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Abstract

Depth-Bounded Boolean Logics (DBBL for short) are well-
understood frameworks to model rational agents equipped
with limited deductive capabilities. These Logics use a pa-
rameter k ≥ 0 to limit the amount of virtual informa-
tion, i.e., the information that the agent may temporarily
assume throughout the deductive process. This restriction
brings several advantageous properties over classical Propo-
sitional Logic, including polynomial decision procedures for
deducibility and refutability. Inspired by DBBL, we propose
a limited-depth version of the popular ASP system clingo,
tentatively dubbed k-lingo after the bound k on virtual
information. We illustrate the connection between DBBL
and ASP through examples involving both proof-theoretical
and implementative aspects. The paper concludes with some
comments on future work, which include a computational
complexity characterization of the system, applications to
multi-agent systems and feasible approximations of probabil-
ity functions.

1 Introduction
Depth-Bounded Boolean Logics (DBBL for short) are logic
formalisms to reason about agents that have limited deduc-
tive power. These logics build upon definitions for virtual
and actual information. The former is information an agent
may temporarily assume in order to perform logical deduc-
tions, whereas the latter is information that is evident to
the reasoning agent. Proof-theoretically, virtual information
corresponds to applying the cut (or Principle of Bivalence)
rule. Intuitively, an agent reasoning at depth k can apply at
most k nested instances of the cut rule. This results in a hier-
archy of tractable approximations of classical propositional
logic (D’Agostino, Finger, and Gabbay 2013).

This paper aims to port the very idea of Depth-Bounded
Reasoning to Answer Set Programming (ASP for short),
a common logic programming paradigm. In particular,
we propose a modification of the popular ASP system
clingo (Gebser et al. 2014), tentatively dubbed k-lingo
to emphasize its dependency on the parameter k which de-
termines the maximum reasoning depth. In the following,
we will refer e.g. to the 2-depth version of such system as
2-lingo (and similarly for other values of k).

The present work briefly shows how our implementa-
tion relates to Depth-Bounded Boolean Logics and discusses

θ φ θ ∧ φ θ ∨ φ θ → φ ¬θ
0 0 0 0 1 1
0 1 0 1 1 1
0 ⊥ 0 ⊥ 1 1
1 0 0 1 0 0
1 1 1 1 1 0
1 ⊥ ⊥ 1 ⊥ 0
⊥ 0 0 ⊥ ⊥ ⊥
⊥ 1 ⊥ 1 1 ⊥
⊥ ⊥ ⊥, 0 ⊥, 1 ⊥, 1 ⊥

Table 1: 3ND truth-tables

some differences, most notably that DBBL is monotonic in
nature, whereas ASP is non-monotonic. We also demon-
strate how this implementation may be used for practical
applications and hint at future developments that we believe
will push forward our understanding of DBBL by provid-
ing an efficient tool for the computation of depth-bounded
consequence and clarifying the interaction between non-
monotonic and depth-bounded reasoning.

2 Background and Related Work
Although we are not concerned here with providing an in-
depth formal discussion of the relation between DBBL and
ASP, it is helpful nonetheless to recall some concepts from
these fields.

DBBL’s semantics is given in terms of three valued non-
deterministic (3ND for short) truth tables (see Table 1). In-
tuitively, the truth values represent informational versions of
their classical counterparts. In other words, 1 (resp. 0) may
be interpreted as “holding the information that a sentence
is true” (resp. “false”). The third truth value, ⊥ (not to be
confused with the usual symbol for “falsum”), represents in-
formational indeterminacy, that is, “not holding information
about the truth value of a sentence”. As it may be noted from
the truth tables, non-determinism arises in cases where the
value of two conjuncts (resp. disjuncts) is informationally
indeterminate. In this case, the value of their conjunction
(resp. disjunction) non-deterministically takes value ⊥ or 0
(resp. ⊥ or 1). This fact, which may look counterintuitive
at first glance, has its justification in that we may carry ad-
ditional information about the possibility of both conjuncts
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(resp. disjuncts) to be simultaneously true. To put it with
Quine (Quine 1976), we may see a small animal and we may
not hold information about the two sentences “it is a mouse”
and “it is a chipmunk”. Nonetheless, we would surely deny
their conjunction. However, we could suspend our judge-
ment about the conjunction of two informationally indeter-
minate sentences “it is a mouse” and “it is in the kitchen”.

The semantics of arbitrary formulas is given by 3ND-
valuations, i.e., mappings satisfying V (¬θ) = f¬(θ), V (θ∧
φ) = f∧(θ, φ), V (θ ∨ φ) = f∨(θ, φ) and V (θ → φ) =
f→(θ, φ) where functions f¬, f∧, f∨ and f→ are defined
according to Table 1. The associated semantic consequence
relation, denoted by |=0, is defined as usual, i.e., X |=0 φ if
all 3ND-valuations satisfying all formulas in the set X also
satisfy φ.

