... While
the use of cash as investment is often overlooked, this screen
prompts the user to consider it.

7 Conclusion
The prototype that we have developed strongly facilitates the
creation of investment profiles. Compared with the man-
ual creation of such profile, the operational risk linked to
the automation is almost non-existent thanks to the two-step
procedure to turn natural language sentences via CNL au-
tomatically into an FO(.) KB. Once the KB is created, the
application supports multiple services, such as the selection
of eligible assets, optimisation of the associated costs and
explanation of unexpected results.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

669



Acknowledgements
This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelli-
gentie (AI) Vlaanderen” programme.

References
Aerts, B., and Vennekens, J. 2018. An application of logic-
based methods to machine component design. volume 64,
13:1–13:15. Palù, Alessandro Dal.
De Cat, B.; Bogaerts, B.; Bruynooghe, M.; Janssens, G.;
and Denecker, M. 2018. Predicate logic as a modeling lan-
guage: The idp system. In Declarative Logic Programming:
Theory, Systems, and Applications. ACM Books. 279–329.
Denecker, M., and Vennekens, J. 2014. The well-founded
semantics is the principle of inductive definition, revisited.
1–10. Chitta, Baral.
Denecker, M. 2008. Building a knowledge base system
for an integration of logic programming and classical logic.
volume 5366, 71–76. Springer.
Deryck, M.; Devriendt, J.; Marynissen, S.; and Vennekens,
J. 2019. Legislation in the knowledge base paradigm: inter-
active decision enactment for registration duties. 174–177.
IEEE.
Feigenbaum, E. A. 1977. The art of artificial intelligence. 1.
themes and case studies of knowledge engineering. Techni-
cal report, Stanford Univ CA Dept of Computer Science.
Hoherchak, H.; Darchuk, N.; and Kryvyi, S. 2021. Repre-
sentation, Analysis, and Extraction of Knowledge from Un-
structured Natural Language Texts. Cybernetics and Sys-
tems Analysis 57(3):481–500.
Khanam, S. A.; Liu, F.; and Chen, Y.-P. P. 2019. Com-
prehensive structured knowledge base system construction
with natural language presentation. Human-centric comput-
ing and information sciences 9(1):1–32.
Wittocx, J.; Mariën, M.; and Denecker, M. 2008. The idp
system: a model expansion system for an extension of clas-
sical logic. In Proceedings of the 2nd Workshop on Logic
and Search, 153–165. ACCO; Leuven.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

670


	Introduction
	Case: Creation Of Investment Profiles
	A Natural Language Interface
	The Knowledge Base System
	Structure Of The KB
	Inference Tasks

	Evaluation
	Lessons Learned
	Conclusion