This semantic concept has a natural proof-theory that is a
mixture of classic natural deduction and a tableau method.
The full system can be found in (D’Agostino, Finger, and
Gabbay 2013). This calculus consist of classical introduc-
tion and elimination rules for connectives (intelim rules for
short). Intelim rules induce a deducibility relation `0 that
is shown to be sound and complete with respect to |=0, i.e.,
X |=0 φ iff X `0 φ.

It is possible to obtain completeness with respect to clas-
sical propositional logic by adding a cut rule (or PB rule,
after the Principle of Bivalence) that corresponds to “guess-
ing” a formula. The cut rule has the following “branching”
form:

¬φφ

Cut

for some formula φ.
Separating intelim rules from the cut rule allows one to

clearly distinguish between information the agent is aware
of (actual information) and consequences of such informa-
tion the agent may be not aware of, due to its limited deduc-
tive power. The latter kind of information may be extracted
from actual information only through applications of the cut
rule. Since it requires “guessing” the truth value of a formula
A, DBBL regards applications of the cut rule as a “difficult”
task both from a cognitive and computational point of view.
This constitutes the rationale behind the choice of limiting
the number of nested cuts that an agent is able to perform
during the reasoning process, thus allowing for a generaliza-
tion of `0 to `k, where k is the maximum number of nested
cuts allowed1. An important result of DBBL is that for any
fixed k ≥ 0, deducibility and refutability of formulas in `k
is polynomial. A simple example of 1-depth derivation of B
from a theory T = {a, a→ b∨ c, b ∨¬c} (where a, b, c are
propositional variables) goes as follows:

1The exact notation for k-depth consequence is `fk , where f
defines the virtual space of formulas that the agent is allowed to
choose from when applying a cut. For simplicity, in this paper we
follow the common ASP convention that such space consists of all
atoms in the language, and simply write `k. Formal definitions of
`fk and the associated semantic relation |=f

k can be found, e.g., in
(D’Agostino 2015).

a∗

a→ b ∨ c∗

b ∨ ¬c∗

b ∨ c

¬c

b

Elimination of ∨
c

b

Elimination of ∨

Cut

Modus Ponens

where we marked formulas in the theory T with ∗ (and we
use this notation convention in the remainder of the paper).
Since both branches of the above tree end with b (regardless
of whether c holds or not) we deliberate that T `1 b, where
`1 stands for the 1-depth consequence relation. Note that the
above tree also licenses that T `0 b ∨ c, as this is derivable
from the theory T by a single application of Modus Ponens
and no cuts.

A taxonomy of tableau systems for ASP was given in
(Gebser and Schaub 2006). These systems are similar to
the proof-theory of DBBL in that they also consist of (non-
monotonic) introduction and elimination rules, and a cut rule
that is exactly similar to that of DBBL. Therefore, imple-
menting the idea of k-depth reasoning in ASP by limiting
the number of cuts appears quite natural. This constitutes
the core idea of the present work. However, it must be noted
that there are some important differences between the inte-
lim rules of DBBL and the ASP tableau rules, mainly due
to the non-monotonic nature of ASP and the monotonicity
of DBBL. For instance, tableaux for ASP include a non-
monotonic Backward True Atom rule of the form

a, not b1, . . . , not bi−1, not bi+1, not bn
BTA

bi

where b1, . . . , bn are all bodies of rules with head a, and we
use the operator not to distinguish non-monotonic negation
and classical negation. This rule has no intelim equivalent
in DBBL. Therefore, we must be careful when interpreting
the meaning of truth values in depth-bounded ASP, which
may be seen as an informational counterpart of truth values
in non-monotonic logics. We touch upon these differences
in the following section by means of examples.

3 The k-lingo System
Our depth-bounded ASP system is built upon the popu-
lar ASP grounder and solver clingo, which exploits the
conflict-driven nogood learning (CDNL for short) solving
strategy. The proof-system underlying CDNL is based on
two expansion rules: a decision rule and a propagation rule.
The decision rule is nothing but the cut rule discussed in
Section 2. The propagation rule is used to deterministically
assign atoms a truth value according to the ASP tableau de-
terministic rules, i.e., all tableau rules but the cut rule.
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We use clingo’s Python API to limit the number of de-
cisions/cuts to a fixed number k ≥ 0. We dubbed the re-
sulting system k-lingo2. The idea underlying k-lingo
is to exploit clingo’s efficient solving strategy to look for
an answer set of the input theory as we count the number
of (nested) decisions the solver makes throughout the solv-
ing process, thus setting an upper limit on the decision level
k-lingo can reach. If an answer set is found without ex-
ceeding decision level k, k-lingo returns it. Similarly, if
the problem is shown to be unsatisfiable at decision level k,
k-lingo returns UNSATISFIABLE. Otherwise, as soon as
depth k is reached, we let the solver deterministically prop-
agate literals until it reaches a propagation fixpoint, i.e., it
is impossible to deduce new information unless a new non-
deterministic decision is made. At this stage, clingo has
assigned a truth value 0 or 1 to a subset of the atoms occur-
ring in the input theory, with the other atoms left undeter-
mined. Let A1 be the set of atoms assigned truth value 1,
A0 be the set of atoms assigned truth value 0, and A⊥ the
set of atoms left undetermined. We then let k-lingo return
a mapping from all atoms in the input theory to {0, 1,⊥}
such that V (a) = 1 if a ∈ A1, V (a) = 0 if a ∈ A0,
and V (a) = ⊥ if a ∈ A⊥. We call this mapping a 3ND*-
valuation to distinguish it from standard 3ND-valuations in
DBBL.

In the following we show a few example theories, discuss
the corresponding output of k-lingo, and occasionally
compare it to k-depth DBBL. Note that we refer to 0-depth
k-lingo as 0-lingo, 1-depth k-lingo as 1-lingo, and
similarly for other values of k.

Example 1. Consider the following theory:

T1 =

{
a← b
b

}
In this case, 0-lingo computes the only 3ND*-valuation
satisfying T1, namely V (a) = 1 and V (b) = 1. Note that in
this case the output of 0-lingo is consistent with 0-depth
DBBL, as it may be easily verified from the 3ND truth table
of implication in Table 1.

In the next example, we show a subtle difference between
the tableau systems of DBBL and ASP:

Example 2. Let T2 be as follows:

T2 =

{
a← not b
b← not a

}
0-lingo finds the 3ND*-valuation V (a) = ⊥ and V (b) =
⊥. 1-lingo computes the 3ND*-valuation V (a) = 0 and
V (b) = 1, which corresponds to the rightmost branch of the
following ASP tableau:

2The latest version of k-lingo can be found on GitHub at
http://github.com/dasaro/klingo

a← not b∗

b← not a∗

not a

b

FTA
a

not b

BWA

Cut

where BTA is the Backward True Atom rule discussed in
Section 2, and FTA is the Forward True Atom rule (similar
to Modus Ponens) discussed in (Gebser and Schaub 2006).
Note that, in this case, the tableau of DBBL would be differ-
ent:

a← ¬b∗

b← ¬a∗

¬a

b

Modus Ponens
a

¬bb

Cut

Cut

The rightmost branch of the DBBL tableau is equivalent to
the rightmost branch in the ASP tableau above. However,
the leftmost branch of the DBBL tableau which corresponds
to the 3ND-valuation V ′(a) = V ′(b) = 1 has no ASP equiv-
alent. This is because of the different meaning assigned to
negation and implication by ASP and DBBL.
k-lingo inherits clingo’s support to advanced con-

structs such as choice rules. In the example below, we briefly
show how k-lingo behaves in their presence.
Example 3. Let

T3 =

{
{a; b; c}
d← not c

}
where {a; b; c} is a choice rule.

1-lingo finds the following valuation: V (a) = ⊥,
V (b) = ⊥, V (c) = 0, V (d) = 1, which corresponds to
“guessing” the falsity of c and deducing d.

In the example below, we discuss how k-lingo behaves
when it deals with unsatisfiable theories.
Example 4. Consider the following unsatisfiable ASP the-
ory:

T4 =


d(a; b; c)
r(a; b)

1{f(X,Y ) : r(Y )}1← d(X)
← 2{f(X,Y )}, r(Y )


which encodes an instance of the pigeon hole problem, i.e.
it looks for an injective mapping from a set d = {a, b, c}
to a set r = {a, b}. Interestingly, 0-lingo is unable to
detect that such problem is unsatisfiable, and outputs the
3ND*-valuation V (f(a, a)) = V (f(b, a)) = V (f(c, a)) =
V (f(a, b)) = V (f(b, b)) = V (f(b, c)) = ⊥. How-
ever, running 1-lingo on this theory produces output
UNSATISFIABLE.
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7 1 9
4 6 1 9

6 8 2 7 4
9 7

3 4 5
6 7
1

2 7 4
2 3

2358 2358 45 345 35 2568

2358 357 258 2358 238

1359 135 359 35

1358 23458 458 12456 1568 1268 2368

18 1278 278 126 1689 2689

1358 123458 1245 1589 1289 2389 1238

35689 34578 589 356 35689 25689 2456789 268

358 3589 589 15689 5689 168

5689 4578 45789 156 15689 456789 168

Figure 1: A “hard” sudoku. The small gray digits are the candidates
for that cell as computed by 0-lingo.

In the following example we and show an application of
k-lingo to a standard puzzle solving problem.

Example 5. Let us now consider a 9 × 9 sudoku solver,
which we encode with the following logic program:

x(1..9). y(1..9). n(1..9).

1{ sudoku(X,Y,N): n(N) }1 :-
x(X) ,y(Y).

subgrid(X,Y,A,B) :-
x(X), x(A), y(Y), y(B),
(X-1)/3 == (A-1)/3,
(Y-1)/3 == (B-1)/3.

:- sudoku(X,Y,N), sudoku(A,Y,N), X!=A.
:- sudoku(X,Y,N), sudoku(X,B,N), Y!=B.
:- sudoku(X,Y,V), sudoku(A,B,V),

subgrid(X,Y,A,B), X != A, Y != B.

where sudoku(X,Y,N) means that cell (X,Y) contains
value N. The following sudoku instance cannot be solved by
a 0-depth agent:

sudoku(1,1,7). sudoku(1,8,1).
sudoku(1,9,9). sudoku(2,1,4).
sudoku(2,2,6). sudoku(2,4,1).
sudoku(2,5,9). sudoku(3,4,6).
sudoku(3,5,8). sudoku(3,6,2).
sudoku(3,7,7). sudoku(3,9,4).
sudoku(4,2,9). sudoku(4,9,7).
sudoku(5,4,3). sudoku(5,7,4).
sudoku(5,9,5). sudoku(6,3,6).
sudoku(6,4,7). sudoku(7,3,1).
sudoku(8,1,2). sudoku(8,5,7).

sudoku(8,6,4). sudoku(9,4,2).
sudoku(9,7,3).

In this case, 0-lingo is only able to compute some straight-
forward consequences of the input problem. For instance, it
figures cell (1,2) cannot contain 1, 4, 6, 7 or 9. How-
ever, it remains agnostic as to whether it contains a 2, 3, 5
or 8 (see Figure 1). Finding a solution therefore requires
quite some guesswork. Indeed, players sometimes need to
apply advanced strategies to solve “hard” sudokus like this
one, e.g., the “forcing chain” technique which requires us-
ing virtual information3. Note that inferences of 0-lingo
depend on the input theory. For instance, in the given exam-
ple, adding axioms expressing that each number must ap-
pear exactly once in every row, column and square would
allow a 0-depth reasoning agent to conclude that cell (1,6)
contains a 6.

Examples like this one suggest that we may take the min-
imum depth at which a problem can be satisfactorily solved
as a coarse measure of its cognitive difficulty.

4 Conclusion and Future Work
In this short paper we introduce and present an ASP sys-
tem based on clingo and inspired by DBBL. To the best
of our knowledge, this is the first system implementing the
idea at the core of DBBL, i.e. limiting the number of cuts
throughout the reasoning process. In future work, we plan to
establish a formal connection between ASP and DBBL and
expand k-lingo to a flexible and fully-fledged framework
for Depth-Bounded reasoning.

As a next step, we intend to provide a formal descrip-
tion of the logical framework, and characterize its compu-
tational complexity in the light of the solving techniques of
clingo, i.e. CDNL. Efficient solving in a k-depth bounded
setting may indeed bring several advantages. For example,
as it was shown in (Baldi, D’Agostino, and Hosni 2020), it is
possible to approximate probability functions using DBBL.
Thus, k-lingomay serve as a tool to perform such approxi-
mation in practice. Moreover, since k-lingo is compatible
with clingo’s syntax, it can be applied to most existing
ASP programs and frameworks straight out-of-the-box or,
conversely, if one wants to test the practical implications of
reasoning at k-depth in complex realistic domains, e.g. in
the case of probabilistic temporal reasoning (D’Asaro et al.
2017; D’Asaro et al. 2020).

A further application of k-lingo is to multi-agent sys-
tems, where each agent is bound to a certain reasoning depth
but can interact and receive additional information from
agents who can reason at different depths (Cignarale and
Primiero 2020). We aim to investigate these aspects further
in future work.

3The “forcing chain” technique can be applied whenever two
or more cells have multiple candidate values. In these cases, one
may guess a candidate value for one of these cells and then verify
whether the guessed value yields a contradiction. If this is the case,
the guessed value can be removed from the set of candidates for
that cell, eventually forcing one specific value.
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